
Reducing the Complexity of Multiscale
Error Diffusion

Ka-Chun Lui and Yuk-Hee Chan

Department of Electronic and Information Engineering
The Hong Kong Polytechnic University, Hong Kong

Abstract - Multiscale error diffusion (MED) is superior to
conventional error diffusion algorithms as it can eliminate
directional hysteresis completely. However, the complexity of
this frame-oriented process is much higher and makes it not
suitable for real-time applications. In this paper, a fast MED
algorithm is proposed. The complexity of this algorithm is
remarkably reduced as compared with conventional MED
algorithms. It also supports parallel processing.

I. INTRODUCTION

Error diffusion is a widely used digital halftoning
technique for emulating a grayscale image with black and
white dots [1]. Various error diffusion algorithms have been
developed in recent years [2]. Among them, multiscale error
diffusion (MED) algorithms [3-5] were shown to be superior
to conventional error diffusion algorithms such as Floyd and
Steinberg's algorithm[6] in a way that it can eliminate
directional hysteresis completely. This is achieved by the
fact that, unlike those conventional algorithms, MED
algorithms do not quantize pixels in a fixed sequential order
and diffuse the quantization error with a non-causal filter.
However, due to their frame-oriented nature, their
complexity is comparatively high and makes them not
suitable for real-time applications. This paper presents an
alternative to realize multiscale error diffusion. Without
sacrificing the output quality, its realization complexity is
remarkably lower than that of the other MED algorithms
and its realization can be done in parallel as well.

II. PROPOSED ALGORITHM

Similar to other MED algorithms, the proposed
algorithm removes the scanning-path and filter constraints
to eliminate directional hysteresis. The difference is that it
puts its focus on the realization complexity and reduces it by
tackling the technical problems in a different way.

Unlike [3-5], the proposed algorithm is block-based to
allow parallel processing. The quantization error of a pixel
is usually consumed during its propagation to a distant pixel.
The diffusion result of two distant pixels is likely to be
independent and hence processing blocks in parallel makes
sense to a certain extent.

In conventional MED[3,4], all pixel values of the output
image B are initialized to be zero and then, based on the
grayscale input image X, an appropriate number of pixels of
B are picked iteratively to assign value 1 until the average
pixel intensity of B is equivalent to that of X. From another
point of view, white dots are iteratively put in a black
background. A considerable amount of realization effort is
paid for locating the positions to put the white dots and this
effort is proportional to the number of white dots to be

introduced. The proposed algorithm reduces the complexity
by reducing the number of dots to be put and the amount of
effort to locate a position for a dot.

To reduce the number of dots to be handled, the
proposed algorithm first estimates the average intensity of X.
Without losing of generality, we assume that the maximum
and the minimum pixel values of X are, respectively, 1 and
0. If the average pixel value ofX is less than 0.5, white dots
should be introduced to a black background. Otherwise,
black dots should be introduced to a white background to
reduce the realization effort. Hereafter, we assume that
white dots are the minority dots and they are introduced to a
black background. If it is the opposite, one can negate all
pixel values ofX before carrying out the proposed algorithm
and negate all pixel values of the output at the end. The dot
budget is defined to be the number of minority dots to be
settled and it is the rounded value of min(Sx-Ix,Ix), where Sx
is the total number of pixels in X and Ix is the sum of all
pixel values of X. Operator min(-) picks the minimum value
among the inputs.

The grayscale input image X is then partitioned into a
number of 4x4 non-overlapped blocks. For each block, an
intensity pyramid is constructed as shown in Figure 1. In
formulation, we have

{ZZ
E E(>EkI) (2i + m,2j + n) if k = 1,2

E(pq)(,j) m=,0n=O,1
q

X(p,q)(,J) if k= 0

for i, j = 0,1... max(0,22-k -1) (1)

where X(pq) (i, j) is the intensity value of the (i, j)th pixel

of the (p, q)th block ofX and E(k( q) (i, j) is the value of the

(i, j)th element of the kth level of the intensity pyramid
associated with the (p q)th block of X.

Every 4 adjacent blocks are grouped together to form a
macroblock of 8x8 pixels. Except those macroblocks whose
total pixel intensity value is less than 0.5, which implies no
more white dot should be put to them, all macroblocks are
processed in parallel as follows. For each macroblock, the
block which carries the maximum total intensity (i.e. the
block which has the maximum E q)(0,0) ) in the
macroblock is picked and the most wanted pixel in the block
is located with the intensity pyramid associated with the
selected block by following the maximum intensity
guidance. Specifically, when the maximum intensity
guidance is adopted, one should always proceed from the
current node at level k to its child node of maximum
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E( ) (i, j) At any time, when there is more than one

maximum encountered in the search, we select one of them
randomly. When level 0 is reached, the selected node
specifies the most wanted pixel. For instance, if the node
holding E',q)(x,y) is the node, the (x,y)th pixel of the
block will be the most wanted pixel. Unless the selected
pixel is a boundary pixel of the macroblock, X(p,q)(x,y)
should then be quantized to and B(p q)(x,y), the intensity

value of the (x,y)th pixel of the (p,q)th block of B, is
assigned value 1. The reason for discriminating the
boundary pixels of a macroblock will be discussed later. For
the sake of reference, the region in which a pixel can be
quantized after being selected is referred to as a qualified
region.

Suppose the selected pixel is in the qualified region of a

macroblock. After quantizing it to 1, its quantization error

e = X(p q) (x, y) -1 is diffused to the neighbors of the pixel
with a non-causal filter to update X as follows.

X(pq)(x+ m,y + n)

0

{X(pq)(x+m,y+n)+e w(m,n)

for-1<m,n<1

if m=n=O

else

from being processed is equivalent to processing overlapped
6x6-pixel regions each of which overlaps each of its 4-
connected neighboring 6x6-pixel regions with an area of
2x6 or 6x2 pixels. Blocking artifacts can hence be
eliminated with this approach.

Figure 1. Intensity pyramid associated with a 4x4 block
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Figure 2. Four grouping schiemes

(2)

where w(m, n) is a coefficient of the diffusion filter

defined as il2 2]. The asterisk marks the position of
12 -1 2 l j

w(0,0).
Since only the central part of a macroblock can be

quantized and the diffusion filter is of size 3x3, no error can

be diffused outside the macroblock and hence all
marcoblocks can be processed independently. In other
words, all macroblocks can be processed in parallel to
reduce the processing time. This explains why, in the
proposed algorithm, boundary pixels of a macroblock are

discriminated and not further processed when they are

selected. After diffusion, all intensity pyramids of the
affected blocks are updated.

In order to provide a chance to handle the boundary
pixels of a macroblock and eliminate the potential blocking
artifacts caused by the block-based approach, the proposed
algorithm changes the way how it groups blocks to form a

macroblock in the course of halftoning as follows. After
processing all macroblocks as mentioned before in parallel
once, all blocks of X are regrouped to form new

macroblocks. Four grouping schemes are used in turns in the
proposed algorithm. As an example, Figure 2 shows how the
4 schemes group the blocks in an image of size 6x6 blocks
differently. A pixel which is a boundary pixel of a

macroblock in a particular round may not be a boundary
pixel of a macroblock again in next round. By doing so, all
pixels of X can be taken care in the course. Note that the
regrouping does not affect the intensity pyramids of the
blocks and hence does not increase the complexity in this
aspect.

The overall effect of using the grouping schemes in
turns and excluding the boundary pixels of a macroblock

Pseudo Code
Determine the number of minority dots that should be put
Construct intensity pyramids of all blocks
While the minority dots have not yet totally been located

For Scheme S= A, B, C, D
Partition image X with Grouping Scheme S
For each macroblock

If total residual intensity of the macroblock>O.5
(Here we assume minority dots are white. The criterion
should be adjusted ifthey are black.)

Locate the most wanted pixel
If it is in the qualified region of the macroblock

Quantize it
Diffuse quantization error

End
End

End
Update intensity pyramids of all affected blocks

Ena
End

Figure 3. Pseudo code of the proposed algorithm

Figure 3 summaries the proposed algorithm in pseudo
code. The algorithm iteratively allocates white dots to B
until all budgeted dots are used up. At each iteration, a
considerable number of white dots are allocated at a time.
When allocating the dots, it quantizes corresponding pixels
of X and diffuses the quantization errors. It is possible that,
at the last stage of the halftoning process, while there are
still budgeted dots on hand, there is no macroblock whose
total residual intensity is larger than 0.5. In such a case, to
settle the budgeted dots left behind, we select a proper
number of macroblocks which carry the most total residual
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intensity among all macroblocks to locate the pixels for
putting the dots.

To handle boundary pixels or corner pixels of X,

diffusion filters such as 1 0[ 20 or I 0[0 * ] are
8 -1 2 1- 5 0 2 1-

used instead to avoid energy leakage. The macroblocks
containing these corner or boundary pixels should also
extend their qualified regions to allow quantizing these
pixels.

III. COMPLEXITY ANALYSIS

Assume that the input image is of size NxN, where N is a
multiple of 4. At the initial stage, N2 additions are required
to construct N2 /16 energy pyramids and determine the
total intensity level of minority dots.

The realization complexity for the steps left behind is
then roughly proportional to the number of minority dots
(<N2 2) to be settled in the output. To settle a dot, all
involved operations are confined in a macroblock. First of
all, 9 comparisons are required to locate the most wanted
pixel. If it is in the qualified region of a macroblock, the
searching effort will not be wasted. Since there are 36 pixels
in the qualified region of an 8x8 macroblock, a reasonable
estimate of the hit ratio is 36/64 though the real hit ratio is
higher than this in our simulation. Accordingly, on average,
the effort for locating a qualified pixel is 9(64/36)=16
comparisons. 2 multiplications and 9 additions are required
to diffuse the quantization error. Finally, at most 12
additions are required to update the affected blocks in the
macroblock. This extreme case happens when all 4 blocks
are affected as shown in Figure 4.

By considering comparison as addition, the upper bound
of the complexity is roughly 2 N2 /2 multiplications and
N2 +(9+16+12) N2 / 2 additions, which implies at most 1
multiplication and 19.5 additions per pixel.

The initialization stage of Katsavounidis's algorithm [3]
takes N2 1 additions. For each introduced dot, it takes
310g2 N comparisons to locate the most wanted pixel, 9
additions and 2 multiplications to diffuse the quantization
error and at most 41og2 N additions to update the energy
pyramid. Unlike our proposed algorithm, Katsavounidis's
algorithm introduces white dots instead of minority dots and
hence the number of introduced dots is bounded by N2
instead of N2 /2. The upper bound of the complexity is
roughly 2 N2 multiplications and N2 _1 +( 7 1og2 N +9) N2
additions, which implies at most 2 multiplications and
7log2 N +10 additions per pixel. Consequently, in contrast
to the proposed algorithm in which the complexity bound
per pixel is a constant, its complexity bound per pixel is
0(10g2 N).

Since block overlapping and block shifting are,
respectively, used in [4] and [5] to remove block effect, the
structure of the intensity pyramids involved is more
complicated as compared with that used in Katsavounidis's
algorithm. Accordingly, their realization complexity is even
higher. In particular, the complexity bound of [5] is roughly
3-fold of that of [3].
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Figure 4. Elements to be updated in a pyramid

IV. SIMULATION RESULTS

Simulations were carried out to evaluate the performance
of various MED algorithms. Figure 4 shows their
performance in terms of radically averagedpower spectrum
density (RAPSD). RAPSD is defined as the average power
of the halftoning result of a constant gray-level input in the
annular ring with center radius fp as follows [9].

( )N(R(ft;,)) t Rep

where N(R(fp)) is the number of frequency samples in

R(fp) which is an annular ring of width AP partitioned

from the spectral domain. P(f) is the magnitude square of
the Fourier transform of the output pattern divided by the
sample size. For easier comparison, in all plots shown in
Figure 5, any RAPSD value which is larger than 10 is
clipped to 10.
A good blue noise generator should produce a result

which carries weak or no low frequency spectral
components. The result should also provide a flat high
frequency spectral region and a spectral peak at blue noise
principal frequency fb. In order to provide a clear picture
of the performance of the algorithm, a white surface which
marks the principal frequency lb for a particular gray level
is added in each of the plots as a reference for comparison.
One can see that the proposed algorithm is as good as [4]
and [5]. The harmonics appeared in Figure 5a explain why
strong pattern noise appears in the outputs of [3].

Simulations were also carried out to evaluate the
performance of the proposed algorithm on a set of de facto
standard 512x512 8-bit gray scale images including Lena,
Baboon, Boat, Peppers and Barbara.

Halftone visibility metric [2] can be used to measure the
visible distortion between X and B. This metric is defined as

MSEhv Nx |hvs(X, vd, dpi) - hvs(B, vd,dpi)|| (4)

where hvs is the HVS filter function defined in [2], vd is the
viewing distance in inches and dpi is the printer resolution.
In our simulations, the viewing distance was fixed at 20
inches and printer resolution of 600dpi was considered. The
MSEhV of MEDk[3], MED,98[4] and the proposed algorithms
are, respectively, 0.227, 0.020 and 0.028.

Figure 6 shows the diffusion results of some MED
algorithms for subjective evaluation. No blocking effect
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appears in the output of the proposed block-based MED
algorithm.

Table 1 shows the average number of operations
required to halftone the evaluated set of 512x512 test
images in the simulation. The minority dots of most test
images are white and hence the gain achieved by handling
minority dots instead of white dots is not remarkable in the
simulation. Even so, the complexity of the proposed
algorithm is roughly 65% of that of [3]. Note that this
reduction does not result in any sacrifice in the quality. The
processing time can be further reduced if the algorithm is
realized in parallel.

V. CONCLUSIONS

In this paper we proposed a fast block-based parallel
MED algorithm. Like any other MED algorithms, this
algorithm can completely eliminate directional hysteresis.
With an appropriate combination of partition and grouping
schemes, the algorithm reduces its complexity remarkably
as compared with other MED algorithms. Unlike other
MED algorithms, the proposed algorithm supports parallel
processing, which makes it possible for real-time
applications. Simulation results show that it is comparable
to [4] and [5] and superior to [3] in terms of output quality.
No obvious blocking effect appears in its output.
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(a) MEDk [3] (b) MEDC98 [4]

(c) MEDC04 [5] (d) Proposed

Figure 5. Performance of
terms of RAPSD

various MED algorithms in

Operation Operations /pixel
Ours [3] [4] [6]

ADD 8.89 13.95 13.47 4.99
CMP 6.65 12.92 34.46 1.00
MUL 0.93 0.96 0.96 3.99
Total ][ 16.47 27.83 48.89 9.98 1

Table 1. Average computational complexity of various
algorithms

(b) Proposed (c) MEDk [3]
Figure 6. Halftones produced with various MED algorithms

(e) MEDC98 [4]
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