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Stable and Robust Fuzzy Control for Uncertain
Nonlinear Systems

H. K. Lam, F. H. F. Leung, and P. K. S. Tam

Abstract—This paper presents the stability and robustness analysis for
multivariable fuzzy control systems subject to parameter uncertainties
based on a single-grid-point (SGP) approach. To perform the analysis, we
represent a multivariable nonlinear system using a TS-fuzzy plant model.
Three design approaches of fuzzy controllers are introduced to close the
feedback loop. By estimating the matrix measures of the system parame-
ters and parameter uncertainties, stability and robustness conditions for
different cases are derived. Application examples will be given to show the
design procedures and the merits of the proposed fuzzy controller.

Index Terms—fuzzy control, nonlinear system robustness, parameter un-
certainty, stability.

I. INTRODUCTION

Control of nonlinear systems is a difficult problem because we do not
have systematic ways to find a necessary and sufficient stability condi-
tion, and to guarantee good robustness and performance. The problem
becomes more complex when some parameters of the plant are uncer-
tain. Fuzzy control is one of the techniques to deal with this class of
systems. Many successful applications of fuzzy control in industrial
processes [1]–[3] and domestic products have been reported.

We can classify the studies on fuzzy control systems into three
approaches, namely, model-free, mathematical model, and fuzzy
model approaches. The model-free approach, as its name tells, does
not require a model for the plant. A fuzzy controller for the complex
plant is obtained by incorporating human experience or expert knowl-
edge into a fuzzy controller through some linguistic rules [1]–[3].
This process makes the design simple and the linguistic rules make
the control process to be understood easily. However, the heuristic
design comes without considering the system stability, robustness
and performance. To realize a systematic design process, neural
and neural-fuzzy networks were employed to construct the fuzzy
controllers. By using some training algorithms [16], [17], [20], [21]
[56], parameters of the fuzzy controller can be obtained automatically.
Although this design process is systematic, the global closed-loop
system stability may not be guaranteed and the training process is
quite time consuming. Stability conditions of the neural-network and
neural-fuzzy control systems can be found in [29], [30], and [57]. A
fuzzy PID controller was also proposed to control a plant based on the
model-free approach. This fuzzy PID controller takes the output error,
derivative of the output error and the integral of the output error as the
inputs. Prior knowledge of the plant is not required. Under a particular
design of the membership functions, a fuzzy PID controller is proved
to be equivalent to a conventional PID controller [18], [19], [26], or a
nonlinear PID controller [7]. Some methodologies on tuning adaptive
fuzzy PI, PD, and PID controllers can be found in [9], [27], [31], [77],
and [78]. Based on the model-free approach, most of the studies were
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on obtaining the fuzzy controllers, while the stability and robustness
of the closed-loop system are seldom considered.

For the mathematical model approach, the closed-loop system is an-
alyzed based on a mathematical model of the plant. The closed-loop
system stability of Fuzzy PI, PD, and PID control systems were ana-
lyzed by using the small gain theorem [11], [28], [59]. Adaptive tech-
niques were applied in the design of fuzzy controllers [10], [12], [32],
[40], [63], [79], [80], [83]. The shapes of the membership functions of
the fuzzy controller were adjusted according to the adaptive rule de-
rived based on the mathematical model of the plant. Model-reference
adaptive [22], [60], [81] and self-organizing adaptive [33] fuzzy control
approach were also reported. By applying adaptive fuzzy controllers,
the stability of the closed-loop system is usually guaranteed, and the
system is robust to the parameter uncertainties. However, the computa-
tional demand and the complexity of the adaptive fuzzy controller are
always high. The robust sliding mode control technique was also ap-
plied in designing the fuzzy controllers. Based on sliding mode control
theory [5], the stability can be guaranteed and the system is robust to
parameter uncertainties within given bounds. The fuzzy sliding mode
controller behaves like a conventional sliding mode controller with a
boundary layer about the sliding plane [13], [23], [41], [61], when the
discontinuous control signal is replaced by a fuzzy gain. The chattering
problem of the control signal is reduced under this case. However, this
fuzzy sliding mode controller suffers from a finite steady state error due
to the boundary layer. To alleviate the chattering problem and eliminate
the finite steady state error, some fuzzy tuning algorithms [35], [42],
and adaptive techniques [14], [34] were introduced to the fuzzy sliding
mode controller. Other stability analyses can be found in [43], [62], and
[91]. It can be seen that the studies of the fuzzy control system based
on the mathematical model approach were mainly on the system sta-
bility and other system characteristics through combining conventional
control theories with fuzzy logic.

Under the fuzzy-model based approach, system analysis is carried
out via a fuzzy plant model. One well-known fuzzy plant model is the
TS-fuzzy plant model [4]. There are two ways to obtain the TS-fuzzy
plantmodelofanonlinearsystem.First,wecanconvert themathematical
model of the nonlinear system into a TS-fuzzy plant model directly
using, for example, the method in [36]. Second, we can obtain TS-fuzzy
plant model using some system identification or modeling techniques
[4], [6], [24], [44], [45], [82]. The TS-fuzzy plant model expresses the
nonlinear system as a weighted sum of some simple sub-systems. This
special structure of the TS-fuzzy plant model facilitates the analysis of
thesystems.Because the TS-fuzzy plantmodelgivesastandard form for
generalnonlinearsystems, theanalysiscanbecarriedoutsystematically.
Moreover, as the sub-systems of the TS-fuzzy plant model are usually
linear systems, some linear design techniques can be applied for the
fuzzy controller, which is a weighted sum of many sub-controllers.
PID controller is used as the sub-controller in [58], [64]–[66]. It can be
shown that this kind of fuzzy controller is a nonlinear PID controller.
Sufficient stability conditions were derived by using the Lyapunov’s
method [58]. Fuzzy controllers using linear state feedback controllers as
sub-controllers were also reported. A sufficient stability condition was
derived based on the Lyapunov direct method [37], [67], [86]. Stability
analysis of discrete-time fuzzy state feedback controller can be found in
[8], [25], [38], [46]–[48], [72], [73], and [85]. Linear matrix inequality
(LMI) techniqueswerealsoemployed toanalyze thesystemnumerically
[74]–[76], [87]. Adaptive [39], [53], [68], [84], [90] and sliding mode
[69] techniques were applied to design this kind of fuzzy controller.
As mentioned early, these two techniques will inevitably increase the
computational demand and complexity of the controller. Robustness
analysisresults for fuzzycontrolsystemsbasedonthefuzzymodelbased
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approach were relatively hard to find in the literature. We derived the
robustness conditions based on the Lyapunovstability theory reported in
[49]–[52], and by estimating the matrix measures of the system parame-
ters and the parameter uncertainties reported in [54], [55], [71], and [89].
control theory [36], and sliding mode control theory [70] wereemployed
toanalyze therobustnessof thefuzzycontrolsystem.

In this paper, we concentrate on the fuzzy model based approach, and
report a general analysis for fuzzy model based control systems subject
to parameter uncertainties. A stable and robust single-grid-point (SGP)
fuzzy controller is proposed. The idea of this SGP approach is shown
in Fig. 1 which shows a system with two uncertain parametersa andb.
The dot at the center of the circle denotes the nominal plant parameters
(the SGP) of the fuzzy control system of which the plant is represented
by a TS-fuzzy plant model. According to the nominal parameters, a
stable and robust SGP fuzzy controller will be designed based on the
TS-fuzzy plant model to close the feedback loop. The system stability
is guaranteed by this SGP fuzzy controller if the uncertain parameters
are inside a robust area denoted by the circle. We shall derive the sta-
bility conditions of the fuzzy control system, and the robustness condi-
tions that define the robust area. Through a general and systematic sta-
bility and robustness analysis, a procedure for finding SGP fuzzy con-
trollers can be obtained. Compare with other works on robust control
such as the fuzzy sliding mode control technique [13], [32], adaptive
H1, fuzzy control technique [32], self-tuning fuzzy control technique
[77], our approach is simpler and easier to understand, and the struc-
ture of the fuzzy controller is not so complicated.

This paper is organized as follows. In Section II, the TS-fuzzy plant
model and the fuzzy controller will be introduced. In Section III, three
design approaches, namely, general design approach, parallel design
approach and simplified design approach will be proposed to close the
feedback loop. Stability and robustness analyses will then be carried
out for the fuzzy control system, and the results for different approaches
will be presented. The stability and robustness conditions will be de-
rived by estimating the matrix measures of the system matrices of the
linear sub-systems in the consequent parts of the fuzzy rules, and the
norms of the parameter uncertainties. In Section IV, the finding of the
stability and robustness conditions under different design approaches
will be formulated into a nonlinear matrix inequality (NMI) (general
case) and LMI (special case) [15] problems. Section V summarizes the
procedures for fnding the SGP fuzzy controller. In Section VI, applica-
tion examples will be given to illustrate the stabilizability and robust-
ness property of the proposed SGP fuzzy controller. In Section VII, a
conclusion will be drawn.

II. TS-FUZZY PLANT MODEL AND FUZZY CONTROLLER

Consider an uncertain multivariable nonlinear fuzzy control system
comprising a TS-fuzzy plant model with parameter uncertainties, and
a fuzzy controller closing the feedback loop.

Fig. 1. Idea of the SGP approach.

A. TS-Fuzzy Plant Model with Parameter Uncertainties

Letp be the number of fuzzy rules describing the uncertain nonlinear
plant. Theith rule is of the following format:

Rulei: IF f1(x(t)) is Mi
1 AND � � �AND f	(x(t)) is Mi

	

THEN _x(t) = (Ai +�Ai)x(t) + (Bi +�Bi)u(t)

(1)

where Mi� is a fuzzy term of rulei corresponding to the function,
f�(x(t)), � = 1; 2; � � � ;	, i = 1; 2; � � � ; p, 	 is a positive integer;
�Ai 2 <

n�n and�Bi 2 <
n�m are the uncertainties of the con-

stant system matricesAi 2 <
n�n andBi 2 <

n�m, respectively;
x(t) 2 <

n�1 is the system state vector andu(t) 2 <
m�1 is the input

vector. The plant dynamics is then described by

_x(t) =

p

i=1

wi(x(t)) [(Ai +�Ai)x(t) + (Bi +�Bi)u(t)] (2)

where (see (3) and (4) at the bottom of the page) is a nonlinear function
of x(t) and�M (f�(x(t))) is the membership function corresponding
to Mi

�.

B. Fuzzy Controller

A fuzzy controller withc fuzzy rules is to be designed for the plant.
Thejth rule of the fuzzy controller is of the following format:

Rulej: IF g1(x(t)) is Nj
1

AND � � � ANDg
(x(t)) is Nj



THENu(t) = Gjx(t) + r (5)

where Nj� is a fuzzy term of rulej corresponding to the function
g�(x(t)), � = 1; 2; � � � ;
, j = 1; 2; � � � ; c, 
 is a positive integer;

p

i=1

wi(x(t)) = 1; wi(x(t)) 2 [0; 1] for all i (3)

wi(x(t)) =
�
M

(f1(x(t)))� �
M

(f2(x(t)))� � � � � �
M

(f	(x(t)))
p

k=1

(�
M

(f1(x(t)))� �
M

(f2(x(t)))� � � � � �
M

(f	(x(t)))

(4)
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Gj 2 <
m�n is the feedback gain of rulej, r 2 <

n�1 is the reference
input vector (set-point). The inferred output of the fuzzy controller is
given by

u(t) =

c

j=1

mj(x(t)) (Gjx(t) + r) (6)

where (see (7) and (8) at the bottom of the page) is a nonlinear function
of x(t)and�

N
(g�(x(t))) is the membership function corresponding

to Nj

� .
Substituting (6) into (2), a closed-loop fuzzy control system with

uncertain plant parameters can be formed. In this section, we shall an-
alyze the stability and robustness of such an uncertain fuzzy control
system. Three design approaches of the fuzzy controller, namely, gen-
eral design approach [50], parallel design approach [37], and simplified
design approach [50], can be used to close the feedback loop.

C. General Design Approach (GDA)

General design approach (GDA) allows differences in the number
of rules and the rule antecedents between the TS-fuzzy plant model
and the fuzzy controller. This approach gives the largest freedom on
finding the fuzzy controller. More importantly, as the fuzzy controller
(which depends onmj(x(t))) is not affected by the membership func-
tion values of the TS-fuzzy plant model (wi(x(t))), the TS-fuzzy plant
model membership functions can be unknown or uncertain, as long as
they satisfy the condition (3). This is an inherent robustness properties
of GDA. In order to carry out the analysis, the closed-loop fuzzy system
should be obtained first. From (2) and (6), the fuzzy control system is
given by

_x(t) =

p

i=1

c

j=1

wi(x(t))mj(x(t))

� [(Hij +�Hij)x(t) + (Bi +�Bi)r] (9)

where

Hij = Ai +BiGj (10)

�Hij = �Ai +�BiGj : (11)

D. Parallel Design Approach (PDA)

Parallel design approach (PDA) uses the same number of rules (p)
and rule antecedents of the TS-fuzzy plant model to design the fuzzy
controller. Hence, some of the terms in (9) can be grouped together.
The number of terms of the closed-loop system isp(p+ 1)=2 instead
of p�c for GDA. This makes the stability criterion to be satisfied more
easily. The fuzzy control system is given by

_x(t) =

p

i=1

wi(x(t)) [wi(x(t)) (Hii +�Hii)x(t)

+ (Bi +�Bi)r] + 2

p

i<j

wi(x(t))wj(x(t))

� (Jij +�Jij)x(t) (12)

where
Jij =

Hij +Hji

2
; �Jij =

�Hij +�Hji

2
(13)

Hij = Ai +BiGj �Hij = �Ai +�BiGj : (14)

E. Simplified Design Approach (SDA)

Simplified design approach (SDA) requires that the sub-system in-
side the fuzzy control system has a common input matrixB, and the
fuzzy controller has the same number of rules and rule antecedents as
those of the TS-fuzzy plant model. The number of summation terms
of the fuzzy control system is further reduced top. The fuzzy control
system is given by

_x(t) =

p

j=1

wj(x(t)) [(Hj +�Hj)x(t) + (B+�B)r] (15)

where
Hj = Aj +BGj (16)

�Hj = �Aj +�BGj : (17)
It should be noted that in order to simplify (9) to (15), either one of the
following conditions should hold:

Bj = B; �Bj = �B (18)
or

p

j=1

wj(x(t))Bj = B;

p

j=1

wj(x))�Bj = �B: (19)

In (18),B is a constant matrix. In (19),B = B(x(t)) and�B =
�B(x(t)) vary during the operation aswj(x(t)) in each rule varies.
Still, in both cases, whenGj is designed such thatHj = Aj+BGj =
Hwhich is a constant matrix for allj, and the system has no parameter
uncertainty (i.e.,�Aj = �Bj = �Hj = 0 for all j), a linear
closed-loop system can be obtained. If (18) holds, the linear system
is obtained by feedback compensation (i.e., pole placement technique);
otherwise, it is obtained by feedback linearization with respect to linear
sub-systems satisfying (19). The structure of the fuzzy controller for the
latter case is more complicated than that of the former case.

In summary, every design approach has its own advantages. GDA is
applicable to those TS-fuzzy plant models with unknown membership
functions and/or the number of rules of the fuzzy controller is different
from that of the TS-fuzzy plant model. When the membership func-
tions are known and the same rule antecedents of the TS-fuzzy plant
model are used in the fuzzy controller, PDA allows the stability cri-
terion to be satisfied more easily as compared with GDA. When each
subsystem of the plant model can be compensated to become a common
linear system using a suitable control law, SDA is recommended. The
resulting closed-loop system will then become a linear system when
the plant has no parameter uncertainty.

III. STABILITY AND ROBUSTNESSANALYSES OFUNCERTAIN FUZZY

CONTROL SYSTEMS

In the following paragraph, we proceed to the stability and robust-
ness analyses with reference to an uncertain fuzzy control system

c

j=1

mj(x(t)) = 1; mj(x(t)) 2 [0; 1] for all j (7)

mj(x(t)) =
�
N

(g1(x(t)))� �
N

(g2(x(t)))� � � � � �
N

(g
(x(t)))

c

k=1

(�
N

(g1(x(t)))� �
N

(g2(x(t)))� � � � � �
N

(g
(x(t))))

(8)
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under GDA. The analysis procedures for uncertain fuzzy control
systems under PDA and SDA are similar to those under GDA, and the
results will be given without proof. Consider the Taylor series

x(t+�t) = x(t) + _x(t)�t+ o(�t) (20)
whereo(�t) = �x(t) � _x(t)�t + x(t + �t) is the error term and
�t > 0

lim
�t!0

ko(�t)k

�t
= 0: (21)

From (9) and (20), writingwi(x(t)) aswi andmj(x(t)) asmj , and
multiplying a transformation matrixT 2 <n�n of rankn to both sides,
we have

Tx(t+�t) = Tx(t) +

p

i=1

c

j=1

wimj [T(Hij +�Hij)x(t)

+T(Bi +�Bi)r]�t+To(�t)

= I+

p

i=1

c

j=1

wimjTHijT
�1�t Tx(t)

+

p

i=1

c

j=1

wimj[T�Hijx(t)

+T(Bi +�Bi)r]�t+To(�t):

The reason for introducingT will be given at the end of this section.
Taking norm on both sides of the above equation, we have

kTx(t+�t)k �

p

i=1

c

j=1

wimj(I+THijT
�1�t)

� kTx(t)k+

p

i=1

c

j=1

wimj

� [T�Hijx(t) +T(Bi +�Bi)r]�t

+ kTo(�t)k (22)

wherek � k denotes thel2 norm for vectors andl2 induced norm for
matrices. From (22),

kTx(t+�t)k

�

p

i=1

c

j=1

wimjkI+THijT
�1�tk kTx(t)k

+

p

i=1

c

j=1

wimj [T�Hijx(t) +T(Bi +�Bi)r]�t

+ kTo(�t)k

) kTx(t+�t)k � kTx(t)k

�

p

i=1

c

j=1

wimj(kI+THijT
�1�tk � 1)

� kTx(t)k+

p

i=1

c

j=1

wimj[T�Hijx(t)

+T(Bi +�Bi)r]�t + kTo(�t)k

) lim
�t!0

kTx(t+�t)k � kTx(t)k

�t

� lim
�t!0

p

i=1

c

j=1

wimj

� (kI+THijT
�1�tk � 1)kTx(t)k

+

p

i=1

c

j=1

wimj[T�Hijx(t)

+T(Bi +�Bi)r]�t + kTo(�t)k �t: (23)

From (21) and (23),

dkTx(t)k

dt
� lim

�t!0

p

i=1

c

j=1

wimj(kI+THijT
�1�tk � 1)

�t

� kTx(t)k+

p

i=1

c

j=1

wimj

+ [T�Hijx(t) +T(Bi +�Bi)r]

�

p

i=1

c

j=1

wimj�[THijT
�1] kTx(t)k

+

p

i=1

c

j=1

wimj [T�Hijx(t)

+ T(Bi +�Bi)r] (24)

where

�[THijT
�1] = lim

�t!0

kI+THijT
�1�tk � 1

�t

= �max
THijT

�1 + (THijT
�1)�

2
(25)

is the corresponding matrix measure [88] of the induced matrix norm of
kTHijT

�1k (or the logarithmic derivative ofkTHijT
�1k); �max(�)

denotes the largest eigenvalue,� denotes the conjugate transpose. From
(24),

dkTx(t)k

dt
�

p

i=1

c

j=1

wimj�[THijT
�1] kTx(t)k

+

p

i=1

c

j=1

wimjkT�HijT
�1k kTx(t)k

+

p

i=1

wiT(Bi +�Bi)r

�

p

i=1

c

j=1

wimj(�[THijT
�1]

+ kT�HijT
�1k ) kTx(t)k

+

p

i=1

wiT(Bi +�Bi)r) : (26)

Let �[THijT
�1] be designed such that

�[THijT
�1] � �kT�HijT

�1kmax � " for all i andj (27)
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wherekT�HijT
�1kmax is the maximum value ofkT�HijT

�1k,
and" is a designed nonzero positive constant. Increasing the value of"

will usually result in a system with improved performance but degraded
robustness. In the next section, we shall show that the finding ofT can
be formulated into a NMI or a LMI problem. From (26) and (27),

dkTx(t)k

dt
� �

p

i=1

c

j=1

wimj"kTx(t)k

+

p

i=1

wjkT(Bi +�Bi)rk

= �"kTx(t)k+

p

i=1

wikT(Bi +�Bi)rk

)
dkTx(t)k

dt
+ "kTx(t)k e

"(t�t )

�

p

i=1

wikT(Bi +�Bi)rke
"(t�t )

)
d

dt
( kTx(t)ke"(t�t ))

�

p

i=1

wijT(Bi +�Bi)rke
"(t�t ) (28)

whereto < t is an arbitrary initial time. Based on (28), there are two
cases to investigate the system behavior: 1)r = 0 and 2)r 6= 0. For
the former case, it can be shown that if the condition (27) is satisfied,
the closed-loop system (9) is stable, andkx(t)k ! 0 ast!1.

Proof: For r = 0, from (28),

d

dt
kTx(t)ke"(t�t ) � 0

) kTx(t)ke"(t�t ) � kTx(to)k

) kTx(t)k � kTx(to)ke
�"(t�t )

: (29)

Since" is a positive value,kTx(t)k ! 0 ast ! 1, and

�min(T
T
T) kx(t)k2 � kTx(t)k2 = x(t)TTT

Tx(t)

� �max(T
T
T) kx(t)k2 (30)

where�max(T
TT) and�min(T

TT) denote the maximum and min-
imum singular values ofTTT, respectively. AsTTT is symmetric
positive definite (T has rankn), from (30), we havekTx(t)k ! 0
only whenkx(t)k ! 0. QED

For the latter case ofr 6= 0, the system states are bounded if the
condition (27) is satisfied andr is bounded.

Proof: For r 6= 0, from (28)

kTx(t)ke"(t�t ) � kTx(to)k+
t

t

p

i=1

wi

� kT(Bi +�Bi)rke
"(��t )

d�

) kTx(t)ke"(t�t ) � kTx(to)k+ kT(B̂+�B̂)rk

�
t

t

e
"(��t )

d�

where

kT(B̂+�B̂)rk � max
i
kT(Bi +�Bi)rkmax

� kT(Bi +�Bi)rk:

Then

kTx(t)ke"(t�t ) � kTx(to)k+
kT(B̂+�B̂)rk

"
(e"(t�t ) � 1)

) kTx(t)k � kTx(to)ke
�"(t�t ) +

kT(B̂+�B̂)rk

"

� (1� e
�"(t�t )): (31)

Since the right-hand side of (31) is finite ifr is bounded, the system
states are also bounded. QED.

The above analysis gives an upper bound ofkTx(t)k under different
cases ((29) and (31)). Similarly, a lower bound ofkx(t)k can be ob-
tained by following the same analysis procedure withx(t � �t) =
x(t)� _x(t)�t+#(�t) and#(�t) = �x(t)+ _x(t)�t+x(t��t).
Hence, from (30),kx(t)k satisfies the following conditions:

kTx(to)ke
��(t�t )

j �max(TTT) j
� kx(t)k �

kTx(to)ke
�"(t�t )

j �min(TTT) j

for r = 0 (32)

or

max

kTx(to)ke
��(t�t ) �

kT(B̂+�B̂)rk

�
(1� e��(t�t )

j �max(TTT) j
; 0

� kx(t)k for r 6= 0

�
kTx(to) ke

�"(t�t ) +
kT(B̂+�B̂)rk

"
(1� e�"(t�t ))

j �min(TTT) j

(33)

where

�[�THijT
�1] � � kT�HijT

�1kmax + � for all i andj

(34)

and� is a designed positive constant. Equation (34) is a condition gov-
erning� under GDA. For PDA,� is governed by

�[�THiiT
�1] � �kT�HiiT

�1kmax + � for all i
�[�TJijT

�1] � �kT�JijT
�1kmax + � for all i < j

:

(35)

For SDA,� is governed by

�[�THjT
�1] � �kT�HjT

�1kmax + � for all j: (36)

From (32) or (33),1 the dynamic performance of the closed-loop
system can be predicted. Also, the condition (27) is a sufficient criterion
of stability for the system (9). In conclusion, the stability criterion and
the robustness of the closed-loop fuzzy system under the three design
approaches can be summarized by the following lemmas.

Lemma 1: Under GDA, the fuzzy control system as given by (9)
without parameter uncertainty, i.e.,kT�HijT

�1k = 0, is stable if
THijT

�1 is designed such that

�[THijT
�1] � �" for all i andj:

1It should be noted that (32) or (33) is applicable to the three design ap-
proaches, but the conditions governing" and� as given by (27) and (34), re-
spectively, for GDA have to be modified for PDA and SDA accordingly.
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Under PDA, the fuzzy control system as given by (12) without pa-
rameter uncertainty, i.e.,kT�HiiT

�1k = 0 andkT�JijT�1k = 0,
is stable ifTHiiT

�1 andTJijT�1 are designed such that

�[THiiT
�1] � �" for all i

�[TJijT
�1] � �" for all i < j:

Under SDA, the fuzzy control system (15) without parameter uncer-
tainty, i.e.,kT�HjT

�1k = 0, is stable ifTHjT
�1 is designed such

that

�[THjT
�1] � �" for all j:

Definition 1: The robust area of a fuzzy control system is defined as
the area in the parameter space inside which uncertainties are allowed
to exist without affecting the system stability.

Lemma 2: Under GDA, with the uncertain fuzzy control system
given by (9), the robust area is governed by the following conditions:

kT�HijT
�1kmax � ��[THijT

�1]� " for all i andj

where kT�HijT
�1kmax is the maximum possible value of

kT�HijT
�1k.

Under PDA, with the uncertain fuzzy control system given by (12),
the robust area is governed by the following conditions:

kT�HiiT
�1kmax � ��[THiiT

�1] � " for all i
kT�JijT

�1kmax � ��[TJijT
�1]� " for all i < j

wherekT�HiiT
�1kmax andkT�JijT�1kmax are the maximum

possible values ofkT�HiiT
�1k andkT�JijT�1k, respectively.

Under SDA, with the uncertain fuzzy control system given by (15),
the robust area is governed by the following conditions:

kT�HjT
�1kmax � ��[THjT

�1]� " for all j

where kT�HjT
�1kmax is the maximum possible value of

kT�HjT
�1k:.

Both Lemmas 1 and 2 can be proved easily using condition (27) for
GDA. Also, from (32) or (33), we can see thatkx(t)k will go to its
steady state faster if we have a larger". Hence, the system performance
under a larger" is expected to be better than that with a smaller". On
the other hand, Lemma 2 implies that the robust area has to be smaller
if we have a larger". Thus, we can conclude that a system with a larger
" is less robust than that with a smaller".

Finially, one should note that with the use of a suitable transforma-
tion matrixT, we can transform any Hurwitz matrix having a positive
or zero matrix measure into another matrix having a negative matrix
measure. The stability and robustness conditions derived can then be
applied. The problem left is how to find such a matrixT for a given
system. This will be given in the next section.

IV. THE FINDING OF MATRIX T

In this section, we formulate the task of findingT in Lemmas 1
and 2 into a NMI problem. The transformation matrixT should be
found such that the uncertainty free system is stable (due to Lemma 1).
Moreover, on minimizing the matrix measure of the system matrices,
the transformation matrix should give us the maximum robust area. In
view of these properties and Lemma 2, the NMI problem can be stated
as follows.

For GDA, find T that minimizes
�[THijT

�1] + kT�HijT
�1kmax for all i and j

subject to

THijT
�1 +T

�1
H
T

ijT
T < 0 for all i andj: (37)

For PDA, findT that minimizes

�[THiiT
�1] + kT�HiiT

�1kmax for all i
�[TJijT

�1] + kT�JijT
�1kmax for al i < j

subject to

THiiT
�1 +T

�1
H
T

iiT
T < 0 for all i

TJijT
�1 +T

�1
J
T

ijT
T < 0 for all i < j

: (38)

For SDA, findT that minimizes�[THjT
�1] + kT�HjT

�1kmax
for all j subject to

THjT
�1 +T

�1
H
T

j T
T < 0 for all j: (39)

The proof of condition (37) under GDA can be obtained by consid-
ering that�[THijT

�1] is negative only when, from (25), the max-
imum eigenvalue of(THijT

�1 + T
�1

H
T

ijT
T)=2 is negative, i.e.,

when(THijT
�1 +T

�1
H
T

ijT
T)=2 is negative definite. This is be-

cause theHij of the control problem we consider are real, hence,
H
T

ij = H
�

ij . Similarly, (38) and (39) can be obtained for PDA and
SDA, respectively. In particular, ifHij +H

T

ij are negative definite for
all i andj, the identity matrixI 2 <n�n is the transformation matrix.
For an uncertain fuzzy control system, the stability can be guaranteed
if the conditions in Lemma 2 are satisfied.T is needed to determine
the norm of the transformed parameter uncertainties.

The above NMI problem can be reduced to a LMI problem ifT =
T
T. In this case, Lemma 1 will be reduced to the stability condition in

[37] when an uncertainty free fuzzy control system is considered.
Proof: Under GDA,

�[THijT
�1] < 0) (THijT

�1+T�1 H
T

ijT
T)=2 is negative definite.

Then, ifT = T
T

T� (THijT
�1 +T

�1
H
T

ijT
T)�T is negative definite:

) TTHij +H
T

ijTT is negative definite for alli andj:

(40)

LetTT = P (P is symmetric positive definite), the problem of finding
the stability condition for GDA can be formulated as follows:

FindT that minimizes�[THijT
�1] + kT�HijT

�1kmax

for all i andj subject toPHij +H
T

ijP < 0

for all i andj: (41)

Similarly, the problem of finding the stability conditions for PDA and
SDA can be formulated as follows:
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For PDA, findT that minimizes

�[THiiT
�1] + kT�HiiT

�1kmax for all i
�[TJijT

�1] + kT�JijT
�1kmax for all i < j

subject to

PHii +H
T

iiP < 0 for all i
PJij + J

T

ijP < 0 for all i < j
: (42)

For SDA, findT that minimizes�[THjT
�1] + kT�HjT

�1kmax
for all j subject to

PHj +H
T

j P < 0 for all j (43)

QED

In particular, we can also formulate the finding ofGi’s of the fuzzy
controller that satisfy the stability and robustness conditions as an LMI
problem. This is done by letting the feedback gains of the fuzzy con-
troller beGi = �RBT

i P, whereR 2 <m�m is a symmetric positive
definite matrix. Condition (41) can then be restated as follows:

P(Ai �BiRB
T

i P) + (Ai �BiRB
T

j P)
T
P

is negative definite for alli andj

) PAi +A
T

i P� 2PBiRB
T

j P is negative

definite for alli andj: (44)

Multiplying P�1 to the left and the right sides, condition (44) becomes

P
�1(PAi +A

T

i P� 2PBiRB
T

j P)P
�1 is negative

definite for alli andj

) AiP
�1 +P�1AT

i � 2BiRB
T

j is negative definite

for all i andj: (45)

Hence, the problem of findingT underGi = �RBT

i P for the three
design approaches can be summarized as follows.

For GDA andGi = �RBT

i P.
FindT andR that minimizes�[THijT

�1] + kT�HijT
�1kmax

for all i andj such that

AiP
�1 +P�1AT

i � 2BiRB
T

j < 0 for all i andj: (46)

For PDA andGi = �RBT

i P.
FindT andR that minimizes

�[THiiT
�1] + kT�HiiT

�1kmax for all i
�[TJijT

�1] + kT�JijT
�1kmax for all i < j

such that

AiP
�1 +P�1AT

i � 2BiRB
T

i < 0;

for all i
(Ai +Aj)P

�1 +P�1(Ai +Aj)
T � 2BiRB

T

j

� 2BjRB
T

j < 0; for all i < j

: (47)

For SDA andGi = �RBT

i P

FindT andR that minimizes�[THjT
�1]+kT�HjT

�1kmax for
all j such that

AjP
�1 +P�1AT

j � 2BjRB
T

j < 0 for all j: (48)

V. PROCEDURE FORFINDING SINGLE-GRID-POINT FUZZY

CONTROLLERS

The procedure for developing SGP fuzzy controllers is summarized
as follows.

1) Obtain the mathematical model for the uncertain multivariable
nonlinear system. (Skip this step if a TS-fuzzy plant model is
already at hand or obtainable by other ways.)

2) Obtain the TS-fuzzy plant model.
3) Determine the ranges of the parameter uncertainties,�Ai and

�Bi.
4) Decide the number of rules and membership functions of the

SGP fuzzy controller. Then, choose one of the three design ap-
proaches to design the state feedback control law in each rule of
the SGP fuzzy controller.

5) Apply Lemma 1 to check the stability of the uncertainty free
fuzzy control system. If the fuzzy control system is stable, apply
Lemma 2 to check the stability and robustness of the fuzzy con-
trol system after the defined ranges of parameter uncertainties
have been introduced. The finding of the transformation matrix
T in Lemmas 1 and 2 can be formulated as an NMI or an LMI
problem.

6) If the stability and robustness tests are failed, redesign the fuzzy
controller by going back to Step 4).

VI. A PPLICATION EXAMPLES

Application examples on stabilizing a ball-and-beam system [61],
an uncertain nonlinear mass-spring-damper system [37] and a two-in-
verted pendulum system [40] are given in this section. We shall find
SGP fuzzy controllers under different design approaches by following
the design procedures given in the previous section. Simulation results
will be given.

A. Ball-and-Beam System

A ball-and-beam system with uncertain system parameters will be
considered in this example by following the procedure in the previous
section. GDA will be employed to design the SGP fuzzy controller.

1) A ball-and-beam system is shown in Fig. 2 [61]. Its dynamics
equations are described by the following:

_x1(t) = x2(t)

_x2(t) = B(x1(t)x4(t)
2 + g sin(x3(t)))

_x3(t) = x4(t)

_x4(t) = u(t) (49)

wherex1(t) is the position of the ball measured from the centre
of the beam,x2(t) is the velocity of the ball,x3(t) is the angle of
the beam with respect to the horizontal axis,x4(t) is the angular
velocity of the beam,u(t) is the input torque;M 2 [0.05 0.5] kg
is the mass of the ball,R = 0.01 m is the radius of the ball,g =
9.8 ms�2 is the acceleration due to gravity,B � (MR2=Jb +
MR2) � 1, Jb (in kgm2) is the moment of inertia of the ball
about the centre of the ball and is not necessary to be known
in this example. The objective of this application example is to
drive the ball to the centre of the beam such thatx1(t) = 0.
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Fig. 2. Ball-and-beam system.

Fig. 3. Membership functions of the fuzzy controller for the ball-and-beam
system: Solid line:� (x (t)) = (�x (t) + x )=(x � x ),
Dotted line:� (x (t)) = 1� � (x (t)).

2) The ball-and-beam system can be represented by a TS-fuzzy
plant model having four rules. Theith rule can be written as
follow:

Rulei: IF f1(x(t)) is Mi
1 AND f2(x(t)) is Mi

2

THEN _x(t) = Aix(t) +Biu(t);

i = 1; 2; 3; 4 (50)

so that the system dynamics is described by

_x(t) =

4

i=1

wi(Aix(t) +Biu(t)) (51)

where

x(t) = [x1(t) x2(t) x3(t) x4(t)]
T
;

x1(t) 2 [x1 x1 ] = [�0:35 0:35];

x2(t) 2 [x2 x2 ] = [�1 1];

f1(x(t)) = Bx4(t)
2 and f2(x(t)) = �B

sin(x3(t))

x3(t)
;

A1 =

0 1 0 0

f1 0 �gf2 0

0 0 0 1

0 0 0 0

;

A2 =

0 1 0 0

f1 0 �gf2 0

0 0 0 1

0 0 0 0

A3 =

0 1 0 0

f1 0 �gf2 0

0 0 0 1

0 0 0 0

and

A4 =

0 1 0 0

f1 0 �gf2 0

0 0 0 1

0 0 0 0

;

B1 = B2 = B3 = B4 =

0

0

0

1

;

we choosef1 = �1 andf1 = �f1 , f2 = 0:6 and
f2 = 1;

wi =
�
M

(f1(x(t)))� �
M

(f2(x(t)))

4

l=1

(�
M

(f1(x(t)))� �
M

(f2(x(t)))

;

�
M

(f1(x(t))) =
�f1(x(t)) + f1

f1 � f1
for � = 1; 2 and

�
M

(f1(x(t))) = 1� �
M

(f1(x(t))) for � = 3; 4;

�M (f2(x(t))) =
�f2(x(t)) + f2

f2 � f2
for " = 1; 3 and

�
M

(f2(x(t))) = 1� �
M

(f2(x(t))) for � = 2; 4

are the membership functions related to the uncertain system pa-
rameters.

3) We can see that the uncertain parameters are inside the member-
ship functions. Hence, the parameter uncertainties of�Ai and
�Bi, i = 1, 2, 3, 4, are all zero in this example.

4) A two-rule fuzzy controller is designed for the nonlinear plant
(49) under GDA. The rules are listed as follows:

Rulej: IF x1(t) is Nj
1

THEN u(t) = Gjx(t)

= �RBTj Px(t); j = 1; 2: (52)

We choose the membership functions ofNj
1
, j = 1, 2, as follows:

�
N

(x1(t)) =
�x1(t) + x1

x1 � x1

�
N

(x1(t)) = 1� �
N

(x1(t)): (53)

The membership functions are shown in Fig. 3.
5) By solving the LMI problem as described in (46), we have

P =

29:5656 �21:3312 3:4445 �11:0125

�21:3312 55:1292 7:4880 11:1344

3:4445 7:4880 4:4989 �7:3562

�11:0125 11:1344 �7:3562 36:2820

and

R = 87:4582:

AsP = TT, we have

T =

0:3461 0:2003 �0:5841 �0:0967

0:2003 0:3311 �0:6914 �0:1572

�0:5841 �0:6914 2:7532 0:5618

�0:0967 �0:1572 0:5618 0:2926

:

Table I summarizes the stability and robustness analysis results.
By Lemma 1, we can conclude that the closed-loop system is
asymptotically stable.

Figs. 4–7 show the responses of the system states under the initial
condition ofx(0) = [0:35 0 0 0]T. From (32), the system perfor-
mance should lie inside the range

0:35e��t � kx(t)k � 0:35e�"t (54)

where " and � are chosen as 0.1272 (the smallest absolute value
among�[THijT

�1] in Table I) and 34.8506 (the largest value among
�[�THijT

�1] in Table I), respectively.
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Fig. 4. Responses ofx (t) of the ball-and-beam system underM = 0.05 kg
(solid line) andM = 0.5 kg (dotted line).

Fig. 5. Responses ofx (t) of the ball-and-beam system underM = 0.05 kg
(solid line) andM = 0.5 kg (dotted line).

Fig. 6. Responses ofx (t) of the ball-and-beam system underM = 0.05 kg
(solid line) andM = 0.5 kg (dotted line).

Fig. 7. Responses ofx (t) of the ball-and-beam system underM = 0.05 kg
(solid line) andM = 0.5 kg (dotted line).

TABLE I
STABILITY AND ROBUSTNESSRESULTS OF

THE BALL -AND-BEAM SYSTEM

Fig. 8. Mass-spring-damper system.

B. Mass-Spring-Damper System

We shall follow the deign procedure in the previous section to obtain
a fuzzy controller under PDA for a mass-spring-damper system subject
to parameter uncertainties.

1) Fig. 8 shows a diagram of the mass-spring-damper system. Its
dynamic equation is given by

M �x(t) + g(x(t); _x(t)) + f(x(t)) = �( _x(t))u(t) (55)
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whereM is the mass andu is the force,f(x(t)) depicts the
spring nonlinearity and uncertainty,g(x(t), _x(t))depicts the
damper nonlinearity, and�( _x(t)) uncertainty, and depicts the
input nonlinearity and uncertainty

g(x(t); _x(t)) = D(c1x(t) + c2 _x(t)
3 + c3(t) _x(t))

f(x(t)) = K(c4x(t) + c5x(t)
3 + c6(t)x(t))

�( _x(t)) = 1:4387 + c7 _x(t)
2 + c8(t) cos(5 _x(t)): (56)

The operating range of the states is assumed to be within�1.5
and 1.5. The parameters are chosen as follows:

M = D = K = 1:0; c1 = 0; c2 = 1;

c3(t) =
cU3 + cL3

2
+ c

L

3 �
cU3 + cL3

2
sin(10t)

so that

c3(t) 2 [cL3 ; c
U

3 ]; c4 = 0:01; c5 = 0:1;

c6(t) =
cU6 + cL6

2
+ c

L

6 �
cU6 + cL6

2
cos(5t)

so that

c6(t) 2 [cL6 ; c
U

6 ]; c7 = �0:03;

c8(t) =
cU8 + cL8

2
+ c

L

8 �
cU8 + cL8

2
cos(5t)

so that

c8(t) 2 [cL8 ; c
U

8 ]; c
L

3 = c
L

6 = �0:3;

c
U

3 = c
U

6 = 0:3; c
L

8 = �0:2; c
U

8 = 0:2:

It can be seen that the uncertain parametersc3, c6 andc8 are
modeled as known functions of timet. Practically, they can be
some uncertain parameters within the specified ranges. The non-
linear system then becomes

�x(t) = � _x(t)3 � 0:01x(t)� 0:1x(t)3 � c3(t) _x(t)� c6(t)x(t)

+ (1:4387� 0:13 _x(t)2 + c8(t) cos(5 _x(t)))u(t):

(57)

2) The mass-spring-damper system (57) can exactly be represented
by a TS-fuzzy plant model with the following fuzzy rules:

Rulei: IF x(t) is Mi

1 AND _x(t) is Mi

2

THEN _x(t) = (Ai +�Ai)x(t) + (Bi +�Bi)u(t)

i = 1; 2; 3; 4 (58)

where the membership functions ofMi

�, i = 1, 2,� = 1, 2, 3, 4,
are given by

�
M

(x(t)) = �
M

(x(t)) = 1�
x(t)2

2:25

�
M

(x(t)) = �
M

(x(t)) =
x(t)2

2:25

�
M

( _x(t)) = �
M

( _x(t)) = 1�
_x(t)2

6:75

�
M

( _x(t)) = �
M

( _x(t)) =
_x(t)2

6:75
(59)

which are shown in Fig. 9. Also,

x(t) =
x1(t)

x2(t)
; x1(t) = x(t)

Fig. 9. Membership functions of the TS-fuzzy plant model of the uncertain
nonlinear mass-spring-damper system: Upper:� (x(t)) = � (x(t)) =

1 � (x(t) =2:25) (solid line),� (x(t)) = � (x(t)) = (x(t) =2:25)

(dotted line). Lower:� ( _x(t)) = � ( _x(t)) = 1 � ( _x(t) =6:75) (solid
line),� ( _x(t)) = � ( _x(t)) = ( _x(t) =6:75) (dotted line).

TABLE II
STABILITY ANALYSIS RESULT OF THE MASS-SPRING-DAMPER

SYSTEM FOR i = j

TABLE III
STABILITY ANALYSIS RESULT OF THE MASS-SPRING-DAMPER

SYSTEM FOR i 6= j

x2(t) = _x(t) + 2x1(t); A1 = A2 =
�2 0

�2:01 1

A3 = A4 =
�2 0

�2:235 1
; B1 = B3 =

0

1:4387

B2 = B4 =
0

0:5613

�A1 = �A2 = �A3 = �A4 =
0 0

2c3(t)� c6(t) �c3(t)

�B1 = �B2 = �B3 = �B4 =
0

c8(t) cos(5 _x(t))
:
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3) The ranges of the parameter uncertainties are

�A1 = �A2 = �A3 = �A4 2 0 0

�0:9 �0:3
;

0 0

0:9 0:3

�B1 = �B2 = �B3 = �B4 � 0

�0:2
;

0

0:2
:

4) PDA is employed to design the SGP fuzzy controller. We use
four fuzzy rules to implement the SGP fuzzy controller and the
membership functions of the fuzzy controller are chosen to be the
same as those of the TS-fuzzy plant model (58), i.e., the mem-
bership functions (59). The rules of the SGP fuzzy controller are
as follows:

Rulej: IF x(t) is Mj
1

AND _x(t) is Mj
2

THEN

u(t) = Gjx(t); j = 1; 2; 3; 4: (60)

The feedback gains are then designed as

G1 = [1:3971 � 2:0852]; G2 = [3:5810 � 5:3447]

G3 = [1:5535 � 2:0852]; G4 = [3:9818 � 5:3447]

so that

H11 = H22 = H33 = H44 =
�2 0

0 �2
:

5) Tables II and III summarize the stability and robustness analysis
results. From the numerical values listed in the tables, and by
Lemmas 1 and 2 withT = I 2 <2�2, the stability of the uncer-
tain fuzzy control system is guaranteed. This is because both the
second and the fifth columns of these two tables all contain only
negative values.

The zero-input responses of the system under the initial conditions
x(0) = [�1 � 1]T with parameter uncertainties (solid lines) and
without parameter uncertainties (dotted lines) are shown in Fig. 10.
From (32), the system performance should lie inside the range

p
2e��t � kx(t)k �

p
2e�"t (61)

where" and� are chosen as 0.0794 (the smallest absolute value among
�[Hii]+k�Hiikmax and�[Jij ]+k�Jijkmax in Tables II and III) and
5.1702 (the largest value among�[Hii] +k�Hiikmax and�[�Jij ] +
k�Jijkmax in Tables II and III), respectively. The simulation results
verify the condition (61). It should be noted that the stability and ro-
bust conditions shown in Lemmas 1 and 2 are sufficient conditions. A
system not satisfying these conditions may still be a stable system. This
can be shown by increasing the ranges of the parameter uncertainties
to

�A1 = �A2 = �A3 = �A4 2 0 0

�2 �1
;

0 0

2 1

and

�B1 = �B2 = �B3 = �B4 2 0

�0:5
;

0

0:5
:

In this case, the stability and robustness conditions in Lemmas 1 and 2
cannot be satisfied. However, the simulation results as shown in Fig. 11
display stable responses.

C. Two-Inverted Pendulum System

An SGP fuzzy controller will be designed to stabilize a two-inverted
pendulum system under SDA by following the procedure in the pre-
vious section.

(a) A two-inverted pendulum system is shown in Fig. 12. It consists
of two cart-pole inverted pendulums. The inverted pendulums
are linked by a spring in the middle. The carts will move to and
fro during the operation. The control objective is to balance the
inverted pendulums vertically despite the movings of the spring
and carts by applying forces to the tips of the pendulums. Re-
ferring to Fig. 12,M andm are the masses of the carts and the
pendulums, respectively,m = 10 kg andM = 100 kg.L = 1 m is
the length of the pendulums. The spring has a stiffness constant
k = 1 N/m.y1(t) = sin(2t) andy2(t) = L + sin(3t) are the
trajectories of the moving carts.u1(t) andu2(t) are the forces
applied to the pendulums.�1(t) and�2(t) are the angular dis-
placements of the pendulums measured from the vertical. The
dynamic equation of the two-inverted pendulum system can be
written as follows:

_x(t) = A(x(t))x(t) +Bu(t) (62)

where

x(t) =

x1(t)

x2(t)

x3(t)

x4(t)

=

�1(t)
_�1(t)

�2(t)
_�2(t)

x1 2 [x1 x1 ] = ��

2

�

2

x3 2 [x3 x3 ] = ��

2

�

2

A(x(t)) =

0 1 0 0

f1(x1(t)) 0 0 0

0 0 0 1

0 0 f2(x3(t)) 0

B =

0 0

� 0

0 0

0 �

; and u(t) =
u1(t)

u2(t)

f1(t) =
2

L
� m

M
sin(x1(t))x1(t)

f2(t) =
2

L
� m

M
sin(x3(t))x3(t); � =

2

mL2
:

(b) A four-rule TS-fuzzy plant model is used to represent the two-
inverted pendulum system. Theith rule of the TS-fuzzy plant
model is given by

Rulei: IF f1(x1(t)) is Mi
1AND f2(x3(t)) is Mi

2

THEN _x(t) = Aix(t) +Bu(t);

i = 1; 2; 3; 4 (63)

where Mi
� is a fuzzy term of rulei, i = 1, 2, 3, 4,� = 1, 2. Then,

the system dynamics is described by

_x(t) =

4

i=1

wi[Aix(t) +Bu(t)] (64)

where

A1 =

0 1 0 0

f1 0 0 0

0 0 0 1

0 0 f2 0
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Fig. 10. System responses of the nonlinear mass-spring-damper system with
parameter uncertainties (solid lines) and without parameter uncertainties (dotted
lines).

Fig. 11. System responses of the nonlinear mass-spring-damper system under
larger ranges of parameter uncertainties.

Fig. 12. Two-inverted pendulum system.

Fig. 13. Membership functions of the TS-fuzzy plant model of
the two-inverted pendulum system: Upper:� (f (x(t))) =

� (f (x(t))) = (�f (x(t)) + f )=(f � f ) (solid
line), � (f (x(t))) = � (f (x(t))) = 1 � � (f (x(t)))

(dotted line); Lower: � (f (x (t))) = � (f (x (t))) =

(�f (x (t)) + f )=(f � f ) (solid line),
� (f (x (t))) = � (f (x (t))) = 1� � (f (x (t))) (dotted line).

A2 =

0 1 0 0

f1 0 0 0

0 0 0 1

0 0 f2 0

A3 =

0 1 0 0

f1 0 0 0

0 0 0 1

0 0 f2 0

A4 =

0 1 0 0

f1 0 0 0

0 0 0 1

0 0 f2 0

wi =
�
M

(f1(x1(t)))� �
M

(f2(x3(t)))

4

i=1

(�
M

(f1(x1(t)))� �
M

(f2(x3(t))))

�
M

(f1(x1(t))) =
�f1(x1(t)) + f1

f1 � f1
for � = 1; 2 and

�
M

(f1(x1(t))) = 1� �
M

(f1(x1(t))) for � = 3; 4

�M (f2(x3(t))) =
�f2(x3(t)) + f2

f2 � f2
for " = 1; 3; and

�
M

(f2(x3(t))) = 1� �
M

(f2(x3(t))) for � = 2; 4

f1 =
2

L
+ x1 ; f1 =

2

L
� x1

f2 = f1 and f2 = f1 :

The membership functions are shown in Fig. 13.
(c) �Ai = 0 and�Bi = 0, i = 1, 2, 3, 4.
(d) A four-rule SGP fuzzy controller is designed under SDA.

Rulej: IF f1(x1(t)) is Mi
1 andf2(x3(t)) is Mi

2

THEN u(t) = Gjx(t); j = 1; 2; 3; 4: (65)
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The feedback gains are then chosen as

G1 =
�116:6410 �119:7827 �95:0589 �39:6463

�97:0293 �40:0240 �260:5216 �180:2173

G2 =
�116:6410 �119:7827 �95:0589 �39:6463

�97:0293 �40:0240 �323:3534 �180:2173

G3 =
�179:4729 �119:7827 �95:0589 �39:6463

�97:0293 �40:0240 �260:5216 �180:2173

and

G4 =
�179:4729 �119:7827 �95:0589 �39:6463

�97:0293 �40:0240 �323:3534 �180:2173

so that

H1 = H2 = H3 = H4

=

0 1 0 0

�6:4028 �5:9891 �4:7529 �1:9823

0 0 0 1:0000

�4:8515 �2:0012 �13:5969 �9:0109

:

(e) It can be seen that the closed-loop system is a linear system. The
closed-loop system matrix is stable and has the eigenvalues of
�1, �2, �3, and�4. Thus, we can conclude the closed-loop
system is asymptotically stable.

The zero-input responses of the system under the initial conditions

x(0) =
22�

45
0 �

22�

45
0

T

are shown in Figs. 14 and 15, respectively. In this example, it can be
seen that an uncertainty free nonlinear system will become a linear
system under SDA. We now consider thatM � m is an unknown
value. GDA is employed to design a fuzzy controller with four rules
described as follows:

Rulej: IF x1(t) is Nj
1

AND x3(t) is Nj
2

THEN u(t) = Gjx(t); i = 1; 2; 3; 4: (66)

The membership functions are designed as

�
N

(x1(t)) =
�x1(t) + x1

x1 � x1
for � = 1; 2 and

�
N

(x1(t)) = 1� �
N

(x1(t)) for � = 3; 4;

�N (x3(t)) =
�x3(t) + x3

x3 � x3
for " = 1; 3; and

�
N

(x3(t)) = 1� �
N

(x3(t)) for � = 2; 4:

Table IV lists the stability analysis results with

T =

1:0159 0:0669 0:0431 �0:0210

0:0669 0:3157 �0:0226 �0:0395

0:0431 �0:0226 1:0833 0:0358

�0:0210 �0:0395 0:0358 0:2546

:

By Lemma 1, as the values in the second column are all negative, it can
be concluded that the closed-loop system is stable. Under the GDA, the
zero-input responses of the system withM = 10 kg under the initial
conditions

x(0) =
2�

45
0 �

22�

45
0

T

are shown in Figs. 16 and 17, respectively.

Fig. 14. Responses ofx (t) (solid line) andx (t) (dotted line) of the
two-inverted pendulum system under SDA withM = 100 kg.

Fig. 15. Responses ofx (t) (solid line) andx (t) (dotted line) of the
two-inverted pendulum system under SDA withM = 100 kg.

Fig. 16. Responses ofx (t) (solid line) andx (t) (dotted line) of the
two-inverted pendulum system under GDA withM = 10 kg.
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Fig. 17. Responses ofx (t) (solid line) andx (t) (dotted line) of the
two-inverted pendulum system under GDA withM = 10 kg.

TABLE IV
STABILITY ANALYSIS RESULT OF THETWO-INVERTED PENDULUM SYSTEM

UNDER GDA

VII. CONCLUSION

The stability and robustness of an uncertain multivariable fuzzy con-
trol system that is designed based on a SGP approach have been inves-
tigated. The analyses are general and systematic. Stability and robust-
ness conditions under three design approaches of the fuzzy controller
have been derived. The resulting fuzzy controller is capable of tackling

multivariable nonlinear systems subject to small parameter uncertain-
ties. Application examples on stabilizing various uncertain nonlinear
systems have been given to illustrate the stabilizability and robustness
property of the proposed SGP fuzzy controllers. As a note here, the re-
sults of the SGP approach is the basis for the development of a more
general multiple-grid-point (MGP) fuzzy controller [50], [52], that can
tackle nonlinear plants subject to large parameter uncertainties.
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Neighborhood Detection and Rule Selection from Cellular
Automata Patterns

Yingxu Yang and S. A. Billings

Abstract—Using Genetic Algorithms (GAs) to search for cellular au-
tomation (CA) rules from spatio-temporal patterns produced in CA evo-
lution is usually complicated and time-consuming when both the neighbor-
hood structure and the local rule are searched simultaneously. The com-
plexity of this problem motivates the development of a new search which
separates the neighborhood detection from the GA search. In this paper,
the neighborhood is determined by independently selecting terms from a
large term set on the basis of the contribution each term makes to the next
state of the cell to be updated. The GA search is then started with a consid-
erably smaller set of candidate rules pre-defined by the detected neighbor-
hood. This approach is tested over a large set of one-dimensional (1-D) and
two-dimensional (2-D) CA rules. Simulation results illustrate the efficiency
of the new algorithm.

Index Terms—Cellular automata, genetic algorithms, identification,
spatio-temporal systems.

I. INTRODUCTION

A cellular automaton (CA) is a discrete system which evolves in dis-
crete time over a lattice structure composed of a large quantity of cells.
The states of the cells are discrete and are updated synchronously ac-
cording to a local rule operating on a given neighborhood. The study
of low-dimensional CAs has been the focus of attention from a wide
range of researchers [1]–[6]. One of the most important topics in CA
studies is the identification of the CA, that is, to extract the neighbor-
hood and the governing local rule from a given set of spatio-temporal
patterns produced by the CA evolution.

Ideally, the identification technique should be designed to produce
an optimal CA expression which consists of a clear, minimal neighbor-
hood structure and a correct local rule. In [7], although correct rules
were generated by applying a set of sequential and parallel algorithms,
the associated neighborhood was not clearly presented and the identi-
fication process was complicated and time-consuming. Genetic Algo-
rithms (GAs) were employed in [8] in search for a matching rule from a
large rule set of all possible rules. Again, no satisfactory neighborhood
structure was obtained. In [9], the minimal neighborhood problem was
addressed by introducing a second search objective to the GAs on the
basis of reformulating the CA rules into a uniform Boolean expression.
Because the assumed neighborhood which determines the run time is
usually much larger than the actual neighborhood, the search process
can be very long, sometimes taking several hours for a single run, even
for a very simple one-dimensional (1-D) CA rule (see [9, Table VI]).
However it might be possible to substantially reduce the run time if the
assumed neighborhood for the GA search was correct and minimal.
One way to achieve this would be to determine the neighborhood be-
fore starting the rule search and this is the main objective of the present
study.

In this paper, a new neighborhood detection technique is introduced
which is capable of extracting the correct and minimal neighborhood
from a large set of candidate neighborhoods without having to define
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