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ABSTRACT

In most current block-based image/video coding systems, the compression stage and the

deblocking stage operate separately and hence they cannot make use of each other to

optimise the overall coding performance. In this research, we suggest modifying the basic

structure of the encoding systems such that the deblocking to be performed can be taken into

account in the compression and the two processes can be jointly optimised. An example is

also provided to show how this idea works successfully in a MPEG-4 codec to boost the rate-

distortion performance when the suggested deblocking filter is exploited in the post-

processing stage. The modification does not change the bit stream format of the codec and

hence is fully compatible with the original standard.
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INTRODUCTION

In low bit-rate block-based DCT [1] image/video coding, noise caused by the coarse

quantization of transform coefficients is noticeable as visible discontinuities among adjacent

blocks in the reconstructed images. In order to remove this blocking artifacts while

maintaining the compatibility with current industrial standards, various post-processing

techniques such as block-boundary filtering [2-5], maximum a posteriori (MAP) methods [6],

projections onto convex sets (POCS) [7-10], transform domain filtering [11,12] and others

[13-15] have been proposed. Most of these post-processing techniques were proved to be

very effective to eliminate the blocking effect.

Figure 1 shows the general structure of current image/video encoding systems. In this

structure, a post-processing is performed to a decompressed image in the receiver. Since the

compression and the post-processing processes operate independently in this configuration,

the encoder does not make use of the a priori knowledge about the post-processing technique

adopted in the decoder to optimise the overall coding performance.

We suggest modifying the basic structure of the encoding system as shown in Figure 2

to improve its coding performance. In this approach, the compression and the post-processing

processes are jointly optimised in the encoder according to f-f'. Note the approach proposed

in H.263+'s Annex J also includes a de-blocking filter in the coding loop[16]. However, its

purpose is to use the post-processed output instead of the original of frame n in coding frame

n+1 so as to improve the subjective quality. It is not for jointly optimising the two processes.

In this paper, we will use an example to show how this idea works. We optimise a

MPEG-4 [17] encoder in a case that a deblocking filter [18] is used in the decoder to

eliminate the blocking effect such that the quality of the output will be better than that

without optimisation.

MPEG4 ENCODER OPTIMISATION

In conventional schemes, the MPEG-4 encoder partitions the original images I  into

blocks of size 8x8, say Im,n's and then encodes the blocks with DCT block by block with a

raster scan strategy. At the decoder side, the deblocking filter [18] performs one-dimensional

filtering along the 8x8 block edges to eliminate the discontinuity among adjacent blocks. It is

applied to all the block boundaries first along the horizontal edges followed by the vertical

edges. If a pixel intensity is changed by the previous filtering operation, the updated pixel

intensity is used for the next filtering. This filter has two separate filtering modes: Smooth
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region mode and Default mode. Smooth region mode is applied in smooth region to smooth

8-pixel line segments which are perpendicular to the block’s boundary, while default mode is

applied in complex regions to smooth 2-pixel line segments.

We modify the MPEG-4 encoder according to the post-processing process such that the

compression and the deblocking processes can make use of each other to optimise the overall

coding performance.  The philosophy of our approach is very simple. Instead of encoding

block I m,n directly, we encode its modified version, say Ym,n, such that ||F{(T-1

{Q{T{ Ym,n}}})
*} - I m,n

* || < ||F{(T-1{Q{T{ Im,n}}})
*} - Im,n

*||. Here, Bm,n
 * denotes the greater

area of a block named as Bm,n, and, operators T{.}, Q{.}, T-1{.} and F{.}, respectively,

perform the DCT transformation, the quantization, the inverse DCT transformation and the

deblocking filtering [18] proposed for MPEG4 standard. The greater area of a block is shown

in Figure 3. Note the support region of operation F{.} is the greater area of the processing

block instead of the block itself and hence we have to consider the distortion introduced in

the greater area by the modification. One may consider the modification as a compensation

for the noise introduced by deblocking. Since this modification is carried out before

transform coding, it is referred to as pre-processing in this paper.

The modification of I m,n is carried out with an optimisation filter. Its design corresponds

to that of the deblocking filter used in the post-processing stage. Accordingly, it is one-

dimensional and has two separate operation modes. In particular, it operates in Smooth

Region Mode to handle smooth region and Default Mode to handle complex region as the

deblocking filter does.

COMPENSATION FOR POST-PROCESSING

Without loss of generality, consider we are now going to encode block Im,n. In order to

let readers have a better insight of the approach we proposed, we start the formulation of our

approach from the MPEG-coded version of Ym,n, say Cm,n, instead of Im,n. Let

),,...,,( 98210 vvvvvv =*

 be a particular pixel vector across the boundary of block Cm,n and

block Cm-1,n as shown in Figure 4. At the decoder, this pixel vector will be post-processed

with the one-dimensional deblocking filter[18]. To determine in which mode the deblocking

filter will operate, the following measurement is performed.
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where 1T  is a pre-defined threshold. Function )(vM
*

 is used to determine the flatness of the

local region. If v
*

 is complex enough to make )(vM
*

 smaller than a predefined threshold 2T ,

we assume that the deblocking filter will operate in default mode. Otherwise, smooth region

mode is assumed. Compensation for the deblocking process is then performed in the encoder

accordingly.

A. Compensation for smooth region mode deblocking

In MPEG4, when the deblocking filter works in the smooth region mode, a nine-tap

smoothing filter is applied inside the block as well as on the block boundaries if no edge is

detected. There is a detailed description of the filter operated in this mode in [18]. In

particular, the post-processing output of a particular pixel vector 
Av

* = ),,,,,,,( 87654321 vvvvvvvv ,

say p* = ),,,,,,,( 87654321 pppppppp , is given in matrix form by

baA PsPsFvp 10 ++= **

 (2)
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Here, QP is the Quantization Parameter defined in MPEG4 standard.

The mean square deviation of p
*

 from its corresponding pixel vector in the original

image, say i
*

, is then given by:

2
)( ip
*

* −=ξ (3)

In theory, we should look for an appropriate Av
*

 to minimize ξ . However, in order to reduce
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the intervention between blocks so as not to complicate the situation, we only adjust the

values of ( )87652 ,,, vvvvv =*

 in the current processing block to minimize ξ . By doing so,

any adjustment performed during processing the current block Im,n is limited to the block

itself.

The values of 2v
*

 that minimize ξ  can be obtained by solving equations 0/ 2 =∂ξ∂ v
*

. To

get the formulation, let us first rewrite (2) as

baA PvlvlPsFvp )( 91800 +++= **

 (4)
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Then, from (3) and (4), we have 
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By solving 0/ 2 =∂ξ∂ v
*

,  we have

1
91002 )()( −−−−= T

cc
T

cbaU FFFPvlPsFviv
*

*

*

 (6)

where cLc PlFF 0+=  and ( ).,,, 43210 vvvvv =*

B. Compensation for default mode deblocking

In the default mode, the block being processed is considered to be in a complex region

and the deblocking filter adopted in MPEG-4 will smooth the two block-boundary pixel 4v

and 5v  only. The values of 4v  and 5v  are modified according to the feature information

carried by the pixel vector. In particular, the feature information is described by

Kva ii ⋅= *

,3  for  20 ≤≤ i (7)
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where ( )TkkkkK 3113 ,,, −−=  is a basis function of a 4-point DCT and iv
*

's are 3 sub-vectors

of the pixel vector v
*

 as shown in Figure 4.  Note that ia ,3  is actually the highest four-point

DCT coefficient of iv
*

. Accordingly, we have )8/3cos(
2

1
3 π=k  and )8/cos(

2

1
1 π=k .

To a certain extent, coefficient 1,3a  is correlated with the blocking artifacts and block

discontinuity can be reduced by scaling down 1,3a  adequately. In particular, the post-

processing output of pixels Av
*

, say q
*

, is given by

Ddvq A ⋅+= **

(8)

where )0,0,0,1,1,0,0,0( −=D , )2/)(,0),'(( 541,31,31 vvaakCLIPd −−= , and

1,32,31,30,31,31,3 ),,min(' aaaaaa ⋅= . The clipping operation is used to make sure that the

magnitude of the gradient at the boundary is reduced without a change in direction and that

4v  and 5v  are not out of range. Clipping is a nonlinear operation and hence makes the

situation very complicated in solving an optimisation problem. In order to solve this problem,

we ignore the clipping operation during the formulation of our approach. A checking

mechanism will be used to compensate for any error introduced by this action.  This

mechanism will be presented later on.

The mean square deviation of q
*

 from its corresponding pixel vector in the original

image, say i
*

, is then given by:

2
)( iq −=ξ *

(9)

Again, we want to look for an appropriate 2v
*

 to minimize ξ . Here, we consider the two

possible cases, namely, (i) |)||,||,min(||| 2,31,30,31,3 aaaa =  and (ii) |,min(||| 0,31,3 aa ≠

|)||,| 2,31,3 aa , separately. For the former case, we have 1,31,3' aa = , which results in d=0 and

hence no postprocessing will be performed at the decoder. Accordingly, no pre-processing is

required in this case. As for the latter case, we get the desirable 2v
*

 by solving equations

0/ 2 =∂ξ∂ v
*

.

First of all, we rewrite eqn. (8) as

Dkaahahvq A 11,32,320,30 )( −++= ** (10)
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By substituting (7) into (10), we have

KvDkKvDkhKvDkhvq A 11212010

***** −++= (11)

where ( )43210 ,,, vvvvv =*

, ( )65431 ,,, vvvvv =*

 and ( )87652 ,,, vvvvv =*

.
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The desirable 2v
*

can then be obtained by solving the equation 0/ 2 =∂ξ∂ v
*

. Specifically, we

have

1
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Pixel vectors in the processing block are processed accordingly one by one in a

predefined order until the whole desirable Cm,n is obtained. If a pixel is modified, its most

updated value will be used as the input for the current processing.
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After obtaining the desirable Cm,n, Ym,n  can then be determined. In theory, Ym,n should

be an array that makes Cm,n = T-1{Q{T{ Ym,n}}}. However, this cannot be practically

achieved as quantization is involved and Cm,n may not be one of the possible DCT-coded

outputs provided by the encoder. In our approach, we let Ym,n = Cm,n.

By doing so, sometimes the modification made by the optimisation filter cannot

guarantee that F{(T-1{Q{T { Ym,n}}})
*} is more faithful to Im,n

* than F{(T-1{Q{T { Im,n}}})
*} .

Hence, the encoder should determine whether Ym,n or Im,n should be encoded. The selection

is carried out by checking their post-processed results against the original image. The one

which provides the minimum mean square error (MSE) is then selected. We proceed to

process the next block until the whole image is processed. This checking mechanism also

excludes any possible degradation caused by the presumptions we have made. That there is

no clipping in the compensation for default mode deblocking is one of the presumptions.

Figure 5 summaries the flow of the proposed pre-processing scheme. In Figure 5, sΓ {.} and

dΓ {.} are, respectively, the operators that perform the compensation for smooth region mode

and default mode deblocking. The operator {.}Λ  in }',{ vv
** →Λ= nm,nm, YY'  replaces pixel

vector v
*

 in Ym,n  by 'v
*

  to output Y'm,n.

Note the flow presented in Figure 5 is for illustration only. The realisation effort

required is much less than it appears to be as some steps involved in the flow can be

reformulated and combined to reduce the computation effort. For instance, it is not necessary

to perform two DCTs for each pixel vector to compute 	Ω . Since T{.} is a linear operation,

we have T{Y' m,n}=T{ Ym,n}+T{ Y' m,n-Ym,n}, where T{Ym,n} is known in the current stage.

There are only 4 nonzero elements in Y' m,n-Ym,n and hence the computation effort of

T{ Y' m,n} is little. Similarly, as T-1{.} is also a linear operation and most of the components of

{Q{T{ Y' m,n}}-Q{T{ Ym,n}}} are zero after quantization, T-1{Q{T{ Y' m,n}}} can be obtained

with a few number of arithmetic operations. Though eqns. (6) and (13) look complex, the

realisation of }{vs

*Γ  and }{vd

*Γ is simple as it involves a lot of zero multiplication. Finally, as

a matter of fact, the encoded result of Ym,n has already been determined in the pre-processing

stage and hence no transform coding is actually required after the pre-processing even though

it is termed as "pre-processing".

Only blocks that contain non-zero quantized DCT ac-coefficients are processed as not

doing so will eventually require more bits to encode the modified block even though there is

some gain in terms of MSE.
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 OPTIMISATION ORDER

As the optimisation filter performs one-dimensional filtering along the 8x8 block edges,

corner pixels may be modified twice. The two modifications may be counteracted with each

other and the consequence is difficult to predict. In order to minimise the interference among

the modification results, a working pattern which specifies the order of pixels to be filtered

must be carefully planned. In this paper, we propose two ordering strategy, say, Raster

Scanning Strategy (RSS) and Checker Scanning Strategy (CSS), to modify Im,n's to Ym,n's.

In RSS, blocks are processed one by one from left to right and from top to bottom. For a

particular block, the optimisation filtering starts at the left-lower corner of a block and moves

clockwise to the right-upper corner of the block. We proceed to process and encode the next

block until the whole image is encoded. This scheme does not optimise pixel vectors across

the right and the bottom boundaries of a block.

In CSS, blocks are processed in an order as shown in Figure 6. We process and encode

the blocks at the gray color area first and then white color area until the whole image is

encoded. The optimisation filtering starts at the left-lower corner of a block and moves

clockwise around the block. Hence, we can modify all pixel vectors around the boundaries of

the block. Besides, the blocks in the area of the same colour can be processed in parallel to

reduce processing time as the modification of these blocks does not affect each other.

Simulation result shows that CSS is better than RSS.

As the modification made in a particular block will influence the deblocking result of

the previously modified blocks next to it, the pre-processing is performed in an iterative way

in order to reach an optimised output. From our simulation result, we found that it converged

rapidly and was able to reach an optimised rate-distortion value after 2 iterations when CSS

was adopted.

SIMULATION RESULT

Simulations were carried out with various testing sequences such as Akiyo, Car Phone,

Claire, Foreman and Silent to demonstrate that a corresponding pre-processing step could

definitely improve the coding performance. For the sake of reference, the coding scheme

without either pre- or post-processing, the coding scheme with pure post-processing [18] and

the proposed coding scheme are, respectively, referred to as CS, CPS and PCPS hereafter.
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More specifically, we will use rPCPS  and cPCPS , respectively, to denote the PCPS using

RSS and CSS.

In our simulations, the MPEG-4 video VM 9.1 coder [17] was used. The ITU-T

Recommendation H.263 [19] quantization method was adopted and all frames were encoded

with a fixed quantization parameter (QP). Threshold values 1T  and 2T  were, respectively,

selected to be 2 and 6. As it is suggested in [18], 1k  and 3k  were, respectively, approximated

to be 0.625 and 0.25 so as to reduce realisation effort. The motion search range was [-16,

15.5]. For comparison, we modify the criterion for the selection between Ym,n and Im,n in the

realisation of PCPS. In particular, Ym,n is selected only if it provides a smaller MSE and the

encoded bit stream generated so far is shorter than that generated so far by CPS for the

current frame. This makes PCPS always produce a shorter bit stream as compared with PS

and CPS. All PCPS results shown in the paper are obtained with 2 iterations unless it is

specified.

In our first simulation, the performance of the proposed approach was investigated in

terms of PSNR. Here, PSNR is defined to be ( )22
10 255log10PSNR gfS −⋅≡ , where f and

g are, respectively, the original image and the reconstructed image, and, S is the size of the

images in terms of number of pixels. Sequences of various motion characteristics were used

for evaluation. Figures 7a, c, e and g show the case that all frames were encoded as I frames

(Intra-mode) while Figures 7b, d, f and h show the case that all frames except the 1st one

were encoded as P frames (Inter-mode). Observations can be obtained form the figures. First,

in all circumstances, the proposed pre-processing schemes definitely improve the PSNR

performance. Second, cPCPS can provide a higher PSNR gain than rPCPS . Third, the ratio

of PCPS's gain in SNR with respect to CS to CPS's is larger in Inter-mode than in Intra-

mode. This is favorable as a video codec usually operates in Inter-mode instead of Intra-

mode in most circumstances.

A simulation was carried out to investigate the convergence of cPCPS . In this

simulation, video sequences Akiyo and Grandma were encoded in Inter-mode. Figure 8

shows the simulation results. One can see that, at different bit rates, it converges quickly and

there is nearly no further SNR improvement after 2 iterations. Figure 8 also shows that

cPCPS can provide a greater rate-distortion improvement with respect to CPS at high and

low bit rate.
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Table 1 shows the rate-distortion performance of various schemes at different conditions

for testing video sequences of different image characteristics. In this part of simulation, all

video sequences are encoded in Inter-mode and the checker scanning strategy is adopted in

the pre-processing scheme. One can see that cPCPS  can generally achieve a two-fold SNR

improvement as compared with CPS while the bit stream is 2 to 20% shorter than that of the

original on average. The improvement is robust with respect to various image characteristics

and compression rates.

Figure 9 shows the PSNR improvements achieved by cPCPS  and CPS with respect to

CS at a spread range of compression rates. One can easily see that the two-fold improvement

achieved by cPCPS can be maintained over a spread range of compression rates for video

sequences of different image characteristics.

Figure 10 shows some deblocking results of different coding schemes. Obviously, the

proposed pre-processing scheme can reduce blocking artifacts further. This can be observed

by examining the texture detail around the body and the tail of the fish in Figure 10.

Based on the simulation results, it is clear that the proposed pre-processing scheme does

not only reduce blocking artifacts effectively, but also improve the rate-distortion

performance when it is used in MPEG-4 video coding compression. Note the improvement is

robust with respect to various conditions. This supports that taking post-processing into

account to jointly optimise encoding and de-blocking is encouraging.

CONCLUSION

In this paper, a pre-processing method is proposed and applied in MPEG-4 video coding

to improve the coding performance by jointly optimising both compression and block-effect

elimination. The simulation results show that the proposed method can improve video quality

both subjectively and objectively without changing the core structure and the bit-stream

format of a MPEG4 codec. Specifically, a two-fold gain in rate-distortion performance can

be achieved by the proposed method when the suggested deblocking filter is exploited in the

post-processing stage.
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Rate-distortion Performance

H263+ MPEG4

Without Pre-processing With Pre-processing
Annex J :

de-blocking filter
included in the
coding loop[16]

Without
Post-

processing
(CS)

With Post-
Processing
(CPS) [18]

Without
Post-

processing
(PCS)

With Post-
Processing

(PCPS)

Sequence QP

Average
PSNR
per
frame

Average
bits per
frame

Average
PSNR per
frame,

 Qc

Average
PSNR per
frame,

 Qcp

 Bc

  
 A

ve
ra

ge
 b

its
 p

er
 fr

am
e

Average
PSNR per
frame,

 Qpc

Average
PSNR per
frame,

 Qpcp
 Bpcp

  
 A

ve
ra

ge
 b

its
 p

er
 fr

am
e

Gain in
SNR of

the
proposed
scheme,

≡SNRG

 Q Q

 Q Q

ccp

cpcp

−
−

Gain in
Rate of

the
proposed
scheme,

≡rateG

c

cpcp

B

BB −

x100%

Akiyo 8 35.23 1748 35.51 35.83 1862 35.83 36.31 1592 2.50 -14.50
Akiyo 12 32.89 1290 33.14 33.47 1412 33.51 34.00 1118 2.61 -20.82

Car Phone 14 31.73 3338 31.76 32.03 3326 32.11 32.46 3249 2.59 -2.32
Car Phone 18 30.56 3110 30.65 30.90 3091 30.94 31.31 2973 2.64 -3.82

Claire 9 36.88 1983 36.95 37.32 1987 37.33 37.91 1778 2.59 -10.52
Claire 16 33.88 1647 33.85 34.22 1616 34.28 34.77 1328 2.49 -17.82

Foreman 18 29.34 3973 29.52 29.68 3847 29.74 29.99 3798 2.94 -1.27
Foreman 23 28.32 3812 28.62 28.77 3701 28.81 29.02 3609 2.67 -2.49

Table 1 Rate-distortion performance of various coding schemes. (Units: dB for average
PSNR per frame and bits for average bits per frame.)
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List of captions to illustrations

Figure 1. Basic structure of conventional image/video coding systems

Figure 2. Basic structure of the suggested image/video coding system

Figure 3. Greater area of block Bm,n

Figure 4.  Block boundaries of 8x8 blocks

Figure 5. Structure of the proposed pre-processing scheme.

Figure 6. Checker scanning strategy

Figure 7. PSNR performance of various coding schemes: a) and b) for Akiyo sequence at
QP=12, c) and d) for Foreman sequence at QP=15, e) and f) for Car Phone
sequence at QP=18, and f) and g) for Silent sequence at QP=11.

Figure 8.  Average rate-distortion for Grandma and Akiyo

Figure 9. PSNR improvements of PCPS and CPS with respect to CS at various QPs: (a)
Claire (slow motion) and (b) Foreman (fast motion) sequences

Figure 10. Coding results for Bream sequence (QP=13): (a) the 13th original frame; (b) CS
result; (c) CPS result and (d) cPCPS result.
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Figure 2. Basic structure of the suggested image/video coding system.
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Figure 3. Greater area of block Bm,n 
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(Ar row shows the  scann ing  pa th )

Figure 6. Checker scanning strategy
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7. PSNR performance of    vvaarriioouuss  ccooddiinngg  sscchheemmeess: a) and b) for Akiyo sequence at
QP=12, c) and d) for Foreman sequence at QP=15, e) and f) for Car Phone
sequence at QP=18, and f) and g) for Silent sequence at QP=11.
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(a)

(b)

Figure 8.  Average rate-distortion for Grandma and Akiyo
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(a) (b)

Figure 9. PSNR improvements of PCPS and CPS with respect to CS at various QPs: (a)
Claire (slow motion) and (b) Foreman (fast motion) sequences

(a)

(d)(c)

(b)

Figure 10. Coding results for Bream sequence (QP=13): (a) the 13th original frame; (b) CS
result; (c) CPS result and (d) cPCPS result.




