
A New Convolution Structure for the Realisation
of the Discrete Cosine Transform

Yuk-Hee Chan and Wan-Chi Siu

Department of Electronic Engineering
Hong Kong Polytechnic

Hung Hom, Kowloon
Hong Kong

ABSTRACT
In this p%er, we present a new formulation for converting

a length-N(= 2) Discrete Cosine Transform into two length-N/2
correlations. This formulation enables us to realise the Discrete
Cosine Transform with a reduced number of operations compared
to conventional approaches and it also results in extremely regular
structure which is most witable for the realisationusing distributed
arithmetic.

Introduction
The discrete cosine transform (DCT) has been widely used

as a tool for digital signal processing applications, such as image
coding. Many algorithms for the computation of the DCT have
been proposed since the introduction of the DCT in 1974 by
Ahmed et al.[l]. These algorithms can broadly be classified into
two groups: 1) indirect computation through fast Discrete Fourier
Transform and Walsh Hadamard transform[2-51 and 2) direct
computation of DCT through matrix decomposition or recursive
computation[6-151.

Among them, Lee[6]'s Algorithm and Vetterli[151's
algorithm meet the minimum known number of multiplications to
implement a length 2* DCT. Lee[6]'s algorithm decomposes an
N-point DCT into the sum of two N/2 point DCT's repeatedly to
achieve the number of real multiplications as (N/2)logfl for an
N-point DCT, with N =2'". Vetterli[lS]'s algorithm is special as it
is a recursive algorithm which uses the property that DCT, DFT,
sin-DFT and cos-DFT can be decomposed into two half-length of
the individual transforms. Hence, it is difficult to classify it
critically. Narasimha[S]'s algorithm is a typical example of group
one. It uses an N-point discrete Fourier transform (DFT)
algorithm to evaluate a DCT by a simple rearrangement of the
input data, which requires Nlogfl-N + 2 real multiplications.

In this pger , we present a new formulation for converting
a length-N(= 2) Discrete Cosine Transform into two length-N/2
correlations. This formulation enables us to realise the Discrete
Cosine Transform with a reduced number of operations compared
to conventional approaches and it also results in extremely regular
structure which is most suitable for the realisation using distributed
arithmetic.

The Algorithm Derivation
The DCT[l] of a real data sequence {x(i):i=O,l,,..N-l},

where N = 2'" and m is an integer, is defined by
N- 1

X(k) = 2 x(i) cos [2n(2i + l)k/4N]
i=O for k = 0,1, ... N-1 (1)

Let y(i) = x(2i)
y(N-i-1) = x(2i + 1) for i = O,l, ... N/2-1 (2)

N- 1
then, X(k) = y(i) cos [h (4 + l)k/4N]

for k = 0,l ... N-1 (3)
Now let us split X(k) into odd and even sequences, say

X(2k+ 1) and X(2k), and look for a formulation of the form
cos[(4i + 1)(4k + 1)2~/4N] for cosine terms. The reason for such an
arrangement will be clear at a latter stage.

i=O

For odd terms of X@):
N- 1

X(2k + 1) = y(i) cos [h(4i + 1)(2k + 1)/4N]
for k = O,l, ... N/2-1 i=O

N- 1
We define X(k) = 2 y(i) cos [%(4i + 1)(4k + 1)/4N]

for k = 0,1, ... N-1

for k = O,l, ... N/4-1
for k = N/4,N/4 + 1, ... N/2-1

i=O

then it can be shown that
X(4k + 1) = X'(k)
X(2N-4k-1) = - X(k)

For even terms ofX@):

X(2k) =
N- 1

y(i) cos [h(4i + 1)(2k)/4N]
for k = O,l, ... N/2-1 i=O

If we define X*(k) =
N- 1

z(i) cos[h(4i + 1)(2k+ 1)/4N]
for k = 0,1, ... N-1 i=O

where z(i) =2y(i)cos[(h/4N)(4i + l)]
then w,e have X*(N/2-1) =X(N-2)
and X (k) = X(2k) + X(2k + 2)

for i = 0,1, ... N-1 (10)

for k=0,1, ... N/2-2 (11)
In order to have the required form, let us define again

F(k) = . z(i) cos[h(4i + 1)(4k + 1)/4N]
for k=O,1, ... N-1 (12)

We can obtainX*(k) through the realisation of eqn. 12 since
it is read;y shown that

X (2k) = F(k) for k = OJ, ..., N/4-1 (13)
X*(N-2k-1) = -F(k) for k = N/4,N/4 + 1, ... N/2-l(l4)

N- 1

1 = o

CH2868-8/90/0000-2373$1.00 0 1990 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on September 30, 2009 at 02:09 from IEEE Xplore. Restrictions apply.

Hence, the even terms of X(k) can be determined by the

Let us summarize what we have done so far. X(k) can be
sequence {F(k):k=O,l..N/2-1} through eqn.ll,13 and 14.

computed through two steps:
Step 1: Compute X(k) and F(k) for k=0,1, ... N/2-1 and
Step 2: Compute X(k) by the following set of equations:

X(4k + 3) = -X(N/2-k-l)
X(4k + 2) = -F(N/2-k-1) - X(4k + 4)
X(4k+ 1) = X(k)
X(4k) = F(k) - X(4k + 2) for k = N/4-1, ... 1,O (15)

where X(N)is defined as zero.

Now let us define a bijective mapping[l4] on the set

<5"> 4N = 4U + 1 (16)
INDEX= (i: i = O,l, ... N-l), where N = 2m, to itself

then from eqn. 5 and 12,

we have X"(k) = E y"(i) cos[(%/4N) <

,where u,v E 0,1, ... N-1

N- 1
> 4 ~]

i=O for k=O,1 ... N-1 (17)

N- 1
and

where X(k) =x((< 5k >4N - 1)/4)

F (k) = E z"(i) cos[(%/4N) < 5 i + k > 4 ~ 1
i = O for k = 0,l ... N-1 (18)

F'(k) =F((<5k> 4 N - 1)/4)
y"(i) =y((< 5: > 4N - 1)/4)
Z"(i) = Z((< 5l> 4N - 1)/4) for i,k E INDEX (19)
We note that both of X'(k) and F'(k) are in correlation

form which can be computed easily as there exists a number of fast
and easy- implemented algorithms[l6] for the realisation of such
a structure.

Further Simplification and Realisation
Consider the correlation F"(k) in eqn.(l8). We have

where C(n) = cos[(b/4N) < 5 > 4 ~ 1
for any integer n (21)

As F"(N/2+n) = -F"(n) for n = 0 , 1 ... N/2-1, only
F(O),..F"(N/2-1) are required to compute. One may observe that
C(N/2 + n) = -C(n) for n = 0 , l ... N/2-1. Hence we have

where g(n) = z"(n>-z"(N/2 + n) for n = 0,l ... N/2-1

This saves almost half of the number of operations required
to realise F"(k) by eqn.(20). Furthermore, as g(n) =
2{y"(n) +y"(N/2 + n)}C(n) for n = O,l..N/2-1, we need not compute
z(n) fromy(n) term by term as shown in eqn.(lO) to compute the
sequence {g(n)). This further saves N/2 multiplications.

Let us clarify our proposal with a length 8 DCT with input
sequence {x(i):i = O,l, ... 7}. Rearranging the data according eqn.(2)
and from eqn.(lo), we have

,
where a = n/16.
From eqns. (18), (20) and (22), we have

L

Similarly, from eqn.(l7),

Hence,
x(7) = -x'(2),
X(5)=X'(1), X(4) =F(l)-X(6),
x(3) =-x'(3), X(2) = -F(3)-X(4),
X(1) = x'(O), X(0) = F(0)-X(2)

X(6) = -F(2),

Note that values of F"(N/2-n-l)'s of eqn.(22) are exactly
equal to the coefficients of 2% of the polynomial F(z):

where G(z) = g(N/2-)ZNn-' + ... +g(l)z +g(O), and
C(z) = C(0)z '2-1 + ... + C(N/2-2)2 + C(N/2-1)

Recall that an Nth order polynomial can be interpolated
exactly through N + 1 points using Lagrange's interpolation
formula. This suggests a method for determining the polynomial
F(z). Firstly, the (N-2)th order polynomial C(z)G(z) is
interpolated by using Lagrange's interpolation formula with
G(zo)C(zo), G(zl)C(zl), ... and G(zN-z)~(zN-~), which requires N-1
multiplications. Then F(z) can be determined by equation (23).
Hence, values of F'(k)'s in eqn.(22) can be determined with N-1
multiplications only. Values ofX(k)'s can also be computed by the
same method. This method reduces the number of real
multiplications of the new algorithm to 5N/2-2.

Table 1 shows a comparison of the multiplicative
complexity among the new algorithm, Lee[6]'s algorithm,
Vetterli[151's algorithm and Narasimha[S]'s algorithm. The new
algorithm shows its superiority in multiplicative complexity
compared to other algorithms when N is larger than 16.

F(z) = C(z)G(z)mod(zNn + 1) (23)

Table 1. Comparision of number of multiplications between
algorithms.

New al. Algorithm[6] Algorithm[151 Algorithm[S]
N 5N/2-2 (N/2)10g2N (N/2)10g;?N Nlog2N-N + 2

8 18 12
16 38 32
32 78 80
64 158 192
128 318 448
256 638 1024
512 1278 2304

12 18
32 50
80 130

192 322
448 770

1024 1794
2304 4098

2374

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on September 30, 2009 at 02:09 from IEEE Xplore. Restrictions apply.

Hardware Realisation
The proposed algorithm is very structural. Hence it is most

suitable for VLSI implementation. Consider Fig.1 which shows
a block diagram of the implementation of the new algorithm. Only
three simple permutation networks and two correlation hardware
modules are required. Besides, nearly half of hardware cost can be
saved as hardware modules A and B can be realised serially using
a single unit. In this case the realisation time is unavoidably
increased.

y(i) =x(2i),
y(N-i-l)=x(2i+ 1)

S t a g e T 1

d l y (n)=y"(n) -y"(N/Z+n) g(n)=Z(y"(n) +y"(N/Z+n)) C(n)

I I

Hiw module B 2

Addition

Figure 1. Hardware implementation olthe proposed algorithm

S t a g e 1 2

S t a g e I 3

1

There are a number of implementation methods to build a
cyclic correlation hardware module. One of the possibilities is to
realise it by distributed arithmetic[171. The distributed arithmetic
is so regular and structural that it is very suitable for VLSI
realisation. The advantages of this architecture are: (1) no actual
multiplication involved as multipliers are replaced by memory
look-up tables, (2) high accuracy as i t suffers fewer
roundingltruncation error than the other structures, (3) possible
for modular circuit design as the structure is extremely regular and
(4) simple structure which leads to a saving of gate count and
makes routing easy. These features allow a high speed circuit
design composed of memories, adders and registers only.

Consider eqn.(22), if g(-n) is defined as -g(N/2-n), we have

As g(?-k) can be expressed in the way
M- 1

g(7-k) = -g(V-k)O + g(V-k)j 2-j (25)
j = 1

where M, g(7-k)j and g(q-k)o are the word length, the jth
most significant bit and the sign bit respectively. After scaling to
2's-complement fractional number, equation (24) becomes

j = 1 ? = O

N/2- 1

7 = 0
Value of g(?-k)j C(?) can be pre-calculated and stored

in a ROM with ROM size = 2N'2 words. Then F(k) can be
obtained by M ROM accesses and M-1 shift-additions after g(n s
are available. The. implementation of the convolution l y
distributed arithmetic is as shown in Fig.2. X"(k) can also be
computed by the same approach.

.
initial
value
= a

F (k)
U

M bits word length

Figure 2. Implementation of convolution with Distributed Arithmatic

To speed up the whole process, we introduce the concept
of pipelining. As shown in Fig.1, the whole process is divided into
three stages. Stage 1 includes jermutation Network A and
hardware modules for realising y (n) and g(n). Fig3 is a typical
approach torealiseyO(n) and g(n). Note that no address generation
is required to obtain the values for C(n). Actually, values of C(n)
are stored in a circular buffer such that it is automatically sent out
one by one sequentially. The circular buffer can be constructed
with either ROM or RAM. It would be more flexible if RAM is
used. One multiplier is required in this stage.

y"(N/2 + n)

Addr= <Addr+l>N/z

ROM

Figure 3. Hardware module for realising yo@) and g(n) from y"(n).

Stage 2 includes the correlation hardware and the
permutation network for realising 5 ' > 4 ~ = 4 k + 1. The
correlation hardware is realised by the distributed arithmetic as
mentioned above. Fig. 4 shows a possible approach to realise the
permutation network. Typically, permuted data can be obtained by
using the technique of table look-up or a switch network. The use
of switch networkincreases the hardware complexity and hence the
hardware cost while the use of table look-up involves address
generation. However, we can use ROM to store up the address
generation table such that permuted data can be retrieved
efficiently within two memory accesses. In a practical case, such as
image compression, we only deal with short lengths, for instance,

2375

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on September 30, 2009 at 02:09 from IEEE Xplore. Restrictions apply.

Addr =
<Addr+ 1 > ~ / z

(=index)

Addr = .1
RAM index permuted

data 4
data

ROM
Permutation

table

Figure 4. Permutation Network by using Table Look-Up.

a length-16 DCT. Hence, this approach is effective and efficient as
only a table of small size is required. Instead of dynamic approaches
mentioned above, we can use static approach by wiring up inputs
to appropriate outputs of the permutation network. This is not
flexible but can speed up the permutation. It may not be impractical
as only a particular short length DCT is required for some special
usage. The permutation network Ain stage 1 has also the same type
of constraints.

& S 'tch

init ial
Subtracter Register value

c=a-b

I cL-J
U

Figure 5. Addition Matrix in Stage 3.

Stage 3 can be implemented as shown in FigS. Input data
should be negated alternatively before going into the subtracter.
This can be done by a dedicated hardware buffer which negated
input data alternatively before sending them out or by using a
multiplexer which acts as an switch as shown in FigS. The output
of the subtracter is fed back to the input of the subtracter for the
following subtraction such that final results can come out
recursively.

According to the derivation from eqn.(24) to (26), the time
required for computing the two correlations is N(M- 1) TA/2, where
TA is the time required for an addition, if they are computed in
parallel as shown in Fig.1. The time required for stage 1 and stage
3 are roughly (N/2) (TA + TM) and (N/2-1) TA respectively, where
TM is the time required for an multiplication. Therefore, stage two
will dominate the timing of the pipeline process if a fast multiplier
exists. This gives the lower bound of the total time required for
computing all DCT coefficients. Actually, we can make some
modifications to increase the speed of the correlation further. The
simplest one is to partition the input words into the most significant
half and least significant half and so on. Then we can introduce
parallelism in the computation by increasing the number of adders
as we can deal with additions in parallel. Theoretically speaking,
we can speed up the whole process to the upper bound that requires
the least computation time, say (N/2-1) TA, by introducing a
sufficient number of adders and multipliers when the hardware
cost is not a problem. This upper bound is limited by the recursive
nature of stage 3.

In short, the proposed algorithm can be realised efficiently
m d easily by dedicated hardware or gate array technology. The
structure of the hardware required is so simple that it involves a
small memory size, a few adders, registers and one multiplier only.
This can achieve a high performance DCT processor at aminimum
cost and development time.

Conclusion
In this paper, a new algorithm is presented such that an

N- length DCT can be directly computed by correlation. This
algorithm involves no DFT computation and can be realised
through very simple hardware structures and is very suitable for
VLSI implementation.

Reference
[11 N.Ahmed, T.Natarajan and K.R.Rao, "Discrete cosine

transform," IEEE trans., Vo1.C-23, pp.90-94, Jan. 1974.
[2] M.R.Haralick, "A storage efficient way to implement the

discrete cosine transform," IEEE Trans., Vo1.C-25, pp.764-765,
July 1976.

131 B.D.T ZLg and W.C.Miller, "On computing discrete cosine
transform." IEEE Trans., Vol. C-27, pp.966-968, Oct. 1978.

[4] J.Makou1, "A fast cosine transform in one and two dimensions,"
IEEE Trans., Vol.ASSP-28, pp.27-34, Feb. 1980.

[5] M.J.Narasimha and ii.M.Peterson, "On the computation of the
discrete cosine transform," IEEE Trans., Vo!.COM-26,
pp.934-946, June 1978.

[6] B.G.Lee, "A new algorithm to compute the discrete cosine
transform," IEEE Trans., VoLASSP-32, pp.1243-1245, Dec.
1984.

[7] W.H.Chen, C.H.Smith and S.C.Fralick, "A fast computational
algorithm for the discrete cosine transform," IEEE Trans.,
Vol. COM-25, pp.1004-1009, Sept. 1977.

[SI H.S.Hou, "A fast recursive algorithm for computing the discrete
cosine transform," IEEE Trans., VoLASSP-35, pp.1455-1461,
Oct. 1987.

[9] M.L.Haque, " A two dimensional fast cosine transform," IEEE
Trans., VoLASSP-33, pp.1532-1539, Dec. 1985.

[101 HXtajima, "A symmetric cosine transform," IEEE Trans.,
Vo1.C-29, pp.317-323, Apr. 1980.

[l l] Z.Wang, "Fast algorithm for the discrete W transform and for
the discrete Fourier transform," IEEE Trans., Vol.ASSP-32,

[12] N.Suehiro and M.Hatori, "Fast algorithms for the DFT and
other sinusoidal transforms," IEEE Trans., Vol.ASSP-34,
pp.642-644, June 1986.

[13] Z.Wang, "On computing the discrete Fourier and cosine
transforms," IEEE Trans., VoLASSP-33, pp.1341-1344, Oct.
1985.

[141 P.Duhame1 and H. H'mida, " New 2n DCT algorithms suitable
for VLSI implementation," ICASSP-85, Tampa, March 1985,

[15] M. Vetterli and H. Nussbaumer, " A simple FFT and DCT
algorithms with reduced number of operation," Signal
Processing, Vol. 6, No. 4, August 1984, pp.267-278.

[16]H.J.Nussbaumer, "Fast Fourier Transform and Convolution
Algorithms," 2nd corrected and Updated Edi t ion,
Springer-Verlag, 1982. pp.32-78.

[17] S.A. White, " Applications of distributed arithmetic to digital
signal processing: A tutorial review," IEEE ASSP magazine,

pp.803- 816, Aug. 1984.

pp.780-783.

Vol. 6, NO. 3, July 1989, pp.4-19.

2376

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on September 30, 2009 at 02:09 from IEEE Xplore. Restrictions apply.

