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Express Letter 

Efficient Implementation of Discrete Cosine 
Transform using Recursive Filter Structure 

Yuk-Hee Chan, L a p - h i  Chau and Wan-Chi Siu 

Abstract-In this paper, we generalize a formulation for converting 
a length-2'' discrete cosine transform into n groups of equations, then 
apply a novel technique for its implementation. The sizes of the groups 
are2n-i 2n-2 , . . . 2' respectively, while their structures are extremely 
regular. The realization can then be converted into recursive filter form, 
which is of particularly simple for practical implementation. 

I. INTRODUCTION 
The discrete cosine transform [l] is widely used in digital signal 

processing, particularly for digital image processing. Because of 
the complicated computational complexity, many efficient algorithms 
were proposed to improve the computing speed and hardware com- 
plexity. These algorithms can broadly be classified into the following 
categories: 1) indirect computation through the discrete Fourier trans- 
form or the Walsh-Hadamard transform [2]-[4], 2) direct factorization 
[5]-[8], and 3) recursive computation [9]-[12]. Among them, the ones 
using indirect computation method often involve extra operations. 
The direct factorization decomposes the DCT directly, so that the 
total number of operations can be reduced. By implementing the 
recursive structure in an effective way, a regular and parallel VLSI 
structure can possibly be used and the computational complexity is 
greatly reduced. 

In this paper, we present a formulation for converting a length- 
2" DCT into n groups of equations and the sizes of the groups 
are 2"-'. 2*-', . . . ,2O respectively. The resultant formulation is 
extremely regular, which is suitable for the implementation using a 
recursive filter structure. Furthermore, the beauty of the formulation 
is enhanced by expanding the multiple angle cosine function into a 
series of high order cosine functions to effect the realization of the 
recursive filter structure. 

11. DERIVATION OF ALGORITHM 

The DCT of a data sequence { ~ ' ( i ) :  i = 0, 1,. . . , N - l} can 
be written as 

for k = 0, 1,. . . , fi - 1, where fV = 2", n is an integer and the 
index 0 of I gives the stage of data representation (see below). 

For the convenience of realization, let us introduce a formulation, 
such that Y ( k )  is split into n groups, namely 

1 7 ( 2 r + 1 ) , Y ( 2 ( 2 r + 1 ) ) , . ~ ~ , Y ( 2 n - 1 ( 2 r + 1 ) )  andY(0)  

for r = 0, 1,. . . , 2n-(m1+1) - 1. 

Let us rewrite Y ( k )  in the form of Y(2"(2r + 1)) and make 
some simplifications, for m = 0, 1,. . . , n - 1, where m is the group 
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number starting from zero 

2"(2r + 1)" 
2 N 

N-1 

Y(2"(2r + 1)) = - p y i ) c o s  
i = O  

N-1 

= c z o ( i ) c o s ( ( 2 i +  1)2"0,) 
i=O 

(2r  + 1)" for 0, = - 
2 N  ' 

We may rearrange the order of computation of the lower half of 
the LHS, hence, 

Y ( 2 " ( 2 r  + 1)) 
N/2-1 

= ."i) cos ( (2 i  + l)2"0,) 
2=0 

N/2-1  

+ c zO(N - 1 - i ) c o s ( ( 2 N  - 2 i  - 1)2"8,) 
Z=O 

"2-1 

= (I0(i)COS((2i+ 1)2'"0,) 
2=0 

+ ~ O ( N  - 1 - i) cos ( ( 2 1 ~  - 2 i  - 1)2"0,)). (3) 
Now let us make use of the property of the factor 2" in the 

formulation that sin(2"0,t) = 0, for t is any multiple of 2N/2". 
Hence (3) becomes 

Y(2"(2r + 1)) 
N/2-1 

2=0 

. cos(2"(2r+  l ) r ) ) c o s ( ( 2 i +  1)2"0,). (4) 

In order to see further decomposition, let us formulate (4) exactly 
in the form of (2). Substitute [xo((i) + z 0 ( N  - 1 - i)] by ~ ' ( i )  into 
(4), we have 

N/2-1 

Y(2"'(2r + 1)) = (z1(i))c0s((2i + 1)2"0,). ( 5 )  
2=0 

It is clear that a similar procedure can be used to make further 
decomposition of (5) .  Hence we have 

N/4-1 

Y(2"(2r+ 1)) = (2( i ) )COS((2i+ l)aV".0,) 
2=0 

and so on 
In general we have 

iV/2m+1-1 

Y(2"(2r + 1)) = . 1 z=O (."(i) - I" (; - 1 - i)) 

where 

I m + l  (7) 

Eq. (6) gives a decomposition equation for Y(2"(2r  + l ) ) ,  for 
m = 0, 1,. . . ,n  - 1 and r = 0, 1,. . . , (N2-"-' - 1). This 
means that there are n groups of equations and each of which gives 
2"'-("+') results of Y ( k ) ' s .  The number of multiplications for each 
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equation in a group is 2"-("+') and only half of the number of 
multiplications are required as compared to the previous group. Let 
us clarify our ideas with an example. If N = 8, Y ( 2 " ( 2 ~  + 1)) can 
be expressed as follows, 
for nr = 0. 

~ ' ( 2 r  + 1) = C(xo(i) - x0 (7  - i)) 
3 

Z = O  

where T = 0, 1, 2, 3 (8) 1 (2r  + 1). 
.cos ( 2 i +  1)- ( 16 

for m = 1. 

1'(2(2r + 1)) = C(x'(z) - x1(3  - i)) 

2(2r + l ) T  

1 

Z=O 

where T = 0, 1 (9) 1 .cos (22 + 1) ( 16 
for m = 2. 

1-(4(2r + 1)) = C ( x 2 ( i )  - x2(1  - i ) )  
0 

1=0 

where T = 0 (10) 
4(2T  16 + l )T)  

.cos (22 + 1) ( 
and I ' (0 )  = x3(0). 

groups with m = 0 , l .  2 and 3 respectively. 
Hence 4, 2, 1 and 0 multiplications are required for expressions in 

111. RECURSIVE FILTER FORM 

It is obvious that the arguments of the cosine terms in (8)-(10) 
are with similar kernels, so these regular structures are possible for 
VLSI implementation. Our purpose is to realize the equation in a 
recursive structure. The technique for which we suggest here is to 
convert the arguments of the cosine terms in (6) into a series of high 
order expressions.' 

Let O m . ,  = ( 2 " ( 2 r  + 1 ) ~ ) / 2 N ,  hence 

' cos((2z + 1)8, r )  (11) 

Note that cos ((22 + l)OTn r )  = A,, C O S ~ J + ~  0, where 
-AZ,'s are some well-defined integers. For the example AV = 8 again, 
the 4 x 4 matrix -Az, is defined as: 

-400 d o l  ~ 4 0 2  -403 0 0  

-430 -431 4432 -433 -7 56 -112 64 

Eq. ( 1  1 )  can then be written as: 

,=O 

'cos36 = 4cos36 - 3cos6 
cos56 = 16cos5 6' - 20cos3 6 + 5cos6 
cos7%=64cos76' -  112cos56+56cos36-7cos6 .  

N/z"+~-l,v/2"+1-1 
= (.'"(i) - x m  

J=O '=I  

or 
iV/2m+1-1 

Y(2"(2r + 1)) = g m ( j ) ~ o s 2 3 + 1 8 m , r  
J = O  

where 
-- ,2+1 

g " ( j )  = @i) - x m  (E - 1 - i ) )A%,.  
2=, 

Eqs. (14) and (15) are our final equations for the realization 
of the DCT. Eq. (14) looks simpler than (11)  because it is now 
represented by a series of high order cosine terms. It can be 
considered as a recursive formulation which requires simple structure 
for its realization, while (15) involves some pre-processing before 
feeding data into the recursive formulation. Surprisingly, no data 
multiplication might be required for the realization of (15) for a 
careful examination of its structure as shown below. 

IV. REALIZATION 

i )  Data pre-processing 

For this part of the realizations, we have to implement (15). For 
the simplicity of our discussion, let us use n = 3, hence M = 8 for 
our analysis. In this case, we have to consider cases with m = 0 , l  
and 2. For m = 0, 

g o ( j )  = [ x o ( 0 )  - x0(7)]A~,  + [xo( l )  - r0(6)]A1, 
+ [x0(2) - x0(5)]AzJ + [x0(3) - x0(4)]A3, 

for j = 0, 1,  2, and 3 

For m = 1, 

g ' ( j )  = [xl(0) - x1(3)]Aoj + [x l ( l )  - x1(2)]A1, 
for j = 0, 1 and ~ ' ( 0 )  = ~ ' ( 0 )  + x0(7), 
. ~ ' ( 1 )  = ~ ' ( 1 )  + ~ ' ( 6 )  
. d ( 2 )  = 2 ( 2 )  + 20(5) ,21(3)  = 2 ( 3 )  + xO(4) 

For m = 2, 

g'(0) = [ x 2 ( 0 )  - x2(1)]Aoo 
for ~ ' ( 0 )  = ~ ' ( 0 )  + x1(3),xz(1) = ~ ' ( 1 )  + ~ ' ( 2 )  

Note also that Aol, Ao2, Ao3, A12, A13, a n d A ~ 3  are of zero 
values, and Y (0) = P' (0) + x2 (1) without further processing. 

Hence this part of the realization involves additions mainly. It 
appears that some multiplications of the factors A,, as shown below 
can be converted into simple adds and shifts which can easily be 
realized using hardware techniques or the machine language of a 
CPU. Let us rewrite (12) as (see bottom of this page) 

Hence, A,,'s involve no real multiplications, however for long 
lengths of the DCT, some terms may require more than one shift/add 
operations for their implementation. 
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Y(2”(2k t 1)) COS%,,k 

V 

Fig. I.  Block diagram of the recursive filter. 

ii) Recursive Computation 

S = 8 as an example. Hence we have, 
Eq. (14) can be considered as a recursive filter. Again let us take 

for m = 0. 

1 ‘ ( 2 r +  1) = ( ( ( ~ O ( ~ ) C O S ~ ~ O , ~  + g o ( 2 ) ) ~ ~ ~ 2 8 0 , T  + g o ( l ) )  

. cos2 80. + go (0)) cos 80, 
for T = 0, 1, 2, and 3 

for m = 1, 

1 ‘ ( 2 ( 2 r +  1 ) )  = (g1(1)cos281,.  +g1(0))cos81,. 
f o r r = O a n d I  

for m = 2, 

~ ( 2 ~ ( 2 r +  1))  = g 2 ( ~ ) c o s ~ 2 , ,  for r = 0 

where 
2“(2r + 1)“ 

16 ’ 
Om. r = 

Hence a total of 21 multiplications are required, which represents 
a number larger than those required for approaches [4]-[5] which are 
to optimize the number of operations. The major advantage of the 
present realizations using the recursive filter structure is its simplicity. 
The last point can be seen in Fig. 1. 

It is seen that a single first order recursive filter is enough for its 
realization, which represents almost the simplest possible structure 
for the realization of the discrete cosine transform. 

There are not many recursive filter algorithms for the computation 
of the DCT appeared in the literature. However, we could still recall 
the ones that are available in the literature for a comparison. Canaris 
[I31 used Goertzel’s [14] algorithm to implements the DCT with a 
second order recursive filter structure, but it requires a large number 
of multipliers. A second order recursive filter structure has also been 
proposed by Chau and Siu [12], the structure is regular and requires 
less multipliers as compared to Canaris’ approach. However all 
these algorithms involve second order structures, hence extra buffers 
and longer computation time are required. In this paper, we have 
successfully derived a novel first order recursive filter structure to 
compute the DCT, which can be used to resolve the above problems 
and obviously gives a significant improvement over the previous 
formulations. 

V. CONCLUSION 
This paper gives a formulation to convert a length-2” DCT into 

n groups of equations, then applies a novel technique for its efficient 
realization. The resultant structure is a first order recursive filter 

which represents almost the simplest possible formulation of any 
DSP system. Furthermore the filter structure is numerically stable, 
since it involves no division at all. 
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A Modified Moment-Based Edge 
Operator for Rectangular Pixel Image 

Li-Min Luo, Xiao-Hua Xie, and Xu-Dong Bao 

I. INTRODUCTION 

An important operation in image processing is extracting edges 
from gray images. There are many methods to determine the location, 
orientation, and strength of an edge in digital images. The moment- 
based method has relatively good performance in the aspects of 
location precision and noise robustness [l] .  When detecting edges in a 
digital image, the pixels are generally assumed square. However, this 
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