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Abstract

Image noise �ltering has been widely perceived as an estimation problem in the spatial

domain. In this paper, we deal with it as an estimation problem in an uncorrelated transform

domain. This idea leads to a generalization of the adaptive LMMSE estimator for �ltering

noisy images. In our proposed method, the transform-domain local statistics obtained from the

noisy image are exploited. Due to the fact that the transform-domain local statistics carry more

information about the image than the spatial-domain local statistics do, improvement in noise

�ltering is gained overall and particularly signi�cant in the vicinity of edges.

Subject terms: image restoration; image noise smoothing; adaptive LMMSE estimation; local

statistics; decorrelation.

1 Introduction

Image noise �ltering, as a fundamental task in image processing, has received signi�cant attention

in the image processing literature [1]. A variety of techniques has been proposed and developed

over the last two decades to remove noise in digital images. Noise �ltering techniques can be

broadly classi�ed into estimation-based methods and heuristic methods. In the �rst category,

noise �ltering is considered as an estimation of an ideal image from its distorted rendition, and

stochastic formulations of both the problem and the solution are employed in the algorithmic

development. The minimum mean-square-error (MMSE) is often applied as the optimality

criterion in the estimation. If we impose a linear constraint on the estimator structure, then we

have the well-known linear minimum mean-square-error (LMMSE) �lter as the optimal method

for solving the problem.

The LMMSE �lter is optimal merely in a theoretical setting based on the knowledge

about the statistical properties of an image up to second order. Early techniques for LMMSE

�ltering assume a wide-sense stationary image model and apply simple and spatially invariant

image correlation function in realization [2]-[3]. However, the �lters developed accordingly are

spatially invariant and blur edges where stationarity is not justi�ed.
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In order to overcome the drawback of blurring edges, various spatially adaptive techniques

were proposed for improving the performance of the LMMSE �ltering [4]-[7]. These techniques

were developed from nonstationary image models and utilize local statistics of the image to

make improvement on the �ltering performance. A number of re�ned techniques had also been

proposed, such as Refs. [8]-[12], which obtained an improved �ltering result by re�ning the

estimation of local statistics of the image.

As alternatives to estimation-based methods, a host of adaptive or nonlinear techniques

derived from heuristic approaches have also been proposed in the literature, some of which

are highlighted in Refs. [13]-[19]. In general, these techniques operate in the spatial domain

and apply certain type of local operation to perform noise smoothing. They would not make

use of any speci�c assumption about signal and noise models. Their common concerns are the

suppression of noise corruption and the preservation of image details in the distorted observation.

Although of great variety in the existing image noise �ltering techniques, nearly all of

them are based on spatial-domain processing of the distorted image. They generally process

image data in the spatial domain to diminish the noise while preserve important image details

such as edges and lines. Image noise �ltering has been widely perceived as the spatial-domain

estimation and processing. In this paper, we present a new perspective on image noise �ltering.

We deal with it as an estimation problem in an uncorrelated transform domain. This idea leads

to a generalization of the adaptive local LMMSE �lter which includes the well-known spatially

adaptive LMMSE �lter [6],[10] as one of its examples.

In conventional local LMMSE �ltering, image pixels are considered to be jointly indepen-

dent. Instead of minimizing the overall MSE of the image, the MSE of each individual pixel

is minimized independently with the use of the statistics about that pixel. The local LMMSE

estimator can well approximate the optimal LMMSE estimator when the correlations among

image pixels are low. However, it is generally recognized that image pixels are highly correlated.

There is no fundamental reason to treat pixels as being jointly independent in devising a noise

smoothing �lter.

To comply with the fact that images are highly correlated random �elds, and at the same

time not to complicate the noise �ltering process too much, we suggest �rst decorrelating the

image pixels into less-correlated components by making use of the image transform theory [1]

and then performing a local LMMSE estimation in the new uncorrelated domain. By doing so,

two advantages can be gained. First, since the transform components are less correlated as com-

pared to image pixels, performing local LMMSE estimation in the transform domain can better

approximate the optimal LMMSE �lter. Another advantage also comes from the decorrelation

property of the image transform. The local LMMSE �lter in practice necessitates the estimation

of the statistical mean and variance of each component under processing. These statistics have

to be estimated from the distorted image, and, therefore, there must be some estimation errors.

Since in the transform domain the components are less correlated, the estimation of their statis-

tics is less sensitive to noise as compared to that in the spatial-domain. This will lead to a �lter

that is less sensitive to the estimation error and, as a result, certain amount of improvement can

be gained in noise �ltering.
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In this paper, inspired by the aforementioned idea, we provide a generalized version of the

adaptive local LMMSE �lter. We eventually come to a noise smoothing �lter where �ltering is

adapted to the local characteristics about the transform components. This �lter preserves the

simplicity of point processors in the transform domain, and improves the noise �ltering perfor-

mance over the spatially adaptive �lter in the neighborhood of edges. Improvement gained by

the proposed �lter is due to the exploitation of the local statistics in the uncorrelated transform

domain rather than those in the spatial-domain.

2 Noise Filtering as an Estimation in Transform Domain

Throughout this paper, a digital image f(m;n), where (m;n) are the spatial coordinations, is

represented as a N�1 vector f = [f1; f2; � � � ; fN ]
t by lexicographical ordering. Matrix-vector

notation will be used in our formulation for the sake of simplicity.

Consider the observation equation

g = f + n; (1)

where g is the degraded observation, f is the ideal image, and n is a zero-mean white noise with

covariance matrix Cn = �2nI. The LMMSE estimation of f is well-known to be [1]

f̂ = E(f) +Cf (Cf +Cn)
�1 [g �E(g)] ; (2)

where E(�) is the expectation operator and Cf is the covariance matrix of f .

The image covariance matrix is usually over-simpli�ed to be diagonal in order to reduce

the complexity of the LMMSE estimator. This simpli�cation is accompanied by the assumption

that images are white (statistically uncorrelated) random �elds [10]. Suppose �2fi denotes the

ensemble variance of f at spatial position i = (m;n). The covariance matrix of f is then given

by

Cf = diag
�
�2f1 ; �

2

f2
; � � � ; �2fN

�
: (3)

This diagonal form of covariance matrix simpli�es the LMMSE estimator from the matrix-vector

processing to the following scalar processing

f̂i = E(fi) +
�2fi

�2fi + �2n
[gi �E(gi)] ; (4)

where fi, gi and f̂i are respectively the i-th element of f , g and f̂ . Therefore, by imposing

a white assumption on f , the LMMSE estimation of f decomposes into independent LMMSE

estimations of fi's. This form of LMMSE estimation in essence minimizes the local MSE rather

than the overall MSE. Because of its local nature in estimation, (4) is commonly referred to as

local LMMSE �lter [10]. To emphasize that this local LMMSE estimation is performed in the

spatial domain, in this paper we would call it spatial local LMMSE �lter.

Although the assumption that images are white random �elds can simplify the LMMSE

estimator to a very desirable structure, it goes against the common recognition that images
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are highly correlated random �elds [11]. To remedy the situation, in the following part of

this section, we will formulate image noise �ltering as a LMMSE estimation in an uncorrelated

transform domain instead of the highly-correlated spatial domain.

Let us de�ne the residual of the ideal image as

f 0=f �E(f): (5)

Suppose that matrix T represents a unitary transformation that can decorrelate f 0. Here, decor-

relating f 0 means making elements of Tf 0 much less correlated than those of f 0. By applying T

to f 0, we have

F0 = F�E(F); (6)

where F = Tf and F0 = Tf 0. Note that F0 rather than f 0 is more appropriate to be modeled as

a white process. Then, the covariance matrix of F can be well approximated by

CF = diag
�
�2F1 ; �

2

F2
; � � � ; �2FN

�
; (7)

where �2Fi represents the variance of the i-th element of F.

Similarly, let us de�ne the residual of the observed image as

g0=g �E(g): (8)

Applying T to g0, together with the knowledge derived from (1) that E(g) = E(f), we have

G0 = G�E(G) = F0 +N; (9)

where G = Tg, G0 = Tg0 and N = Tn.

The LMMSE estimate of F is given as

F̂ = E(F) +CF (CF +CN )
�1 [G�E(G)] : (10)

Here, CN = Ef(Tn)(Tn)tg = TCnT
t = T�2nIT

t = �2nI. Since both CF and CN are diagonal,

the above matrix-vector expression can be simpli�ed to the following scalar form

F̂i = E(Fi) +
�2Fi

�2Fi + �2n
[Gi �E(Gi)] ; (11)

where Fi, Gi and F̂i denote respectively the i-th element of F, G and F̂. Having the estimate

F̂, the estimate of f is then obtained with f̂ = T�1F̂. Di�erent from the spatial local LMMSE

estimator (4), the estimator (11) is \transform-domain local" in the sense that the estimation

of f is achieved via the local LMMSE estimation of each transform component. In view of this,

we term it as transform-domain local LMMSE �lter.

The reason for decorrelating the image before performing the estimation is, as we have

stated before, to make the elements to be estimated uncorrelated with each other so that the

LMMSE estimation can be simpli�ed to be a local LMMSE estimation. This simpli�cation

is based on the assumption that F0 is a white random �eld. The validity of this assumption
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depends on the choice of transform T. Theoretically, the optimal T is the Karhunen-Loeve

transform (KLT) [1]. However, from a practical point of view, the KLT is not recommended

as performing a KLT is computationally very expensive. Appropriate alternatives are those

transforms which have fast realization algorithms and yet can decorrelate images to a large

extent. For instance, the discrete cosine transform (DCT) is such an appropriate candidate

[20]. Throughout our empirical justi�cation and simulation studies, the decorrelation transform

T would be approximated with a periodic 8�8 two-dimensional DCT kernel. Speci�cally, to

decorrelate an image, we �rst partition it into a number of non-overlapped subimages of size

8�8 and then performed an 8�8 DCT to each of them. We exploit this block-based DCT as it can

take advantage of the spatial local characteristics of an image and requires little computational

e�ort. Hereafter, we use TB to denote this block-based DCT.

3 Transform Domain Local Statistics

The implementation of the proposed transform-domain local LMMSE �lter necessitates the

estimation of the unknown ensemble statistics, namely, E(Fi) and �2Fi . Before presenting our

approach to this problem, it behooves us to review the conventional solution for the spatial local

LMMSE �lter.

In implementing the spatial local LMMSE �lter shown in (4), the required ensemble statis-

tics are usually replaced with the statistics obtained by a spatial averaging over a uniform

window. Speci�cally, the ensemble mean E(fi) is replaced with

�fi = �f(m;n) =
1

(2L+ 1)2

LX
p=�L

LX
q=�L

f(m+ p; n+ q) (12)

and the ensemble variance �2fi is replaced with

�fi = �f(m;n) =
1

(2L+ 1)2

LX
p=�L

LX
q=�L

[f(m+ p; n+ q)� �f(m;n)]2: (13)

In above, (2L + 1)2 is the extent of the analysis window. The above two statistics, �fi and

�fi , are widely used in image enhancement and restoration [1],[6],[8],[10],[12]. However, in the

literature there is an inconsistency in terming them. They are termed as \sample", \local" or

\local spatial" statistics. Throughout this paper, we would use the term \spatial-domain local

statistics" to refer to them. Having the ensemble statistics replaced with the spatial-domain

local statistics, the spatial local LMMSE �lter becomes

f̂i = �fi +
�fi

�fi + �2n
[gi � �gi] : (14)

This �lter is e�ectively an adaptive �lter where image noise �ltering is adapted to the spatial-

domain local statistics, and it is commonly referred to as spatially adaptive LMMSE �lter.

As for the proposed transform-domain local LMMSE �lter, the information required is

the ensemble statistics (mean and variance) of the transform coe�cient Fi. In the following we
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would de�ne \transform-domain local statistics", which are computed from a single image. We

then use them to replace the ensemble statistics of Fi. To distinguish the local statistics from

the ensemble statistics, the local mean and variance are respectively denoted as �Fi and �Fi .

Our idea on the local statistics of the transform coe�cients is illustrated in the following.

Let f<m;n> denote the shift version of f obtained by shifting all its elements m steps up

and n steps right in the spatial domain. Its transform, T(f<m;n>), is denoted as F<m;n>. The

transform-domain local mean �Fi and local variance �Fi are de�ned as

�Fi =
1

(2L+ 1)2

LX
m=�L

LX
n=�L

F
<m;n>
i (15)

�Fi =
1

(2L+ 1)2

LX
m=�L

LX
n=�L

h
F
<m;n>
i � �Fi

i
2

: (16)

Here, (2L+ 1)2 is the total number of shifted images used in obtaining the statistics.

It is worthwhile to note that, when T is particularly set to be the identity matrix, �Fi

and �Fi are respectively equivalent to the spatial-domain local mean and variance. Hence, the

spatial-domain local statistics are only special cases of the transform-domain local statistics we

de�ned.

By replacing E(Fi) and �
2

Fi
in (11) with �Fi and �Fi, we have a �lter which adapts �ltering

to the transform-domain local statistics. Explicitly, it is written as

F̂i = �Fi +
�Fi

�Fi + �2n

�
Gi � �Gi

�
: (17)

Note that this form of adaptive �lter includes the spatially adaptive LMMSE �lter stated in

(14) as a special case. Speci�cally, when the concerned transform is set to be the identity trans-

form, (17) is just equivalent to (14). We �nish up generalizing the spatially adaptive LMMSE

�lter to transform domain. For the sake of reference, we hereafter term (17) as transform-domain

adaptive LMMSE �lter.

4 Empirical Justi�cation

Before discussing the matters of practical realization, we �rst use a few empirical studies to

justify that the idea we have brought forward is useful for image noise �ltering.

In the �rst place, let us use an example to illustrate that the transform-domain local

statistics (TDLS) carry more information about an image as compared to the spatial-domain

local statistics (SDLS). Figure 1(a) shows a testing image for our example. Figure 1(b) is its

residual where the information carried by the SDLS were deducted from the testing image.

Explicitly, its i-th pixel is given as (fi � �fi)=�fi with L set to be 1 in computing �fi and �fi .

This deduction transforms some regions of the image into white noise. However, in edge regions,
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substantial visible correlations still exist. This indicates that using the SDLS to describe an

image is inadequate in the vicinity of edges. In order to demonstrate that the TDLS can retain

more information about the image, we �rst apply TB to decorrelate the testing image and

then deduct the information carried by the TDLS from the testing image. The i-th transform

component of the residual is given as (Fi� �Fi)=�Fi with L set to be 1 in computing �Fi and �Fi .

Figure 1(c) shows the deduction result in the spatial domain. It is observed that edges retained

in Figure 1(c) are less visible as compared with those in Figure 1(b). This implies that more

structural information about the image is carried by the TDLS than by the SDLS.

Next, we use two noise �ltering examples to demonstrate that the adaptive �lter using

TDLS can perform better than that using SDLS. A distorted image, shown in Figure 2(b), was

produced by adding white noise of variance �2n = 400:0 to the testing image shown in Figure

2(a). Noise smoothing was then carried out by implementing (17) with L set to be 1. Note

that we use the undistorted image to compute �Fi's and �Fi 's with (15) and (16). Figure 2(c)

shows the �ltered image obtained with T = TB while Figure 2(d) shows that with T = I. Note

that the latter is actually the result provided by the spatially adaptive �lter shown in (14). It

was found that the adaptive �lter using TDLS outperforms that using SDLS. Their performance

di�erence is substantial especially in the vicinity of edges. Figure 3 shows the same set of �ltering

results of another testing image. These experimental results con�rm that the TDLS carry more

information about an image and are therefore more useful for e�ective image noise smoothing.

5 Practical Considerations

In practical cases, since the undistorted image is unavailable, the statistics �Fi and �Fi have to

be estimated from the noisy data. In this section, we discuss how to approximate �Fi and �Fi

solely based on the given distorted image g.

From (1), we have

G
<m;n>
i = F

<m;n>
i +N

<m;n>
i : (18)

Hence, by de�nition, the transform-domain local mean and variance of g, denoted as �Gi and

�Gi
respectively, are given as

�Gi = �Fi + �Ni; (19)

�Gi
= �Fi +�Ni

� 2�i (20)

where

�i =
1

(2L+ 1)2

LX
m=�L

LX
n=�L

n
(F

<m;n>
i � �Fi)(N

<m;n>
i � �Ni)

o
; (21)

and �Ni and �Ni
are respectively the transform-domain local mean and variance of n. Since N

is zero-mean white, �Ni should be very close to zero and its value is insigni�cant as compared

with that of �Fi. Hence, we can approximate �Fi as

�Fi = �Gi: (22)
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Based on the assumption that N is independent of F, it is expected that the value of �i is also

much smaller than those of �Fi and �Ni
. Moreover, since N is stationary with variance �2n, �Ni

can be well approximated by �2n. Consequently, we can approximate �Fi as

�Fi = max
n
�Gi

� �2n; 0
o
: (23)

Note that the maximum value is taken to guarantee the positive nature of the variance.

6 Simulation Results

Here, we present our experimental results where all local statistics required were estimated from

the distorted image itself.

For the distorted image shown in Figure 2(b), the �ltering result obtained with the

transform-domain adaptive �lter (TAF) is shown in Figure 4(a), while the result of the spa-

tially adaptive �lter (SAF) is shown in Figure 4(b). For the distorted image shown in Figure

3(b), the two �ltered images obtained respectively with TAF and SAF are shown in Figures 5(a)

and 5(b).

For objective comparison, we provide in Table 1 the signal-to-noise ratio improvement

(SNRI) of the above �ltered images. To o�er a detailed quantitative comparison, we also seg-

mented the image into edge and level regions and then computed the SNRIs in these two regions

separately. These �gures reveal that, although SAF has a better SNRI in the level regions, its

performance in the edge regions is poor; whereas, for TAF, there is a large SNRI in the edge

regions. Since the SNRI is usually criticized to be an inappropriate measure in evaluating the

image restoration performance, we also used the performance measure proposed in [21] in our

comparative study. This measure is termed Restoration Score (RS) and was found to be more

appropriate than the SNRI as a performance index for image restoration. The measurement is

based on the weighted sum of �delity improvement of each image pixel, and the main properties

of the human visual system are incorporated through the weighting factors. The RS's of the

performed �ltering experiments are reported in Table 1. It is also shown that TAF is superior

to SAF.

By visual inspection, one can get an overall impression that Figures 4(a) and 5(a) are of

visually better quality than Figures 4(b) and 5(b). When looking into detail, one can observe

some annoying artifacts in the neighborhood of the edges in Figures 4(b) and 5(b). Whereas, in

Figure 4(a) and 5(a), these artifacts are reduced and sharp edges are preserved. This subjective

observation along with the above objective comparison justi�es that TAF does a better job of

image noise smoothing.

Finally, we remark that all the experimental results presented in this paper were obtained

with L = 1. From our other noise �ltering experiments which applied larger values of L, such

as L = 2 and L = 3, we got the following observation. By increasing the value of L, although

noise smoothing is improved to some extent, the performance on preservation of image details

is not so good as that with smaller value of L. In view of this and the fact that increasing L
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in the estimation will also increase the complexity of the �ltering algorithm, it is in general not

worthwhile to apply a larger value of L.

7 Conclusions

Image noise �ltering has been widely perceived as an estimation problem in the spatial domain.

However, the fact that image pixels are highly correlated makes �ltering techniques based on

spatial-domain estimation ine�ective. In this paper, we tackled the noise �ltering problem as an

estimation in an uncorrelated transform domain. We then formulated a local LMMSE estimation

of the uncorrelated image components, and ended up with a transform-domain adaptive LMMSE

�lter. The potential superiority of the proposed approach over the conventional spatial-domain

approaches has been demonstrated through a number of experiments. The improvement gained

by the proposed approach is due to the exploitation of the transform-domain local statistics

rather than the spatial-domain local statistics.

The main idea we put forward in this paper is that image decorrelation can help to improve

the performance of image noise �ltering. The introduction of image decorrelation provides an

additional means to incorporate useful a priori information about the solution into the �ltering

process, and therefore o�ers a valuable opportunity to improve the �ltering performance. The

proposed approach to noise �ltering is derived from this idea. The noise �ltering algorithm we

devised, however, represents just a simple paradigm of the proposed approach, in which the

computation of the transform-domain local statistics is a natural adaptation from the spatial-

domain. As in spatially adaptive LMMSE �ltering techniques, where �ltering performance can

be improved by re�ning the estimation of the spatial-domain local statistics, there is still room

for advancement of the proposed transform-domain adaptive LMMSE �ltering.
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SNR Improvement Restoration Score [21]

Image Image Filtering Filtering Filtering Filtering

Region Using SDLS Using TDLS Using SDLS Using TDLS

overall 2.83 dB 3.71 dB
Figure edge -0.16 dB 2.23 dB 0.250 0.436
2(b) level 7.33 dB 4.27 dB

overall 4.28 dB 4.25 dB
Figure edge 2.39 dB 3.15 dB 0.418 0.476
3(b) level 6.95 dB 5.48 dB

Table 1: Performance Measurements of the Adaptive Filtering Using SDLS and TDLS.
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(a) Original Image

(b) image where spatial-domain (c) image where transform-domain

local statistics are deducted local statistics are deducted

Figure 1:
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Figure 2: Adaptive noise �ltering results for a testing chart, where local statistics were obtained

from the undistorted image. (a): original image; (b): distorted image; (c): result of adaptive

�ltering using transform-domain local statistics; (d): result of adaptive �ltering using spatial-

domain local statistics.
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Figure 3: Adaptive noise �ltering results for image `lenna', where local statistics were obtained

from the undistorted image. (a): original image; (b): distorted image; (c): result of adaptive

�ltering using transform-domain local statistics; (d): result of adaptive �ltering using spatial-

domain local statistics.
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Figure 4: Practical results of adaptive noise �ltering for a testing chart, where local statistics

were estimated from the distorted image. (a): result of adaptive �ltering using transform-

domain local statistics; (b): result of adaptive �ltering using spatial-domain local statistics.

15



Figure 5: Practical results of adaptive noise �ltering for image `lenna', where local statistics were

estimated from the distorted image. (a): result of adaptive �ltering using transform-domain

local statistics; (b): result of adaptive �ltering using spatial-domain local statistics.
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