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Abstract—Restoring an image from its convolution with an
unknown blur function is a well-known ill-posed problem in
image processing. Many approaches have been proposed to solve
the problem and they have shown to have good performance in
identifying the blur function and restoring the original image.
However, in actual implementation, various problems incurred
due to the large data size and long computational time of these
approaches are undesirable even with the current computing ma-
chines. In this paper, an efficient algorithm is proposed for blind
image restoration based on the discrete periodic Radon transform
(DPRT). With DPRT, the original two-dimensional blind image
restoration problem is converted into one-dimensional ones, which
greatly reduces the memory size and computational time required.
Experimental results show that the resulting approach is faster in
almost an order of magnitude as compared with the traditional
approach, while the quality of the restored image is similar.

Index Terms—ARMA processes, image deblurring, Radon
transforms.

I. INTRODUCTION

THE IMAGE-formation process can often be formulated by
a linear model as [1]

(1)

where is the image size, is the original image,
is the observed image, is the point spread function
(PSF), and is the additive noise due to the imaging
system. The problem of image restoration is to recover an
unknown original image from a given blurred image

and the PSF . Different approaches have been
proposed [2]–[4] to solve this problem and they have shown to
have good performance when prior information of the original
image is acquired. Unfortunately, these approaches rely on the
assumption that full information of the PSF is available can
hardly be fulfilled in many practical situations. Without the
prior information of the PSF, the restoration problem becomes
the so-called blind image restoration, which can be tackled as
a single problem or divided into two steps, that is, “blindly”
identifying the PSF and then performing the image restoration.
A good review on this topic can be found in [5].
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One of the important approaches for solving the blind
restoration problem is based on the ARMA parameter estima-
tion method as described in [5]. These approaches model the
true image as a two-dimensional (2-D) autoregressive (AR)
process and the PSF as a 2-D moving average (MA) process.
Hence, the resulting blurred image can be represented as an
autoregressive moving average (ARMA) process. Identifying
the ARMA parameters allows us to identify the true image
and PSF. The maximum-likelihood (ML) estimation [6] and
generalized cross-validation (GCV) approaches [7] are the two
most popular approaches to estimate the ARMA parameters.
The ML approach has a long history for ARMA parameter
estimation. It accomplishes the estimation by seeking for the
parameters that are most likely to have produce the blurred
image on hand. The GCV approach on the other hand achieves
the estimation by looking for the parameters that minimize
a weighted sum of prediction errors. This criterion has been
shown to possess certain properties that are superior to those
of ML in the regularization parameter estimation [8] and
perform much better for real images [7], [9]. However, the
GCV approach is often criticized due to extensive numerical
searches for minimizing the GCV score. Efficient approach
[10] was proposed to first estimate the unknown PSF parameter
set and regularization parameter from raw data, and then make
use of a computationally inexpensive algorithm to solve the
nonblind problem. However, this approach requires multiple
blurred versions (or low-resolution) of the original image
during restoration (or super-resolution) that imposes limitation
to general applications.

In this paper, we consider adopting the discrete periodic
Radon transform (DPRT) [11] to estimate the PSF. The re-
cently proposed DPRT has many properties similar to the
conventional continuous Radon transform [12]. They include
the discrete Fourier slice theorem and circular convolution
property [11]. Using these properties, a 2-D signal can be pro-
cessed by some one-dimensional (1-D) approaches to reduce
the computational complexity. DPRT is different from other
discrete Radon transform [13] in that it has an exact inverse
transform. In this paper, we shall elaborate on how to convert
the 2-D blind image restoration problem to the 1-D ones using
DPRT. Experimental results show that the new approach can
be an order of magnitude faster than the traditional approach,
while the quality of the restored image is similar. The memory
requirement is also dramatically reduced. Since the proposed
approach is just a fast algorithm to the original 2-D GCV
algorithm, it shares the same advantages and limitations in
applications. For instance, the GCV methods are usually less
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sensitive to additive noise than methods of other classes of
blind deconvolution techniques because they take into account
the noise in the system [5]. However, since the GCV methods
deal only with the second-order signal statistics, phase cannot
be identified uniquely in the restoration procedure. Hence, the
GCV approaches are usually used for restoring images blurred
by linear motion or the out-of-focus PSFs, which are symmetric
and zero phase in nature.

II. DPRT

Denote the set of real number as , as , the
set of integers as , as , a subset of integers

as , and as . Let
be a 2-D function with . The DPRT of

on or , where is a prime integer and is any positive
integer, were proposed in [11] as follows.

Case 1:

The DPRT of in this case is defined as the following
set of formulations:

(2a)

(2b)

where refers to the residue of A modulo D;
.

Case 2:

The DPRT of in this case is defined as the following
set of formulations:

(3a)

(3b)

where ; .
Both and represent the summations of discretized
contents in with parameters and . To draw an
analogy with the conventional Radon transform, we may con-
sider and as the projections of in different
angles “ ” and “ ” and different distances “ ” from the origin.
We shall use the term “projection” in the later part of this paper
to indicate the DPRT of a function with a particular or .
Fig. 1 shows the DPRT of a function with support size 3 3.

DPRT has a few important properties, such as the discrete
Fourier slice theorem and convolution property [11], which are
particularly useful in image processing. With the convolution
property, a 2-D circular convolution can be decomposed into

(a) (b)

Fig. 1. Example of the prime-length DPRT. (a) Original 2-D function. (b) The
DPRT of f(x; y).

1-D circular convolutions. More specifically, if , ,
and are all 2-D functions with supports , where

is a prime number, such that

where stands for 2-D cyclic convolution. It can be shown
that, after DPRT

(4)

(5)

where . The symbol stands for
1-D circular convolution. The functions ,

, and are the DPRT’s of
, , and , respectively. By performing the

inverse DPRT on and , the convolution result
can be obtained. The inversion of DPRT on is given

by

(6)

It is observed that, except for the scaling factor , only
additions are required to evaluate (6). Indeed, both the forward
and inverse DPRT require only additions for their implementa-
tions. This is particularly useful to some computing environ-
ments where the complexity of implementing multiplications
is much higher than additions. Details of properties and inver-
sion of DPRT can be found in [11]. Nevertheless, DPRT also
has some undesirable features that make it difficult to apply in
some image processing applications. As shown in Fig. 1, the
basic version of DPRT is not orthogonal (although an orthog-
onal version is deemed to be available [14]). Redundancy is
introduced after the transformation; hence, DPRT is basically
not suitable to image compression. Secondly, DPRT of a com-
pact-supported function is not necessarily compact support, as
is shown in Fig. 1. We shall show that this undesirable feature
introduces much difficulty in blind image restoration problems.

III. GCV FOR IMAGE RESTORATION

The GCV image restoration algorithm assumes that the image
formation and blurring processes follow some specific models.
It has been shown from (1) that the degraded image model can be
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viewed as a 2-D MA process in the presence of noise. The image
formation process can also be modeled as a 2-D AR process

(7)

where is the pixel value of the original image at ,
is an independent zero-mean white noise with variance

, and is the nonsymmetric half-plane (NSHP) support [15]
of the AR process, respectively. Equations (1) and (7) can be
further represented in a compact form as

(8)

(9)

where the 2-D signals have been lexicographically ordered.
and are expressed in matrix-vector notations as and . Equa-
tions (8) and (9) can be combined to form a single equation

(10)

The blur identification becomes a matter of determining the pa-
rameters of an ARMA model.

Cross validation is well recognized in data analysis. It is also
known as “leave-one-out” [16] or predictive sample reuse [17].
Use of cross validation in image restoration is simple. For a fixed
model parameter set, a restored image is determined using all but
one of the values from the observed image. The restored image
is then reblurred to predict the observation that was left out of
the restoration. The process is iterated, using different set of
parameters each time, until all values from the observed image
have been exhausted. The parameter set that minimizes the
mean-square prediction error over all the observations is chosen
as the optimal estimate. Due to the difficulty in implementation,
the cross-validation approach is modified [14] to become the
generalized cross validation, which is a rotation invariant form
of the ordinary cross validation. The parameter set minimizing
the following GCV score is taken to be the final solution

(11)

where is the parameter set to be estimated. and
are the PSF and image model parameters, is the regulariza-

tion parameter, respectively. The functions and in (11)
relates to and as follows. Let the singular value decomposi-
tion of be , then are the elements of
and are the diagonal entries of , where is the observed
image and denotes the complex conjugate transpose operator.
The expected value of the GCV criterion attains a global min-
imum at the true values of the ARMA model parameters [7]. In

practice, due to the huge sizes of and (each has the size of
), (11) is often implemented in the frequency domain

as shown in (12), at the bottom of the page, where , , and
are 2-D DFT of , , and , respectively. and
are the complex conjugate of and , with . Here
we have assumed that the matrices and are circulant. It im-
plies that the image has been blurred by a circular convolution
operation. This assumption has been used in many traditional
image restoration algorithms [6], [7] to reduce the computa-
tional complexity. As long as the image boundaries are prop-
erly preprocessed to remove false boundary discontinuities, the
circular convolution assumption has a negligible effect on the
identification results. Besides, it is further assumed in many tra-
ditional approaches that most images can be represented ade-
quately as a process whose autocorrelation function consists of a
separable exponentially decaying sequence [6], [7]. It results in
a much simplified AR model that can be described by only two
parameters as follows: , , and ;
where represents the AR formation model parameter for the
original image. Moreover, the blurring process is assumed to be
energy conservative, that is ; where is the
support of the blur function. The energy conservation assump-
tion is valid due to the fact that a fixed number of photons are
detected regardless of whether blurring occurs.

IV. CONVERTING 2-D GCV TO 1-D GCVS USING DPRT

The GCV criterion is clearly nonlinear in the parameters of
interest and cannot be minimized analytically; therefore, numer-
ical techniques are used to determine the parameter set. It has
been shown [7] that the numerical search performs particularly
well for single parameter PSF. However, in the case of blur-
ring due to multiple-parameter PSF, it is often required to carry
out numerical optimization procedure for more than a few hun-
dred iterations before the procedure converges. It requires a long
computation time since, for each iteration, the GCV score for a
2-D signal is to be determined. In addition, the huge volume of
memory transfers due to the buffering of 2-D signals also re-
quires a significant amount of computation time.

Since DPRT is able to convert a 2-D circular convolution
problem into 1-D ones, it is intuitively to consider using DPRT
for blind image restoration. The idea is very simple. Recall (8)
and (9) and rewrite them using the circular convolution operator

(13)

(14)

Since the support of the PSF and AR models is often much
smaller than the image, the function and as shown in (13)
and (14) refer to the original and padded with the appropriate

(12)
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number of zeros to enable them to have the same size as the
image support. Assume that the DPRT of , , , , , and are

, , , , , and ,
respectively, where .
and the size of all functions are , where .
Then, from the circular convolution property of DPRT, we have

(15)

which shows that the original 2-D blind image restoration
problem is converted into 1-D blind image restoration
problems. The 1-D GCV algorithm can be applied to estimate

, from . The 1-D GCV score for the
projection becomes (16), as shown at the bottom of the page,

where and are the DFT of and , respectively.
is the DFT of , with . The parameter set

in this case becomes . The 1-D GCV scores
for the projections are similar to (16) with all replaced by
. Let us summarize the whole procedure as follows.

1) Transform the observed image into the DPRT domain
to become .

2) Apply 1-D GCV algorithm to estimate and
from .

3) Reconstruct and based on , using
the inverse DPRT [11].

4) Obtain the restored image using any computationally in-
expensive restoration algorithm based on the estimated
and .

V. PROPOSED DPRT BLIND IMAGE RESTORATION ALGORITHM

Unfortunately, the intuitive idea suggested in Section IV does
not work properly in general. Due to the nonorthogonal property
of DPRT, the 1-D GCV restorations have the total com-
putational complexity not so much less than the original 2-D
problem. Furthermore, as is mentioned above, the DPRT of a
compact-supported function may not be compact supported. It
implies that more parameters will be required to estimate than
the original 2-D approach. Let us use an example to illustrate
the problem. Assume that has the size of 256 256. Assume
also that and have the size of 5 5 and 2 2, respectively.
Hence, originally the parameter set contains only 30 parameters
are required to be estimated. In (15), the support for ,

can be up to 256, i.e., the size of the image support. It
implies that for each and , up to 256 parameters are required
to be estimated. It is simply unachievable with the GCV algo-
rithm. Consequently, it is known that direct blind image restora-
tion using DPRT is not feasible. In this paper, we modify the
algorithm such that only a few essentially compact-supported

projections are used for the restoration. In this way, the compu-
tational complexity is greatly reduced.

It is interesting to note that, depending on the size of and ,
some of the projections of are compact supported. It is shown
in the following lemma.

Lemma 1: Given that a function with size is formed
by padding appropriate number of zeros to another function
with size , where and is a prime integer.
If the DPRT of is , where ;

, then

(17)

The proof of Lemma 1 is shown in Appendix A. In fact, Lemma
1 only describes a special case that is a power of 2 and is
a prime number. A more general lemma can be derived to deal
with different combinations of and . However, the case for
(17) is typical for many image restoration problems. Lemma 1
shows that when and are very small or very big numbers,
there will be a consecutive sequence of zeros in the projection.
This implies that the first and the last few projections of the total

projections are essentially compact supported. From (17),
we can also derive the support size of some of the essentially
compact-supported projections. For instance, if refers to
the support size of a projection, we know that

(18)

(16)
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(a) (b)

Fig. 2. Example to illustrate Lemma 1. (a) Original 2-D function ~h. (b) The
DPRT of ~h.

Fig. 2 provides an example to illustrate Lemma 1. In Fig. 2(a),
a 3 3 2-D function is padded with zeros to form an 8 8
function . The DPRT of the zero-padded function is shown in
Fig. 2(b). It is seen that the first few and last few columns (pro-
jection) of are essentially compact supported.

In the previous example, it is shown that some of the projec-
tions are essentially compact supported. When applying the 1-D
GCV algorithm to these essentially compact-supported projec-
tions, the number of parameters to be estimated is much less
than the other projections. We now further show that only some
of these essentially compact-supported projections are useful
for reconstructing the original compact-supported PSF . More
specifically, we show in Lemma 2 that, if we acquire essen-
tially compact-supported projections from and the first
projection from , we can obtain (i.e., the DPRT
of ) by some simple additions on these projections. Conse-
quently, we can reconstruct from based on the in-
verse DPRT as shown in (6).

Lemma 2: Given that a function with size is formed
by padding appropriate number of zeros to another function
with size , where and is a prime
integer. Assume that the DPRT of is , where

, ; , and the DPRT of
is , where , . Assume also that

, then

(19)

The proof of Lemma 2 is shown in Appendix B. Lemma 2
shows that by appropriately adding the data of the essentially
compact-supported projections obtained from ,

we can reconstruct . More importantly, only pro-
jections are required for the reconstruction of as com-
pared to the original projections. The computational com-
plexity is greatly reduced.

Equation (19) allows us to evaluate from

and then can be obtained from
using the inverse DPRT. Besides estimating the PSF, the
estimation of the image model parameters is also important.
The procedure for evaluating can be much simplified due to
the assumption we made. Recall that images are assumed to be
represented adequately by an AR model that can be described
by only two parameters as follows: , ,
and ; where represents the parameter of the
AR formation model for the original image. With this simple
structure, all parameters can be easily obtained from the DPRT
projections of . More specifically, it is easy to show that

(20)

Hence, once and are obtained from the 1-D GCV algo-
rithm, and can also be obtained. When both and are
available, the only thing missing is the regularization parameter

. It can be easily obtained by a direct search and using the 2-D
GCV score as the stopping criterion.

Let us summarize the proposed DPRT blind image restoration
algorithm as follows. Recall (13) and (14) for and with sizes
equal to and , respectively, where ,
and is a prime integer. Then, with proper boundaries adjust-
ment of and such that the circular convolutions in (13) and
(14) are equivalent to the linear convolutions in (8) and (10), the
proposed DPRT blind image restoration algorithm is as follows.

1) Perform DPRT on to obtain which are equal
to the circular convolutions of and , re-
spectively, as in (15).

2) Select and other projections from of which the
corresponding projections of are essentially compact
supported. More specifically, we select the first
and the last projections of and projection .

3) 1-D GCV algorithm is then applied to identify
and for the selected projections.

4) Reconstruct from using (19).
5) Obtain from using (20).
6) Obtain from using the inverse DPRT algo-

rithm as stated in (6).
7) Based on the estimated and , obtain by direct

searching and using the 2-D GCV score as the stopping
criterion.

8) Restore the image using the estimated , , and .

A block diagram is given in Fig. 3 to illustrate the procedure.

VI. IMPLEMENTATION ISSUES

As the other traditional approaches [6], [7], we only consider
symmetric blur models in this paper. It is known that many
real-life blurs—linear motion, out-of-focus, and atmospheric
turbulence blurs—are symmetric. This assumption is not re-
strictive. More importantly, it greatly reduces the search space
that allows the optimization procedure to converge more easily.

When the PSF is symmetric, we can easily show that its DPRT
projections are also symmetric up to a rotation. Furthermore,
some projections differ from the other only by a rotation. All
these imply that the number of parameters to be estimated can
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Fig. 3. Block diagram that describes the flow of the proposed algorithm.

be greatly reduced in the DPRT domain. Let us formally sum-
marize these properties of DPRT as follows:

Lemma 3: Given that a function with size is formed
by padding appropriate number of zeros to another function
with size , where and is a prime
integer. Assume that the DPRT of is , where

, ; , and the DPRT
of is , where , . If is symmetric
such that

where , , then the following are true.

1) is also symmetric up to a rotation.

2) .

3)

, where
.

The proof of Lemma 3 is shown in Appendix C. Item 1 of
Lemma 3 implies that, for every projection in this case, only
half of the coefficients are required to be estimated. The other
half is the same as the first half. Item 2 of Lemma 3 implies
that the coefficients of are the same as . Hence, only one
set of them needs to be estimated. Item 3 of Lemma 3 implies
that for the projections required to be estimated as indicated
in Lemma 2, of them need not be estimated if is
symmetric. It is because they have the same coefficients as the
other projections.

Let us use an example to further illustrate the actual num-
bers of coefficients need to be estimated for various projections.
Let have the size of 256 256 and has the size of 5 5.
Based on Lemma 2, we know that only , , , ,
and are required in order to estimate . From Lemma 3, we
know that and have the same coefficients. Hence we only
need to perform 1-D GCV algorithm on to obtain both

and . Furthermore, we know from Lemma 3 that and
have the same set of coefficients. Again, we only

need to perform 1-D GCV algorithm on to obtain both
and . Finally, when estimating

from the projections , Lemma 3 indicates that half of
the coefficients of are the same as the other due to
the symmetric property. For (18), we know that the support for

are 5, 9, and 13, respectively. Due to the symmetry
property, only 3, 5, and 7 of them, respectively, need to be esti-
mated.

VII. EXPERIMENTAL RESULTS

To verify the improvement achieved by the proposed
approach, the traditional 2-D GCV blind image restoration
algorithm and the proposed DPRT-based algorithm were im-
plemented and compared. Both algorithms were implemented
using Matlab and the command fmincon was used in both
cases for numerical search. To improve the convergence rate
of both approaches, a nonlinear constraint was imposed to the
PSF during estimation. The nonlinear constraint is basically a
band-reject filter to minimize the high frequency component of
the PSF. We found that this constraint is particularly important
to the 2-D GCV algorithm, as it was indicated in [19]. For both
approaches, the following 5 5 PSF was used:

The initial conditions for the 2-D GCV approach were
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TABLE I
COMPARISON IN TERMS OF ARITHMETIC OPERATIONS REQUIRED

The initial conditions for the proposed DPRT-based algorithm
were

They were selected rather arbitrarily. Different standard testing
images, such as Lenna and Pepper, were used and blurred by
the PSFs. Additive white Gaussian noise was then added to the
blurred image in two different noise levels, and
40 dB, where BSNR is defined as

To simulate the restoration process for realistic photographically
blurred images, we only extract the central 256 256 pixels of
the noisy blurred images for restoration. The boundaries of the
extracted images were preprocessed to remove the effects of
boundary discontinuities. The approach we used is similar to
[7] that for each extracted 256 256 pixels image, five pixels
were removed on each side, and the boundary values were in-
terpolated to smooth any discontinuities. For each image, 20 ex-
periments were performed for each approach at two different
noise levels ( and 35 dB). The results in terms
of accuracy and complexity in all experiments were recorded
and averaged. The accuracy was measured by the signal-to-error
ratio between the restored image and the original image. The
accuracy in estimating the PSF was also measured in terms
of signal-to-error ratio. The complexity of the algorithms was
measured by the required number of floating-point operations
(flops) as reported by the flops command of Matlab. Since the
major computation is in the numerical search, the number of
flops in each iteration and the number of iterations for both ap-

TABLE II
COMPARISON IN TERMS OF ACCURACY ACHIEVED

proaches were recorded and compared. Table I shows a compar-
ison of the computational complexity of the 2-D GCV algorithm
and the proposed DPRT-based algorithm.

Note that the result on “number of iterations” of the DPRT
approach is the sum of all iterations required for the estima-
tion of the parameter set in all projections. Note also that the
floating-point operations required for the implementation of
DPRT itself are also included and added to the results of the pro-
posed DPRT-based approach. Table I shows that, in both noise
levels, the total number of operations required for the proposed
approach is only about 3% of the 2-D GCV algorithm. This result
is foreseeable because the major operation done in each iteration
of the GCV algorithm is an FFT. By converting a 2-D GCV
algorithm to become some 1-D ones, the -point 2-D FFT
required in each iteration is also converted into some -point
1-D FFTs. For an image with size 256 256, a 256-point 1-D
FFT requires only 0.2% of floating-point operations as com-
pared with a 256 256-point 2-D FFT. So although a few more
1-D GCV algorithms need to be implemented in the proposed
approach, the overall complexity is still only 3% of the 2-D case.
Indeed the actual computation time required by the 2-D approach
can be even longer than the proposed DPRT algorithm due to
the massive 2-D data transfer, of which the burden introduced
has not been reflected in the number of arithmetic operations
reported. This kind of data movement is particularly slow in
Matlab if it is not carefully handled. Table II illustrates the
accuracy of both approaches.
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(a) (b)

(c) (d)

Fig. 4. (a) Original Lena (256�256). (b) Blurred and noisy Lena (BSNR = 30 dB). (c) Restored Lena using 2-D GCV (SER = 27:13 dB). (d) Restored
Lena using the proposed DPRT approach (SER = 27:86 dB).

The results in Table II show that the accuracy of the pro-
posed DPRT approach is comparable, if not better, than the
traditional 2-D approach. Both approaches have the problem
of jumping into local minimum during numerical search. The
problem happened more often when noise level is lowered to

. For the proposed approach, this problem
happens about five times in each 20 experiments. However,
the problem can often be solved by restarting the algorithm
with the estimated parameters serving as the initial guess plus a
random turbulence. The result for model parameter estimation
is not shown here since the estimation result varied from one
experiment to another. This happens to both approaches since
the image model is only an approximation to the actual one.
Figs. 4 and 5 show the actual restored images given by both
approaches. They can be considered as a subjective measure
for the accuracy of the algorithms. However, it is seen that no
observable difference can be found from the restored images
obtained by the two approaches.

VIII. CONCLUSION

In this paper, efficient algorithms are proposed for blind
image restoration. By using the discrete periodic Radon
transform, the original 2-D blind image restoration problem
is converted to some 1-D ones, and hence greatly reduces the
memory size and computation time. Experimental results show
that the proposed DPRT-based approach consistently uses less
arithmetic operations than the 2-D GCV approach. Apart from
the savings in computation time, the accuracy of the proposed
approach is comparable, if not better, than the traditional one
in both objective and subjective measures. While the proposed
approach is only a fast algorithm to the original one, it shares
the same limitations. For example, the GCV algorithm can only
estimate the magnitude of the PSF but not the phase informa-
tion. Besides, as with most of the traditional approaches, the
support of the PSF is assumed to be known in the proposed
algorithm. This assumption may not be valid in some practical
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(a) (b)

(c) (d)

Fig. 5. (a) Original pepper (256�256). (b) Blurred and noisy pepper (BSNR = 30 dB). (c) Restored Pepper using 2-D GCV (SER = 30:72 dB). (d) Restored
pepper using the proposed DPRT approach (SER = 30:77 dB).

situations. It means that a prior process may be required to
estimate the support of the PSF. Some results from the work on
ARMA model order estimation [20] can be used to deal with
this problem. Further work is being carried out to tackle these
two problems.

APPENDIX I

Proof of Lemma 1

Given that a function with size is formed by padding
appropriate number of zeros to another function with size

, where and is a prime integer. Given also
that the DPRT of is such that

(A.1)

(A.2)

where , ; . From (A.1),
we know that
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Since

Hence, if

Or equivalently, if
.

Let us consider for all such that .
Hence, . Consider for all such that

. Since

(A.3)

That is

Hence,

Let us consider for all such that .
Hence, . Consider for all such
that

Let

Since

Hence

Since and

Hence

That is

Hence,

The proof for is similar to that described above.

APPENDIX II

Proof of Lemma 2

Given that a function with size is formed by padding
appropriate number of zeros to another function with size

, where and is a prime integer. It is known
that , and the DPRT of is such
that

(B.1)

(B.2)

where , ; . The DPRT of
is such that

(B.3)

(B.4)

where , . Since

(B.5)

we immediately have the following result:

Hence, Lemma 2 case (i) is proved.
The relationship between and can be proven as fol-

lows.
Since

from (B.5), we know that the second term is equal to 0. Hence

(B.6)
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For

(B.7)

(B.7) shows that if

(B.8)

then the proof of Lemma 2 case (ii) is completed. Indeed, the
maximum value of the term can also be determined to
be

Hence, since both , and are positive integers, the term
can be rewritten as follows:

(B.9)

for an integer . From the maximum values of and , we can
determine the maximum value of for different as follows:

(B.10)

and

(B.11)

since . Consequently, given that for
as specified in (B.5), we have

for . Thus, we have

Lemma 2 case (ii) is thus proven.
Lemma 2 case (iii) can be proven similarly. We need to prove

that

for , ; . The maximum
value of the term can be determined to be

Hence, since both , and are all positive integers, the term
can be rewritten as follows:

(B.12)

for an integer . From the minimum value of and the maximum
value of , we can determine the maximum value of for dif-
ferent as follows:

(B.13)

and

(B.14)

since . Consequently, given that for
as specified in (B.5), we have

for . Thus, we have

for , ; . Lemma 2 case
(iii) is thus proven.

APPENDIX III

Proof of Lemma 3

Given that a function with size is formed by padding
the appropriate number of zeros to another function with size

, where and is a prime integer. Both
and are assumed to be real functions. Assume also that the

DPRT of is , where , ;

, and the DPRT of is , where ,
. Let the DFT of be and the DFT of

be . Furthermore, let the DFT of be . It
is given that is symmetric such that

.
(1) If is symmetric and real, is also symmetric and real.

Hence, will be symmetric in a sense that

where , . where is the complex conju-
gate of . Consider the discrete Fourier slice theorem [11] as

(C.1)
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(C.2)

where ; . Since
, it implies that

(C.3)

(C.4)

Equations (C.3) and (C.4) show that the DFTs of
are also symmetric. Hence,

must also be symmetric. However, since the imaginary part of
may not be equal to zero,

is only symmetric up to a rotation.
(2) We know that

(C.5)

(C.6)

If is symmetric, . Hence

This implies that .
(3) If is real and symmetric such that

, will also be symmetric in the sense that

(C.7)

(C.8)

If the discrete Fourier slice theorem is considered

(C.9)

(C.10)

where ; . Equations
(C.7) and (C.8) imply that

(C.11)

(C.12)

Equations (C.11) and (C.12) show that

where ; .
This implies the coefficients of projections and

are identical up to a rotation.
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