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Stable and Robust Fuzzy Control for Uncertain on obtaining the fuzzy controllers, while the stability and robustness
Nonlinear Systems of the closed-loop system are seldom considered.
For the mathematical model approach, the closed-loop system is an-
H.K.Lam, F. H. F. Leung, and P. K. S. Tam alyzed based on a mathematical model of the plant. The closed-loop

system stability of Fuzzy PI, PD, and PID control systems were ana-

] - ] lyzed by using the small gain theorem [11], [28], [59]. Adaptive tech-

Abstract—This paper presents the stability and robustness analysis for niques were applied in the design of fuzzy controllers [10], [12], [32]

multivariable fuzzy control systems subject to parameter uncertainties PR ;

based on a single-grid-point (SGP) approach. To perform the analysis, we [40], [63], [79], [80], [83]. Thg shapes of th? membership fu_nCt'ons of
represent a multivariable nonlinear system using a TS-fuzzy plant model. the fuzzy controller were adjusted according to the adaptive rule de-
Three design approaches of fuzzy controllers are introduced to close the rived based on the mathematical model of the plant. Model-reference

feedback loop. By estimating the matrix measures of the system parame- adaptive [22], [60], [81] and self-organizing adaptive [33] fuzzy control

ters and parameter uncertainties, stability and robustness conditions for . .
different cases are derived. Application examples will be given to show the approach were also reported. By applying adaptive fuzzy controllers,

design procedures and the merits of the proposed fuzzy controller. the stability of the closed-loop system is usually guaranteed, and the
system is robust to the parameter uncertainties. However, the computa-

tional demand and the complexity of the adaptive fuzzy controller are
always high. The robust sliding mode control technique was also ap-
plied in designing the fuzzy controllers. Based on sliding mode control
|. INTRODUCTION theory [5], the stability can be guaranteed and the system is robust to

. . - n%?rameter uncertainties within given bounds. The fuzzy sliding mode
Control of nonlinear systems is a difficult problem because we do . . - .
ntroller behaves like a conventional sliding mode controller with a

have systematic ways to find a necessary and sufficient stability condi- .
tion, and to guarantee good robustness and performance. The prob grgf!lndary layer about the sliding plane [13], [23], [41], [61], when the

becomes more complex when same parameters ofthe plant are ungblg 7 ry S L TCREE TR BE R L TE S
tain. Fuzzy control is one of the techniques to deal with this class g ) '

systems. Many successful applications of fuzzy control in industriéiztrz]yzhdmg mo?e con_ltrollltlars_u:fe:; frorr]n{atflr?lte ster;tljy stat((ejerl_ror_dute
processes [1]-[3] and domestic products have been reported. o the boundarylayer. 10 alleviate the chatlering problem and eliminate

h . . e finite steady state error, some fuzzy tuning algorithms [35], [42],
Wi I h f | h . X g s
e can classify the studies on fuzzy control systems into t ré%\éj adaptive techniques [14], [34] were introduced to the fuzzy sliding

Index Terms—fuzzy control, nonlinear system robustness, parameter un-
certainty, stability.

approaches, namely, model-free, mathematical model, and fuzl e controller. Other stability analyses can be found in [43], [62], and

model approaches. The model-free approach, as its name tells, .
bp P It can be seen that the studies of the fuzzy control system based

not require a model for the plant. A fuzzy controller for the comple0 the mathematical model aporoach were mainly on the svstem sta
plant is obtained by incorporating human experience or expert knowt, pp y Y

edge into a fuzzy controller through some linguistic rules [1]_[3]51;”y and other system characteristics through combining conventional

This process makes the design simple and the linguistic rules ma trrlgl trhtehonfeszytrr;fudzzlyt:og|cc.i roach tem analvsis i ried
the control process to be understood easily. However, the heuristic er the fuzzy-modet based approach, system analysis IS carre

. : S o out via a fuzzy plant model. One well-known fuzzy plant model is the
design comes without considering the system stability, robustncﬁs -lfuzzy plant model [4]. There are two ways to obtain the TS-fuzzy

and performance. To realize a systematic design process, ne 1 . . .
ntmodel ofanonlinear system. First, we can convertthe mathematical
and neural-fuzzy.networks were employed to construct the fuz} odel of the nonlinear sy)s/tem into a TS-fuzzy plant model directly
controllers. By using some training algorithms [16], [17], [20], [21 ing, for example, the method in [36]. Second, we can obtain TS-fuzz
[56], parameters of the fuzzy controller can be obtained automatically. =" N S ; uzzy
; . . . nt model using some system identification or modeling techniques
Although this design process is systematic, the global closed-lo [6], [24], [44], [45], [82]. The TS-fuzzy plant model expresses the

system stability may not be guaranteed and the training proces: > linear svstem as a weighted sum of some simole sub-svstems. This
quite time consuming. Stability conditions of the neural-network andP™ Y welg u 'mple Sub-sy -

neural-fuzzy control systems can be found in [29], [30], and [57]. pecial structure of the TS-fuzzy plant model facilitates the analysis of

fuzzy PID controller was also proposed to control a plant based on t S systlemsl..Becausetthe TtSh-fuzzyIpIz.antmog el gives da st?nda:rd fo;m fl(l)r
model-free approach. This fuzzy PID controller takes the output err; I;?nera noniinéarsystems, the analysis can be carried out systematicatly.

derivative of the output error and the integral of the output error as t ¢ (eOVer, as the sub-systems of the TS-fuzzy plant model are usually

inputs. Prior knowledge of the plant is not required. Under a particul pear sysierrl}s, sorrr:ehllpear de.S'%? fjechnlqu?s can besppllet:d Jor the
design of the membership functions, a fuzzy PID controller is prov zzy controfler, which IS a weighted sum of many Sub-controfiers.

to be equivalent to a conventional PID controller [18], [19], [26], or & D cor::]rotllfr:_lslgszd ?? the sub-;:oTltro[ler n [5?_]’ [64];%6]' It;:arl} be
nonlinear PID controller [7]. Some methodologies on tuning adapti\?‘sé'o‘.m.1 at this xind ot fuzzy controfier 1s a noniinear contro e’r.
ufficient stability conditions were derived by using the Lyapunov’s

fuzzy PI, PD, and PID controller n be found in 27], [31], [77 L
uzzy P1, PD, and controllers can be found in [3], [27], [3 ]Z[ ]Pnethod [58]. Fuzzy controllers using linear state feedback controllers as
and [78]. Based on the model-free approach, most of the studies wer% = o .
sub-controllers were also reported. A sufficient stability condition was
derived based on the Lyapunov direct method [37], [67], [86]. Stability
analysis of discrete-time fuzzy state feedback controller can be found in
Manuscript received April 19, 1997; revised July 11, 2000. This work wa8) [25], [38], [46]-{48], [72], [73], and [85]. Linear matrix inequality
supported by a research grant from The Hong Kong Polytechnic UniversflyMI) techniqueswere also employed to analyze the system numerically
(Project G-V264). This paper was recommended by Associate Editor T. S§@4]—[76], [87]. Adaptive [39], [53], [68], [84], [90] and sliding mode
ka?h% authors are with Department of Electronic and Information Engineerirﬁg] techniques were applied to design this kind of fuzzy controller.
The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kon 5 mentlc_)ned early, these two technn_ques will inevitably increase the
(e-mail: hki@encserver.en.polyu.edu.hk). computational demand and complexity of the controller. Robustness
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approach were relatively hard to find in the literature. We derived the b-axis
robustness conditions based on the Lyapunov stability theory reported in
[49]-[52], and by estimating the matrix measures of the system parame-
ters and the parameter uncertainties reported in [54], [55], [71], and [89].
controltheory[36], and sliding mode control theory [70] were employed
toanalyzethe robustness of the fuzzy control system.

In this paper, we concentrate on the fuzzy model based approach, and
report a general analysis for fuzzy model based control systems subject
to parameter uncertainties. A stable and robust single-grid-point (SGP)
fuzzy controller is proposed. The idea of this SGP approach is shown
in Fig. 1 which shows a system with two uncertain parametensdb.

The dot at the center of the circle denotes the nominal plant parameters
(the SGP) of the fuzzy control system of which the plant is represented
by a TS-fuzzy plant model. According to the nominal parameters, a > -axis
stable and robust SGP fuzzy controller will be designed based on the

TS-fuzzy plant model to close the feedback loop. The system stabiljt)
is guaranteed by this SGP fuzzy controller if the uncertain parametgé' 1. Idea of the SGP approach.

are inside a robust area denoted by the circle. We shall derive the sta-

bility conditions of the fuzzy control system, and the robustness condi- TS-Fuzzy Plant Model with Parameter Uncertainties

tions that define the robust area. Through a general and systematic st@et ) pe the number of fuzzy rules describing the uncertain nonlinear
bility and robustness analysis, a procedure for finding SGP fuzzy cqflant. Theith rule is of the following format:

trollers can be obtained. Compare with other works on robust control

such as the fuzzy sliding mode control technique [13], [32], adaptive Rulei: IF f;(x(t))is M. AND - - - AND fu(x(t))is M,

H.., fuzzy control technique [32], self-tuning fuzzy control technique THEN%(t) = (A: + AA)x(t) + (Bi + AB:)u(?)

[77], our approach is simpler and easier to understand, and the struc-

ture of the fuzzy controller is not so complicated. @)

This paper is organized as foII_ows. !n Section II, the TS_-fuzzy plav\;here M, is a fuzzy term of rulei corresponding to the function,

model and the fuzzy controller will be introduced. In Section Ill, thre . . e )

. . (x(t), a0 = 1,2,---,¥,¢ = 1,2,---,p, ¥ is a positive integer;
design approaches, namely, general design approach, parallel de,@w‘
e 2

approach and simplified design approach will be proposed to close € RV andAB; € ®"*™ are the uncertainties of the con-
pp p gn app brop Sént system matriced;, € R"*" andB,; € R"*"™, respectively;
)

feedback loop. Stability and robustness analyses will then be carrie € R"*1 is the system state vector andf) € R ! is the input
out for the fuzzy control system, and the results for different approach\}eector The plant dvhamics is then described b
will be presented. The stability and robustness conditions will be de=""" P y y

rived by estimating the matrix measures of the system matrices of the P
linear sub-systems in the consequent parts of the fuzzy rules, and thé(f) = Y wi(x(t)) [(Ai + AA;)x(t) + (Bi + AB)u(t)] (2)
norms of the parameter uncertainties. In Section IV, the finding of the i=1

stability and robustness conditions under different design approach@s.re (see (3) and (4) at the bottom of the page) is a nonlinear function

will be formulated into a nonlinear matrix inequality (NMI) (generalofx(t) andyuy,: (f(x(t))) is the membership function corresponding
case) and LMI (special case) [15] problems. Section V summarizes i e

procedures for fnding the SGP fuzzy controller. In Section VI, applica-
tion examples will be given to illustrate the stabilizability and robustB_ Fuzzy Controller

ness property of the proposed SGP fuzzy controller. In Section VII, a ] ] )
conclusion will be drawn. A fuzzy controller withe fuzzy rules is to be designed for the plant.

The jth rule of the fuzzy controller is of the following format:

Rulej: IF g1 (x(t))is N AND --- ANDgq(x(t)) is N
THENu(t) = G;x(t) +r (5)

Il. TS-Fuzzy PLANT MODEL AND FUzzy CONTROLLER

Consider an uncertain multivariable nonlinear fuzzy control system »
comprising a TS-fuzzy plant model with parameter uncertainties, andhere I\L is a fuzzy term of rulej corresponding to the function
a fuzzy controller closing the feedback loop. gp(x(), 3 = 1,2,---,9Q,j = 1,2,--+,¢,Q is a positive integer;

Sowix(t) =1, wi(x(t)) €[0,1] foralli (3)

=1

o (1 G(0))) X gy (Fa () X -+ X g (Fu(x(2)))
Z (:LLM’{ (f1(x(1))) x Hmk (f2(x(t))) x -+ + % Haak (fu(x(1)))

k=1

wilx(t)) = “)
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G; € R™*" is the feedback gain of rulg R**! is the reference where
i € 9 B € _AHL'J'—FAH]'i

input vector (set-point). The inferred output of the fuzzy controller is J, = w Al = e (13)
given by H,, = A, + B.G;, AH,, = AA, +AB/G,. (14)
u(t) = Z m;(x(t)) (G;x(t) + 1) (6) E. Simplified Design Approach (SDA)
j=1

Simplified design approach (SDA) requires that the sub-system in-
where (see (7) and (8) at the bottom of the page) is a nonlinear functiigle the fuzzy control system has a common input mapand the
of x(t)anduy: (gs(x(t))) is the membership function correspondinguzzy controller has the same number of rules and rule antecedents as
to N 7 those of the TS-fuzzy plant model. The number of summation terms
- .

Substituting (6) into (2), a closed-loop fuzzy control system witﬁ]c t?e fqzzy_ cont[;ol system is further reducedptarhe fuzzy control
uncertain plant parameters can be formed. In this section, we shall gtemis gl\I{en y
alyze the stability and robustness of such an uncertain fuzzy control x(t) = ij (x()) [(H; + AH,)x(t) + (B + AB)r] (15)

system. Three design approaches of the fuzzy controller, namely, gen- i=1

eral design approach [50], parallel design approach [37], and simplifiadiere

design approach [50], can be used to close the feedback loop. H; =A; +BG; (16)
] AH; = AA; + ABG;. 17)

C. General Design Approach (GDA) It should be noted that in order to simplify (9) to (15), either one of the

General design approach (GDA) allows differences in the numbiellowing conditions should hold:

of rules and the rule antecedents between the TS-fuzzy plant model B, =B, AB,;=AB (18)

and the fuzzy controller. This approach gives the largest freedom on

finding the fuzzy controller. More importantly, as the fuzzy controller p P

(which depends om ;(x(t))) is not affected by the membership func- w;(x(t))B; = B, Z w;(x))AB; = AB. (19)

tion values of the TS-fuzzy plant modet((x(t))), the TS-fuzzy plant j=1 j=1

model membership functions can be unknown or uncertain, as long as Bi ) _B JAB —
they satisfy the condition (3). This is an inherent robustness properti/e%‘ (18),Bis a:jco.nstagt matrlx.. In (198 = .(x(t))han | ' -
of GDA. In order to carry out the analysis, the closed-loop fuzzy systef"r}ﬁ (x(t)) vary during the operation as;(x(t)) in each rule varies.

should be obtained first. From (2) and (6), the fuzzy control systemsréi"’ ir\ bqth cases, whe@, i_s designed suchthdl; = A,;+BG; =
H which is a constant matrix for afl, and the system has no parameter

given by : . , . .
P« uncertainty (i.e.AA; = AB; = AH; = 0 for all j), a linear
x(t) = Z Zwi(x(t))m;’(x(ﬂ) closed-loop system can be obtained. If (18) holds, the linear system
i=1 j=1 is obtained by feedback compensation (i.e., pole placement technique);
- [(Hi; + AH,)x(t) + (B; + AB))r] (9) otherwise, itis obtained by feedback linearization with respect to linear
where sub-systems satisfying (19). The structure of the fuzzy controller for the

(10) latter case is more complicated than that of the former case.

In summary, every design approach has its own advantages. GDA is
applicable to those TS-fuzzy plant models with unknown membership
functions and/or the number of rules of the fuzzy controller is different
D. Parallel Design Approach (PDA) from that of the TS-fuzzy plant model. When the membership func-

Parallel design approach (PDA) uses the same number of pjles{ons are known and the same rule antecedents of the TS-fuzzy plant
and rule antecedents of the TS-fuzzy plant model to design the fuz@gdel are used in the fuzzy controller, PDA allows the stability cri-
controller. Hence, some of the terms in (9) can be grouped togetHgfion to be satisfied more easily as compared with GDA. When each
The number of terms of the closed-loop system(js+ 1)/2 instead Subsystem of the plant model can be compensated to become a common
of p x ¢ for GDA. This makes the stability criterion to be satisfied mordéinear system using a suitable control law, SDA is recommended. The

H,‘,] =A,+ B,;Gj
AH,‘,] = AA,; + AB,G] (11)

easily. The fuzzy control system is given by resulting closed-loop system will then become a linear system when

P the plant has no parameter uncertainty.
x(t) = Zuu(x(t)) [wi(x(t)) (H;; + AH;;)x(¢)
=1 . [ll. STABILITY AND ROBUSTNESSANALYSES OF UNCERTAIN Fuzzy
+(Bi+ ABr] 423 wi(x(8)w;(x(t) CONTROL SYSTEMS
i<j In the following paragraph, we proceed to the stability and robust-
- (Jij + AT )x(t) (12) ness analyses with reference to an uncertain fuzzy control system
ij(x(t)) =1, mj(x(t)) €[0,1] forallj @)

7=1

pxi (g1 (3(#))) X gy (g2(x(1))) X - -+ X gy (ga(x(1)))
m;(x(t)) = — : . ®)

S s (91 (X(1) X s (92(R(1))) X =+ X i (90(X()))
k=1
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under GDA. The analysis procedures for uncertain fuzzy control (T + TH,;; T "At]] - 1) || Tx(t)||
systems under PDA and SDA are similar to those under GDA, and the P
results will be given without proof. Consider the Taylor series + Z Z wim;[TAH,;x(t)
x(t + At) = x(t) + x(t) At 4+ o(At) (20) i=1 j=1
whereo(At) = —x(t) — %(t)At + x(t + At) is the error term and
At > 0 +T(B; + AB;)r]At|| + ||To(At)||}/At. (23)
lim llo(a0)]| =0. (21)
ar—ot At From (21) and (23),
From (9) and (20), writingu; (x(¢)) asw; andm;(x(t)) asm;, and
multiplying a transformation matri¥ € ®™*" of rankn to both sides, PoC
we have > wim;(JT+ TH; T At - 1)
d||Tx(¢)]| . =1 j=1
, ——— 27 < lim
ro© dt ~ At—o0T At
Tx(t + At) = Tx(t) + Z Z'wimj[T(Hz‘j + AH,;)x(t) poc
i=1 j=1 - | Tx(8)|] + Zwi’mj
+ T(B; + AB;)r]At + To(At) i=1 j=1
)2 c
= <1 >0 LUﬂrlJ-THU-TlAt) Tx(t) + [TAH,;x(t) + T(B, + AB;)r]
i=1 j=1

P c P c
+ Z Z'wmz,j[TAH,'jx(t) Z Zﬂ)im/‘j/l,[TH,jjT_]] [|Tx(#)]|

i=1 j=1 i=1 j=1

+ T(B; + AB;)r]At + To(At). p_ e
Z Z lUL'mrj[TAHin(t)

IA

+
The reason for introducin@ will be given at the end of this section. =t =t
Taking norm on both sides of the above equation, we have + T(B: + AB )] 24)
P c
ITx(t + At)]| < Z Zwimj(l + TH,,; T 'At)
i=1 j=1 where
P o
|| Tx(t wim; -
ITxOl+ (> 3w, T TH,T A -1
- u[TH,;T '] = lim y
’ At—0+ At
- [TAH,;x(t) + T(B; + AB;)r]At —\ <THUT*1 + (THijTﬂ)*) 5)
max 2
+ [ To(AD)] (22)
. is the corresponding matrix measure [88] of the induced matrix norm of
Wher.e|| - || denotes thé, norm for vectors and. induced norm for |'TH,, T~ || (or the logarithmic derivative dfTEL, T~ ||): Armax(-)
matrices. From (22), denotes the largest eigenvallielenotes the conjugate transpose. From
(24),
ITx(t + At)]]
P c
<D wimy|[T+ TH T Atf] | Tx(1)]| AT - o _
=5 T S 2wl TH T T
P c 1= =
+ w;m;[TAH,;;x(t) + T(B; + AB;)r]At PE B
2, 2 AT £ S w TAH,T i)
=+ ||TO(AIL)|| l:lp =1
= ITx(t + A — ITx(?)]] + |>_wiT(Bi + AB))r
P c i=1
<D wim (| T+ THGT™ At - 1) poc
i=1 j=1 < Z Zm,;mj(/l,[TH,;qu]
P c i=1 j=1
. ||TX(t)|| + Z Zwmn,j[TAHin(t) + ||TAHUT71” ) ||TX(t)||
i=1 j=1 P
=+ w; T(B; + AB;)r)||. 26
+ T(B; + AB;)r]At || + || To(At)|| ; ( ) (26)
L IEXE T AD] — Tx() ,
v At Let u[TH,, T™'] be designed such that
P c
< lim w;m;
Aot ; ; ’ p[TH;; T7'] < —|TAH;; T ||max — ¢ foralli andj (27
2 J J

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on July 7, 2009 at 03:38 from IEEE Xplore. Restrictions apply.



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 30, NO. 6, NOVEMBER 2000 829

where||[TAH;; T ! ||max is the maximum value of TAH,; T *||, Then
and: is a designed nonzero positive constant. Increasing the value of
will usually result in a system with improved performance but degraded ety ||T(B + AB)rH ety
robustness. In the next section, we shall show that the findifigain  [|'Tx(t)[le”" " < [|Tx(t,)[| + - (57 =1
be formulated into a NMI or a LMI problem. From (26) and (27), - -
= (1)) < [Tt et 4 ITEB+ 2B
| Tx(®)|| LR . (] = et ) 1
- <- Z Zwin”c||Tx(t)|| (I—e ). (31)
=1 ;=1
P . . . . _ s
Since the right-hand side of (31) is finitedfis bounded, the system
|| T(B; + AB;
+ ;“)]” (B: + )l states are also bounded. QED.
» The above analysis gives an upper bounfBk(#)|| under different
= —¢||Tx(t)|| + Zwi”T(Bi + AB))r|| cases ((29) and (31)). Similarly, a lower bound||ef(¢)|| can be ob-
i=1 tained by following the same analysis procedure wifh — A¢) =
d|ITx()|| | _ Tx(t (i—ty) x(t) — X(f) At + ¥(At) and? (At) = —x(t) + x(t) At + x(t — At).
= dt +elTx®)] ) e Hence, from (30)||x(¢)|| satisfies the following conditions:
p
< wi|| T(B; + AB;)r|[e=(" ') Tx(t,)||e "t te) Tx(t,)||e(t—to)
< D wilT | ITxtolle ")) < Il
;1 |\/ (Tmax(T T)| |\/ (Tmin(T T)|
= = (ITx(t) e~ forr =0 (32)
a
p
< ST wi T(B: + AB))x||e ") (28) °f
i=1 ~ N
||Tx(to)||€—'!(L—L,,) _ IT(B + AB)r|| (1- e—n(t=to)
wheret, < tis an arbitrary initial time. Based on (28), there are twomax 7 : ,0
cases to investigate the system behavior: 8 0 and 2)r # 0. For [/ O max (TTT) |

the former case, it can be shown that if the condition (27) is satisfied,
the closed-loop system (9) is stable, dxd¢)|| — 0 ast — oc.
Proof: Forr = 0, from (28),

IN

[x(®)[l forr#0
et T(B + AB)r e
_ Ity e fo)+M+W (1= o==ti=to))
! - - T
% I Tx(t)]]e=" ") <0 |\/Tumin (TTT) |
= || Tx(1)[|e* ") < || Tx(t,)]|
= ITx(1)]| < [|Tx(t)[]e =" (29) Where

(33)

. . - - 7 - < - 4 ij - max L ] ]
Sinces is a positive value|| Tx(¢)|| — 0 ast — oo, and p=THG T < = [[TAHGT [lnax 47 foralli and;
(34)
T : 2 2 \NTT
min < A = . . . . . .
min (TT) (D" < ”Tx(t)“r x(?) rI; Tx(?) andy is a designed positive constant. Equation (34) is a condition gov-
< omax (T T) [Ix()]| (30)  erningn under GDA. For PDAy; is governed by

whereo ., (T*T) andomi, (T T) denote the maximum and min- {u[—THiiT’l] < —ITAH; T jmax + 7 foralli
imum singular values of"'T'T, respectively. ASTTT is symmetric p[=TI ;T < —|TATT Hjmax +n foralli < j°
positive definite T has rankn), from (30), we have|Tx(¢)|| — 0 (35)
only when||x(¢)|| — 0. QED

For the latter case of # 0, the system states are bounded if th&or SDA, 1 is governed by
condition (27) is satisfied andis bounded.

Proof: Forr # 0, from (28) p[=TH; T '] < —[|TAH,; T |lmax +7 forallj. (36)
‘it P From (32) or (33}, the dynamic performance of the closed-loop
I Tx(t) [ < || Tx(to)]| + / Z wi system can be predicted. Also, the condition (27) is a sufficient criterion
toi=1 of stability for the system (9). In conclusion, the stability criterion and
- |IT(B; 4+ AB;)r||e” ") dr the robustness of the closed-loop fuzzy system under the three design
= ||ITx(t) eS(t=to) < |ITx(t.)|| + ||T(]§ + Ag)r” approaches can be summarized by the following lemmas.
-t ) Lemma 1: Under GDA, the fuzzy control system as given by (9)
- / e dr without parameter uncertainty, i.¢/ TAH;, T~!|| = 0, is stable if
to TH,; T ' is designed such that
where u[TH;; T '] < —= foralliandj.
||T(]§ + AB)I‘H < max [|T(B; 4+ AB)T||max 1t should be noted t_h_at (32) or (_33) is applic_able to the three design ap-
i proaches, but the conditions governingnd» as given by (27) and (34), re-
< || T(B; + AB))r||. spectively, for GDA have to be modified for PDA and SDA accordingly.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on July 7, 2009 at 03:38 from IEEE Xplore. Restrictions apply.



830 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 30, NO. 6, NOVEMBER 2000

Under PDA, the fuzzy control system as given by (12) without pa- For GDA, find T that minimizes
rameter uncertainty, i.g|TAH; T '|| = 0and|TAJYT™'|| =0, u[TH,T'] + |TAH,T '|mw for al i and j
is stable ifTH;; T~ andTJ;; T~! are designed such that subject to

{M[THHT*] < —¢ foralli
T T r
p[TI; T < —e foralli < j. TH, T '+ T H,T' < 0 foralliandj. (37)

Under SDA, the fuzzy control system (15) without parameter uncer-

tainty, i.e.,[[ TAH, T || = 0, is stable ifTH, T is designed such For PpA, findT that minimizes
that
u[TH,T™'| < —¢ forallj. p[TH; T + |TAHG T |max  foralli
,U,[TJL'J'T_l] + ||TAJijT_l||,,,aX foral: < i

Definition 1: The robust area of a fuzzy control system is defined as
the area in the parameter space inside which uncertainties are aIIoweg.
to exist without affecting the system stability. subject to
Lemma 2: Under GDA, with the uncertain fuzzy control system
given by (9), the robust area is governed by the following conditions: { TH, T + T—1TH;I;TT < 0 foralli

i L . 38
TJ”,T—l_FT—lT,]}jTl < 0 foralli < j 39)

ITAH,; T "{|max < —pu[TH,;; T '] == foralliandj

For SDA, findT that minimizesu[TH,; T™'] 4 || TAH,; T~ || imax
where | TAH;; T !|m.x iS the maximum possible value offor all j subjectto
[TAH; T
Under PDA, with the uncertain fuzzy control system given by (12),

—1 1Ty T T .
the robust area is governed by the following conditions: TH;T" +T H;T < 0 forallj. (39)
ITAH;; T |max < —p[TH;; T} —< foralli The proof of condition (37) under GDA can be obtained by consid-
ITAT T lmax < —p[TI,; T —c foralli < j ering thatu[TH,; T~'] is negative only when, from (25), the max-

imum eigenvalue of TH,, T ' + T ' H.T")/2 is negative, i.e.,

_ 1Ty T Ty . . - -
J— R . when(TH,;;T~' +T~' H/,T")/2is negative definite. This is be-
wher_e||TAH,,T |,‘“"‘X an91||TAJ”T’ II,M,ilare the maximum ., ,se theH,;; of the control problem we consider are real, hence,
possible values qf TAH, T || and||TAJ,; T ||, respectively. 1 = HI;. Similarly, (38) and (39) can be obtained for PDA and

. . B 1] "
Under SDA, V\.”th the uncertain fuzzy cgntrol sy;t.em given by (15 DA, respectively. In particular, HL;; + H;; are negative definite for
the robust area is governed by the following conditions:

all i andy, the identity matrixl € R"*™ is the transformation matrix.
For an uncertain fuzzy control system, the stability can be guaranteed
ITAH, T Jmax < —p[TH,;T"'] — = forallj if the conditions in Lemma 2 are satisfiedl. is needed to determine
the norm of the transformed parameter uncertainties.

The above NMI problem can be reduced to a LMI problertit=
where ||TAH;T'||m.x is the maximum possible value of T, |n this case, Lemma 1 will be reduced to the stability condition in
TAH,;T~].. [37] when an uncertainty free fuzzy control system is considered.

Both Lemmas 1 and 2 can be proved easily using condition (27) for Proof: Under GDA,
GDA. Also, from (32) or (33), we can see thigg(¢)|| will go to its
steady state faster if we have a largelflence, the system performance o
under a larger is expected to be better than that with a smalledn  #[TH;,;T"'] < 0= (TH,,;T '+T ' H/,T")/2 s negative definite.
the other hand, Lemma 2 implies that the robust area has to be smaller
if we have a larget. Thus, we can conclude that a system with a Iarger[hen T - T
¢ is less robust than that with a smaller ' -
Finially, one should note that with the use of a suitable transforma-
tion matrixT_, we can trar_lsform any Hurwit_z matrix having a_positive_ T x (TH,, T + T_‘TH?]-TT) x T is negative definite
or zero matrix measure into another matrix having a negative matrix
measure. The stability and robustness conditions derived can then be
applied. The problem left is how to find such a matiixfor a given (40)
system. This will be given in the next section.

= TTH,; + H,TT is negative definite for all and;.

LetTT = P (P is symmetric positive definite), the problem of finding

IV. THE FINDING OF MATRIX T the stability condition for GDA can be formulated as follows:

In this section, we formulate the task of findifly in Lemmas 1 ) o . .
and 2 into a NMI problem. The transformation matfix should be Find T that minimizesu[TH,; T] + | TAH:; T lmax
found such that the uncertainty free system is stable (due to Lemma 1). for all 7 andj subject toPH,; + H,f,»P <0
Moreover, on minimizing the matr|?< measure of t.he system matrices, for all i and;. (41)
the transformation matrix should give us the maximum robust area. In
view of these properties and Lemma 2, the NMI problem can be statsumilarly, the problem of finding the stability conditions for PDA and
as follows. SDA can be formulated as follows:
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For PDA, find T that minimizes

for all

p[THT ' + [ TAHGT ™ max
foralli < j

pITIGT + [TATGT ™ lmax

subject to

.. T .
{PH”—I—H“P < 0 foralli 42)

PJ,;+J P <0 foralli < j°

For SDA, findT that minimizeg:[TH,; T~ '] 4+ | TAH, T ||max
for all 7 subject to

PH; +H/P < 0 forallj (43)

QED
In particular, we can also formulate the finding@f's of the fuzzy

controller that satisfy the stability and robustness conditions as an LMI
problem. This is done by letting the feedback gains of the fuzzy con-
troller beG; = —RB}P, whereR € R™*™ is a symmetric positive

definite matrix. Condition (41) can then be restated as follows:

P(A; —-B.RB/P)+ (A, - B.RB,P)'P
is negative definite for all and;
= PA; + A!P - 2PB;RB; P is negative

definite for alli andj. (44)

831
For SDA andG; = —RBTP
Find T andR that minimizeg:[TH, T~ ']+ || TAH,; T ™" ||max for
all j such that
AP +P'AT —2B,RB] < 0 forallj. (48)

V. PROCEDURE FORFINDING SINGLE-GRID-POINT Fuzzy
CONTROLLERS

The procedure for developing SGP fuzzy controllers is summarized
as follows.

1) Obtain the mathematical model for the uncertain multivariable
nonlinear system. (Skip this step if a TS-fuzzy plant model is
already at hand or obtainable by other ways.)

2) Obtain the TS-fuzzy plant model.

3) Determine the ranges of the parameter uncertainties; and
AB;.

4) Decide the number of rules and membership functions of the
SGP fuzzy controller. Then, choose one of the three design ap-
proaches to design the state feedback control law in each rule of
the SGP fuzzy controller.

5) Apply Lemma 1 to check the stability of the uncertainty free
fuzzy control system. If the fuzzy control system is stable, apply
Lemma 2 to check the stability and robustness of the fuzzy con-
trol system after the defined ranges of parameter uncertainties
have been introduced. The finding of the transformation matrix
T in Lemmas 1 and 2 can be formulated as an NMI or an LMI
problem.

6) If the stability and robustness tests are failed, redesign the fuzzy
controller by going back to Step 4).

Multiplying P~ to the left and the right sides, condition (44) becomes

P '(PA; + AP - 2PB,RBP)P~
definite for alli andj
= A;P ' +P 'A! - 2B,RB] is negative definite
for all : andj. (45)

! is negative

Hence, the problem of findin@ underG,; = —RB/ P for the three
design approaches can be summarized as follows.

For GDA andG; = —RB/P.

Find T andR that minimizesy[TH,; T™'] + || TAH,; T ||max
for all i andj such that

AP '+P 'A' -2B,RB] < 0 foralliandj.  (46)
For PDA andG; = —RBP.
Find T andR that minimizes
/l,[THiiTil] + ||TAHiiT71||maX forall ¢
p[TI T 4+ | TATT e foralli < j
such that
AP '+P A —2B,RB} < o0,
B ) for all . . a7)
(Ai—i—A]’)P +P (Al—l—A]) —QBiRBj
- 2B,RB] < 0, foralli < j

VI. APPLICATION EXAMPLES

Application examples on stabilizing a ball-and-beam system [61],
an uncertain nonlinear mass-spring-damper system [37] and a two-in-
verted pendulum system [40] are given in this section. We shall find
SGP fuzzy controllers under different design approaches by following
the design procedures given in the previous section. Simulation results
will be given.

A. Ball-and-Beam System

A ball-and-beam system with uncertain system parameters will be
considered in this example by following the procedure in the previous
section. GDA will be employed to design the SGP fuzzy controller.

1) A ball-and-beam system is shown in Fig. 2 [61]. Its dynamics
equations are described by the following:

1(f) = wa(t)
i (t) = Ba1(Haa(t)® + gsin(as(£)))
ls(t) = x4(1)
4(t) = u(t) (49)

wherez; (t) is the position of the ball measured from the centre
of the beamy: () is the velocity of the ballys(t) is the angle of

the beam with respect to the horizontal axig(¢) is the angular
velocity of the beamy () is the input torque) € [0.05 0.5] kg

is the mass of the ballR = 0.01 m is the radius of the bal},=

9.8 ms? is the acceleration due to graviti}, — (M R?/.J, +
MR?) < 1, J, (in kgn?®) is the moment of inertia of the ball
about the centre of the ball and is not necessary to be known
in this example. The objective of this application example is to
drive the ball to the centre of the beam such thdt) =0
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0 1 0 0
_ Jimax 0 _ngmin 0
A= 170" o T q| and
[ L 0o o 0 0
— | o0 1 0 0
fi 0 —gfe 0
A — max max .
t ! 0 0 0 1|’
ult) Lo 0o 0 0
Fig. 2. Ball-and-beam system. g
Bi=B,=B;=Bi= | |:
! 1
0.9 we choosefi,,;,, = —landfi,.. = =flum: f2n, = 0.6 2nd
o8l fznlax = 11
)U*Mi(fl (x(t))) x l"M;(f2(X(t)))
207t w; = ;
ﬁ 4
806 D Gt (f1(x(1))) X gy (fo(x(1))
[ =1
D .
= 05¢ —filx(H)+ A
= x(1))) = mex ford=1,2 and
§0.4- g (A1) Frmax = Fron ‘
g 0k v (filtx(t))=1- Hm(ﬁ (x(t))) foré=3,4;
—f2(x(1)) + fomax
02} pme (f2(x(t))) = fax@) + f fore=1,3 and
2 f?max - f2min
0.1 /’M;”(.f2(x(t))) =1- Pt (f2(x(t))) fore=2.4
0 are the membership functions related to the uncertain system pa-
04 rameters.

x1(0) 3) We can see that the uncertain parameters are inside the member-

ship functions. Hence, the parameter uncertainties Af, and
Fig. 3. Membership functions of the fuzzy controller for the ball-and-beam AB;,i =1, 2, 3, 4, are all zero in this example.

system: Solid linex 1 (21(t)) = (=21(t) + C1max)/(Timax = €1

), - . .
. ) , 4) A two-rule fuzz ntroller i igned for the nonlinear plan
Dotted linesyeys (24 (1) = 1 — s (1), ) A two-rule fuzzy controller is designed for the nonlinear plant

(49) under GDA. The rules are listed as follows:
Rulej: IF zy(t)is N) THEN u(t) = G;x(t)

2) The ball-and-beam system can be represented by a TS-fuzzy = -RB, Px(t), j=1.2. (52)
plant model having four rules. Thih rule can be written as We choose the membership functions\df, j = 1, 2, as follows:
follow: —x1 () + 2

. i L pani(xp(t)) = ——F——mex
Rulei: IF fi(x(t))is M} AND f2(x(t)) is M5 ! Llmax = Llmin
THEN %(f) = Aux(f) + Biu(t), pnz (o1 (8)) =1 = pna (a1 (1)) (53)
i=1.2.3.4 (50) The membership functions are shown in Fig. 3.
T 5) By solving the LMI problem as described in (46), we have
so that the system dynamics is described by 29.5656 —21.3312  3.4445 —11.0125
4 —21.3312 55.1292 7.4880 11.1344
. P = ) - . and
x(t) = Z wi (Ax(t) + Bu(t)) (51) 3.4445 7.4880  4.4989 —7.3562
=1 —11.0125 11.1344 —7.3562 36.2820
where R = 87.45382.
T AsP = TT, we have
X(t) =lar(®) @:(t) @t) 2], 0.3461  0.2003 —0.5841 —0.0967
21(t) € [T1pin  Tra] =[=0.35 03], 0.2003  0.3311 —0.6914 —0.1572
Ta(t) € [T2,5,  T2mw] =[-1 1], T= 105841 06014 27532  0.5618
F(x(t) = Bra(t)? and fo(x(t)) = —p 22T 0), —0.0967 —0.1572  0.5618  0.2026 .
w3(1) Table | summarizes the stability and robustness analysis results.
By Lemma 1, we can conclude that the closed-loop system is
r o0 1 0 0 asymptotically stable.
flow O —gfo, O Figs. 4—7 show the responses of the system states under the initial
Ay = 0 0 0 11’ condition ofx(0) = [0.35 0 0 0]". From (32), the system perfor-
0 0 0 0 mance should lie inside the range
01 0 0 0.35¢~"" < [Ix(t)]| < 0.35¢™ (54)
A, — flom 0 —gfon O where= and 7 are chosen as 0.1272 (the smallest absolute value
2T 0 0 0 1 amongu[TH,; T~ '] in Table I) and 34.8506 (the largest value among
L 0 o 0 0 #[—~TH;;T~'] in Table 1), respectively.
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0.4 . . . . 03 ‘ , :
0.35 T 0.25 4
03} 1 ozl ]
0.25 1 015l ]
= 02 T 0.1} ;
x 0.15 9 ?é 0.05 p
0.1 E 0
0.05} : 0.05 ]
0 -0.1 ]
-0.05 . L L . X X . .
° 2 4 6 8 10 1% 2 4 6 8 10
Time (Sec.) Time (Sec.)
Fig. 4. Responses of, (#) of the ball-and-beam system undef =0.05kg  Fjg 7. Responses of,(t) of the ball-and-beam system undef = 0.05 kg
(solid line) andM = 0.5 kg (dotted line). (solid line) andM = 0.5 kg (dotted line).
0.05 T T T T
TABLE |
STABILITY AND ROBUSTNESSRESULTS OF
0 THE BALL-AND-BEAM SYSTEM
-0.05 . iLj | W[TH,; T} | p-TH,T™]
1,1 | -0.1976 34.6090
= 0.1 7 L2 | -0.1976 34.6090
P 21| -0.1354 34.8506
-0.15 ;
2,2 | -0.1354 34,8506
02 ] 31| 01272 34.6590
. 3.2 | —0.1272 34.6590
-025F ¢ 1 41| —05832 33,6529
4,2 | -0.5832 34,6529
03 : : - '
0 2 4 6 8 10
Time (Sec.)

Fig. 5. Responses of; (¢) of the ball-and-beam system undef = 0.05 kg
(solid line) andM = 0.5 kg (dotted line).

— =

0.06 T T T T
0.05f /- 1 B ...
Lo ¥
0.04 1 K D
0.03 1
o 0.02 1
% 0.01 .
Fig. 8. Mass-spring-damper system.
0 L
-0.01 ] B. Mass-Spring-Damper System
0.02 . We shall follow the deign procedure in the previous section to obtain
afuzzy controller under PDA for a mass-spring-damper system subject
-0.03 : : ; : inti
o > 4 Py 8 10 to parameter uncertaln_tles. _
Time (Sec.) 1) Fig. 8 shows a diagram of the mass-spring-damper system. Its

dynamic equation is given by

Fig. 6. Responses af;(¢) of the ball-and-beam system undef = 0.05 kg
(solid line) andM = 0.5 kg (dotted line). ME(t) + g(x(t), (1)) + f(x(t)) = o(&(1))u(t) (55)
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where M is the mass and is the force,f(x(t)) depicts the 2 1 T T T
spring nonlinearity and uncertainty(z(¢), =(t))depicts the 2
damper nonlinearity, and(z(¢)) uncertainty, and depicts the £
input nonlinearity and uncertainty 2os} / AN -
"6 . .
gz (), @ () = D(erz(t) + cair(t)’ + ea(t)i(t)) k)
(1) = K(can(t) + csz(t) + e (£)x(t)) 5 o . N .
P(#(t)) = 14387 + crd(t)” + es(t) cos(bi(t)).  (56) -5 - 05 x(()t) 05 1 15
The operating range of the states is assumed to be withis & 1 " " '
and 1.5. The parameters are chosen as follows: 2 / \
o)
£
M=D=K=1.0, (1—() e =1, 80.5- |
es(t) = 7{)3 Rl + < p3 + s sin(10%) 8
2 E
s, 0 L M L 1 " L
so that 15 -1 -0.5 0 05 1 15
dx(t)/dt

es(t) € [eh, e8], ca =001, ¢ =0.,
_ Cg + 05 L (‘/g + (% = Fig. 9. Membership functions of the TS-fuzzy plant model of the uncertain
co(t) = T <C’6 - T) cos(5¢) nonllnear mass-spring-damper system: Uppeg: (z(t)) = iy (2(1)) =
1= (a(1)?/2.25) (solid ine), iyga (v(1)) = piyya(a(t)) = (alt)?/2.25)
so that (dotted line). Lowery 1 (i(t)) = yMz( t)) = 1 — (i(t)?/6.75) (solid
IIne),,uMg (2(¢)) = uM;(L(T)) (x(t) /6.75) (dotted line).

cs(t) € [ce. e ], = —0.03,
U L U L
cs +cg L ¢ tcg
5(t) = — § — ——— } cos(5t
e(t) 2 T <‘8 2 )ws(o ) TABLE |l
STABILITY ANALYSIS RESULT OF THE MASS-SPRING-DAMPER
so that SYSTEM FORi = j
L u L L
alt) €les,ec), e =co = =03, TR T AR | o] | et o] | amean ]
o =cf =03, cb=-02 cf =02
- 6 B s - 1| = 2 12917 ~0.7083 39217
It can be seen that the uncertain parameters:s andcs are 2 -2 2 1.8561 —0.1439 3.8561
modeled as known functions of timte Practically, they can be 3 ) 3 1.2850 07150 32850
some uncertain parameters within the specified ranges. The nc yy = 3 9206 Y 39306
linear system then becomes
Bt) = —&()® = 0.01e(t) — 0.12(8)® — ca()i(t) — co(t)a(t)
(L4387 — 0.130(6)2 + es () cos(5i(t)) yu(t TABLE il
ool — U low cs(t) cos(5a(t)))ult). STABILITY ANALYSIS RESULT OF THE MASS-SPRING-DAMPER
(57) SYSTEM FOR:? # j
2) The mass-spring-damper sy;tem (57) can exactly be represen i.; /J[JN] H[_JU] HAJU N M[J”]J,”AJ” #[-JU],,HAJ”
by a TS-fuzzy plant model with the following fuzzy rules: * i e
v v 1,2 | —18544 | 35756 | 15169 —0.3375 5.0925
Rulei: IF x(t)is M} AND i(t) is M3 3| = 2 12883 07117 3.2883
THENx(t) = (A; + AA)x(?) + (B; + AB;)u(t) 1,4 | _1.8025 | 36275 | 15504 02531 51179
i=1,2,3,4 (58) 2,3 | 18730 | 35570 | 15299 203431 50860
where the membership functions®f,,i =1,2,a=1,2,3,4, 24| 2 2 1.8881 —0.1119 3.8881
are given by 3,4 | —1.8234 | 3.6066 | 15636 -0.2598 5.1702
z(t)?
it (2(8)) = gy ((1)) = 1 = 2L
1 1 - (1) = &(t) + 21 (1 20
(t)? z2(t) = &(t) + 2x1(¢); A1:A2:|:‘ :|
g (2(6) = pygs (1)) = 2L 201 1
1 1 2.25 _9 0 0
) . i(t)? A=A, = : B, =B;3=
g ((8)) = pygg (8(1) = 1 = ‘?35 Fm {—2.235 1} P {1.4387}
YR
Y 0
: y i(t)? B, =B, =
parg () = paga (1)) = 6(77_5 (59) T 105613
0 0
i in Fi AA; = AAs = AA3 = AA, =
which are shown in Fig. 9. Also, 1 2 3 4 {203(” —colt) —cs (f)}
21(1) 0
t) = , xi(t) = x(t AB; = AB; = AB3; = AB, = .
x(t) |:r2(f):| > milt) = a(t) ! 2 3 B |:(‘g(f) ros(5j,“(t)):|
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3) The ranges of the parameter uncertainties are

—0.9 -0.3]7]09 03
0 0
AB; = AB; = AB3 = AB, C <{_0_2} ’ {0.2}) '

4) PDA is employed to design the SGP fuzzy controller. We use
four fuzzy rules to implement the SGP fuzzy controller and the
membership functions of the fuzzy controller are chosen to be the
same as those of the TS-fuzzy plant model (58), i.e., the mem-
bership functions (59). The rules of the SGP fuzzy controller are

as follows:
Rulej: IF x(t)is MJ AND i(t) is M THEN
u(t) = G;x(t), j=1,2,3,4. (60)
The feedback gains are then designed as

G, = [3.5810 3447

G, =[1.3971 —2.0852], -5
=L G, = [3.9818 —5.3447]

Gs = [1.5535 —2.0852],
so that

-2 0
Hiy =Hy =Hszz =Hyy = { 0 _2}-

5) Tables Il and Il summarize the stability and robustness analysis
results. From the numerical values listed in the tables, and by

, the stability of the uncer-

tain fuzzy control system is guaranteed. This is because both the

second and the fifth columns of these two tables all contain only

2

Lemmas 1 and 2 witl' = I € R®2*

negative values.

The zero-input responses of the system under the initial conditions
x(0) = [-1 — 1]" with parameter uncertainties (solid lines) and
without parameter uncertainties (dotted lines) are shown in Fig. 10.

From (32), the system performance should lie inside the range

V3T < |Ix(t)]| < VEe (61)

where= andn are chosen as 0.0794 (the smallest absolute value among
AJ[’_/’HIU-@X in Tables Il and “l) and

5.1702 (the largest value amop{H ;] + [| AH; || max andp[—J;] +

(@) Atwo-inverted pendulum system is shown in Fig. 12. It consists

of two cart-pole inverted pendulums. The inverted pendulums
are linked by a spring in the middle. The carts will move to and
fro during the operation. The control objective is to balance the
inverted pendulums vertically despite the movings of the spring
and carts by applying forces to the tips of the pendulums. Re-
ferring to Fig. 12,M andwm are the masses of the carts and the
pendulums, respectively; = 10 kg andM =100 kg.L =1 mis

the length of the pendulums. The spring has a stiffness constant
k=1N/m.yi(t) = sin(2¢) andyz(¢) = L + sin(3t) are the
trajectories of the moving carts; (t) andus(¢) are the forces
applied to the pendulumg, (¢) and#.(¢) are the angular dis-
placements of the pendulums measured from the vertical. The
dynamic equation of the two-inverted pendulum system can be
written as follows:

x(t) = A(x(t))x(t) + Bu(t) (62)
where
x1(t) 01 (t)
_ | w®) ] | 6(@)
D=0 | T e
.'174(1') 92('[')
21 € [T, Tl = [—g g]
T3 € (3,5, Tsmax] = [—g %]
[ 0 1 0 0
_ | fite(t) O 0 0
Alx(t)) = 0 0 0 1
L 0 0 folzs(t)) O
ro 0
B= 3 8 and u(t) = {Z;E:”
L0 A
fi(t) = % - % sin(wq (t))x1(t)
fa(t) = % - % sin(xs(t))zs(t); A= %

[|AJ;;||max in Tables I and Il), respectively. The simulation results (b) A four-rule TS-fuzzy plant model is used to represent the two-

verify the condition (61). It should be noted that the stability and ro-
bust conditions shown in Lemmas 1 and 2 are sufficient conditions. A
system not satisfying these conditions may still be a stable system. This
can be shown by increasing the ranges of the parameter uncertainties

to
0 0 0 0
AAl_AAz—AA;;—AA4€<{_2 _1},[2 1D
and
AB; = AB, = AB; = AB, € 0 0
T=abr= abs = ab —05|"005]|/"

In this case, the stability and robustness conditions in Lemmas 1 and 2
cannot be satisfied. However, the simulation results as shown in Fig. 11

display stable responses.

C. Two-Inverted Pendulum System

An SGP fuzzy controller will be designed to stabilize a two-inverted
pendulum system under SDA by following the procedure in the pre-

vious section.

inverted pendulum system. Th#h rule of the TS-fuzzy plant
model is given by

Rulei: IF fi(z1 (1)) is M{AND f2(23(t)) is M
THEN x(t) = A, x(t) + Bu(t),
i=1,2,3,4 (63)

where M, is afuzzytermofrulé,i =1, 2, 3,4 =1, 2. Then,
the system dynamics is described by

4

() = Y wilAix(t) + Bu(t)] (64)
=1
where
0 1 0 0
_ | fiawm O 0 0
Ar=08" 0 0
0 0 fo, O
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f1{x(t)

T T T T

(=}

o

—_

Grade of Membershp
[
[4)]

(=]

05 1 15 2 25 3 35 4
f2(x(t)

o

Fig. 10. System responses of the nonlinear mass-spring-damper system with ) )
parameter uncertainties (solid lines) and without parameter uncertainties (dofté@i 13. Membership functions of the TS-fuzzy plant model

lines). the two-inverted pendulum system: Upperle(fl (t) =
/’1\12(f1 (1)) = (=fu(z(®) + fimex) /(flnnx = fi,) (solid
“ne) #MS(fl z(t) = pu(fila (t))) = 1- :“Ml(fl z(t)))
(dotted Ilne) Lower: ,IlMl(fngz = ,llMS(fz(Tg( ) =
' ' ' ' (~Fo(23(t) 4 P/ (Fomax = foni)  (sOlid line),
Fong (f2(z3(t))) = [Il\lg(fz(mg(f))) =1- /lMl(fz x3(t))) (dotted line).
0.5
x 0 1 0 07
fiom O 0 0
A‘ e min
] S S S— : o o0 0 1
] 1 2 3 4 5 6 7 9 10
Time (Sec.) L 00 fopa 0.
] r 0 1 0 07
_ | fmee 00 0
05¢ 1 A=1707 0 0 1
g ol L 0 0 fo,.,. 0l
¥ o0 1 0 0
05 ] fi 0 0 0
A — o max
p e ! 0 0 0 1
0 1 2 3 4 5 6 7 9 10 0 0 f2 0
Time (Sec.) N nex
Hat (fi(z1(1))) % Hwmi (fa(ws(t)))
wi = —
Fig. 11. System responses of the nonlinear mass-spring-damper system under Z (pngs (Fr(za () X g (fa(za(£))))
larger ranges of parameter uncertainties. = ! 2
—f (t)+ f
g (Fi (21 (0)) = f} i ))f floss forp=1.2 and
max lnnn

Y2

Fig. 12. Two-inverted pendulum system.

P (filza(t)=1- #M}(ﬁ (z1(t))) forés =34

—f2(25(t)) + Frrax

pvs (f2(as(t))) = P fore =1,3, and
2 2
Srone = 7 Pnnss lain = T 7 Thnax

fomax = fimax  @NA fo 0= f1 -

The membership functions are shown in Fig. 13.
(c) AA, =0andAB,; =0,i=1,2,3,4.
(d) Afour-rule SGP fuzzy controller is designed under SDA.

IF f1 (1 (2)) is My andfa (235 (t)) is M
THENu(t) = G;x(t), j=1,2,3,4.  (65)

Rulej:
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The feedback gains are then chosen as 2 " ' ' ' ' ' ' '
G, = [—116.6410 —119.7827 —95.0589 —39.6463] 15F
| —97.0293 —40.0240 —260.5216 —180.2173 |
G, — [—116.6410 —119.7827 —95.0589 —39.6463] o
| —97.0293 —40.0240 —323.3534 —180.2173 | _ost
G, — —179.4729 —119.7827 —95.0589 —39.6463 g
‘ | —97.0293 —40.0240 —260.5216 —180.2173 | 2o T
and =
* 05 1
G. = [—179.4729 —119.7827 —95.0589 —39.6463] 4l |
| —97.0293 —40.0240 -323.3534 —180.2173 | .

so that A8 1
= 5 = = 2 L L . L L ;. L L "
H; =H, = H; = H, o 1 2 3 4 5 6 7 8 9 10
0 1 0 0 Time (Sec.)
| —6.4028 —5.9891  —4.7529 —1.9823
0 0 0 1.0000 | Fig. 14. Responses of;(t) (solid line) andzz(¢) (dotted line) of the
—4.8515 —=2.0012 -=13.5969 —=9.0109 two-inverted pendulum system under SDA with = 100 kg.
(e) Itcan be seen that the closed-loop system is a linear system.” 45 . , , . . : . i .
closed-loop system matrix is stable and has the eigenvalues
—1, -2, -3, and—4. Thus, we can conclude the closed-looj
system is asymptotically stable. nE | ]
The zero-input responses of the system under the initial conditior o
227 27 1" -'
0) = 0 - 0 £ 05f _
x(0) =5 15 §
|
are shown in Figs. 14 and 15, respectively. In this example, it can = N
seen that an uncertainty free nonlinear system will become a line ® 0} R
system under SDA. We now consider thdt > m is an unknown
value. GDA is employed to design a fuzzy controller with four rule
described as follows: 051 .
Rulej: IF x(t)is N] AND z3(t) is Nj
THEN u(t) = G;x(t), i =1,2,3,4. 66 -1 : . . . - — -
u(t) s(2), ' ’ (66) 0 1 2 3 4 5 6 7 8 9 10
The membership functions are designed as Time {Sec.)
—x1 (1) + a1 ) Fig. 15. Responses af(t) (solid line) andz4(¢) (dotted line) of the
NN/la(wl(f)) = " max  for3=1,2 and two-inverted pendulum system under SDA withi = 100 kg.
Tlimax ~ Tlmin
/”Ni(ml(t)) =1- /”N}(ml(t)) foré =3,4; 2 : : ‘ : : '
, _ —ws(t) 4 @0, __
,U,Ng (l‘g(f)) = m fOF & = 1, 3, and 1.5p B
//,Ng,(m;;(t)) =1- /”Né(m‘d(t)) for ¢ = 2.4. nl |
Table IV lists the stability analysis results with o5l

1.0159  0.0669  0.0431 —0.0210
0.0669  0.3157 —0.0226 —0.0395

x14t) and x3()
o

T 0.0431 -—0.0226  1.0833  0.0358 sl
—0.0210 -0.0395  0.0358  0.2546
By Lemma 1, as the values in the second column are all negative, it c. ar
be concluded that the closed-loop system is stable. Under the GDA, t )
zero-input responses of the system with= 10 kg under the initial St
conditions ol ) N X
. oor T () 1 2 3 41'|me(589c) 6 7 8 9 10
x(0) = - 0 - = 0
Fig. 16. Responses of,(t) (solid line) andxs(t) (dotted line) of the

are shown in Figs. 16 and 17, respectively. two-inverted pendulum system under GDA witth = 10 kg.
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1.5 T T T T

L
o
—

x2{t) and x4(t)
Q

S
»

L

Time (Sec.)

Fig. 17. Responses of,(¢) (solid line) andx.4(¢) (dotted line) of the
two-inverted pendulum system under GDA witl = 10 kg.

TABLE IV
STABILITY ANALYSIS RESULT OF THETWO-INVERTED PENDULUM SYSTEM
UNDER GDA
ij | pTH,T'] | p-TH,T"]
1,1 -0.4125 9.5679
1,2 -0.4045 9.5075
1,3 -0.4231 9.5544
1,4 ~0.5081 9.4917
2,1 ~0.2522 9.6496
2,2 -0.4125 9.5679
2,3 ~0.2751 9.6386
2,4 -0.4231 9.5544
3,1 —-0.0693 9.5888
3,2 —-0.0836 9.5314
3.3 ~0.4125 9.5679
3,4 -0.4045 9.5075
4,1 -0.0157 9.6675
4,2 -0.0693 9.5888
4,3 -0.2522 9.6496
4,4 ~0.4125 9.5679

VIl. CONCLUSION

multivariable nonlinear systems subject to small parameter uncertain-
ties. Application examples on stabilizing various uncertain nonlinear
systems have been given to illustrate the stabilizability and robustness
property of the proposed SGP fuzzy controllers. As a note here, the re-
sults of the SGP approach is the basis for the development of a more
general multiple-grid-point (MGP) fuzzy controller [50], [52], that can
tackle nonlinear plants subject to large parameter uncertainties.
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