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Nonlinear State Feedback Controller for Nonlinear Systems: Stability
Analysis and Design Based on Fuzzy Plant Model

H. K. Lam, F. H. F. Leung, and P. K. S. Tam

Abstract—This paper presents the stability analysis of a fuzzy-
model-based control system consisting of a nonlinear plant and
a nonlinear state feedback controller and the design of the non-
linear gains of the controller. The nonlinear plant is represented
by a fuzzy model having rules. A nonlinear state feedback con-
troller is designed to close the feedback loop. Under this design, the
stability condition is reduced to linear matrix inequalities. An ap-
plication example on stabilizing a mass-spring-damper system will
be given.

Index Terms—Nonlinear controller, nonlinear systems, stability
analysis.

I. INTRODUCTION

FUZZY control has been found capable of tackling ill-de-
fined nonlinear plants [1], [2]. However, without carrying

out an in-depth analysis, the design of the controller may come
with no guarantee of system stability. One common approach
of analysis is based on a fuzzy plant model [3], [7], which ex-
presses a nonlinear system as a weighted sum of some linear
subsystems. Under this structure, some linear control techniques
and stability analysis methods can be applied. Some authors pro-
posed a fuzzy controller to control this class of nonlinear sys-
tems. This fuzzy controller is a weighted sum of some linear
state feedback controllers [4], [6], [8]–[10], [13]. A linear
matrix inequality (LMI) problem was derived in [4], [6], and
[8]–[10], where and are the numbers of fuzzy rules of the
fuzzy plant model and the fuzzy controller, respectively. The
LMI problem can be solved by using some LMI tools, such as
MATLAB, numerically [12]. In the case where , and the
premises of the fuzzy plant model and fuzzy controller are the
same, LMI conditions were derived in [6] and [8]–[10].
In this paper, we propose a design method that can further re-
duce the number of LMI conditions to.

The contributions of this paper are threefold. First, we
propose a nonlinear state feedback controller [11] to control
the nonlinear plant. The only conceptual difference between
the conventional fuzzy controller and the proposed nonlinear
state feedback controller is that the grades of membership of
the former controller are now regarded as nonlinear gains that
can take positive or negative values. Second, by introducing the
signed nonlinear gains, the number of LMI stability conditions
is reduced to , which is independent of the number of rules
of the controller. As the number of LMI conditions is reduced,
the chance of finding the solution will be increased. Third, we
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provide a methodology for designing the nonlinear gains of the
proposed nonlinear state feedback controller. An application
example on stabilizing a nonlinear mass-spring-damper system
will be given to verify the results of this paper.

II. FUZZY PLANT MODEL AND NONLINEAR STATE FEEDBACK

CONTROLLER

We consider a multivariable nonlinear control system with
all system states assumed to be accessible. The plant can be
represented by a fuzzy plant model. A nonlinear state feedback
controller is to be designed to close the feedback loop.

A. Fuzzy Plant Model

Let be the number of fuzzy rules describing the nonlinear
plant [3], [7]. The th rule is of the following format:

Rule IF is and and is

THEN (1)

where is a fuzzy term of rule corresponding to the state
and

are the system matrix and input matrix, respectively;
is the system state vector; and is

the input vector. The system dynamics is described by

(2)

where

for all (3)

is a known nonlinear function of and (4) shown at the
bottom of the next page. is the grade of member-
ship of the fuzzy term .

B. Nonlinear State Feedback Controller

A nonlinear state feedback controller similar to a fuzzy con-
troller with rules is to be designed for the plant. The output of
the nonlinear state feedback controller is given by

(5)

where , is a feedback gain vector
to be designed

(6)
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is a nonlinear gain function of defined as

(7)

and is to be designed.

III. STABILITY ANALYSIS AND DESIGN

In this section, stability of the nonlinear control system
formed by the fuzzy plant model and nonlinear state feedback
controller connected in closed-loop will be investigated.
A design methodology of , will
be provided under the consideration of the closed-loop
system stability. For simplicity, we write as
and as . From (2) and (5) and the property
that , the
nonlinear control system becomes

(8)

where

(9)

To investigate the stability of (8), we employ the following Lya-
punov function in quadratic form:

(10)

where denotes the transpose of a vector or matrix and
is a symmetric positive definite matrix. Differentiating

(10), we have

(11)

From (8) and (11), we have

(12)

Let

(13)

From (12)

(14)

We design the nonlinear gains in (7) as
shown in (15) and (16) at the bottom of the next
page. From (7), (15), and (16), it can be seen that

. From (14)–(16) and
considering the case that ,
we have

(17)

We choose

for (18)

Then when and
when . From (17) and

(18) and as
, we can conclude that

(19)

Equality holds when . Next, we consider the case
that . From (18), as

only when , it implies
that occurs only when

. Hence, we can conclude that the system is asymptot-
ically stable. The analysis can be summarized by the following
lemma.

(4)
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Lemma 1: The nonlinear control system of (8) is guaranteed
to be asymptotically stable if the following LMI conditions
are satisfied:

for all

and the nonlinear gains of the controller are designed as shown
in (15) and (16).

From Lemma 1, we can see that the number of LMI condi-
tions is . It should be noted that the LMI conditions in Lemma
1 is actually a subset of the LMI conditions corresponding to
(12). Hence, if the LMIs derived from (12) are satisfied, so are
the LMIs in Lemma 1. Our approach does not result in more
conservative IMI conditions. The procedure for finding the non-
linear state feedback controller can be summarized as follows.

Step I) Obtain the mathematical model of the nonlinear
plant to be controlled.

Step II) Obtain the fuzzy plant model for the system stated
in Step I) by means of a fuzzy modeling method as
that proposed in [3] and [7].

Step III) Choose the gains of the nonlinear state feed-
back controller.

Step IV) Find by solving the linear matrix inequalities
of (18). If cannot be found, go back to Step III)
and choose other gains for the nonlinear state
feedback controller.

Step V) Design the nonlinear gains of the nonlinear state
feedback controller based on Lemma 1.

IV. A PPLICATION EXAMPLE

An application example based on a nonlinear
mass-spring-damper system [5] is given in this section to
illustrate the design procedure of the nonlinear state feedback
controller.

Step I) Fig. 1 shows the diagram of a mass-spring-damper
system. Its dynamic equation is given by

(20)

where is mass; is force; is spring
nonlinearity; is damper nonlinearity;
and is input nonlinearity. Let

(21)

Fig. 1. A mass-spring-damper system.

The operating range of the states is assumed to be
within the interval [ 1.5, 1.5]. (The fuzzy plant
model derived later will not be valid when the
system states are outside this interval.) The pa-
rameters are chosen as follows:

and .
The system then becomes

(22)

Step II) The nonlinear plant can be represented by a fuzzy
model. The th rules are given by

Rule IF is AND is

THEN

(23)

where the membership functions of
, as shown in Figs. 2 and 3,

respectively, are given by

(24)

if

otherwise

(15)

if

otherwise

for (16)
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Fig. 2. Membership functions of the fuzzy plant model of the nonlinear
mass-spring-damper system:� (x) = � (x) = 1 � (x =2:25) (solid
line),� (x) = � (x) = (x =2:25) (dotted line).

Fig. 3. Membership functions of the fuzzy plant model of the nonlinear
mass-spring-damper system:� ( _x) = � ( _x) = 1 � ( _x =6:75) (solid
line),� ( _x) = � ( _x) = ( _x =6:75) (dotted line).

(Details about the derivation of the fuzzy plant
model for the mass-spring-damper system can be
found in [5].)

Fig. 4. Responses ofx (t) of the mass-spring-damper system controlled by
a linear state feedback controller (dotted line), the proposed nonlinear state
feedback controller (solid line), andu(t) = 0 (dashed line).

Fig. 5. Responses ofx (t) of the mass-spring-damper system controlled by
a linear state feedback controller (dotted line), the proposed nonlinear state
feedback controller (solid line), andu(t) = 0 (dashed line).

Step III) A nonlinear state feedback controller similar to a
two-rule fuzzy controller is designed for the plant
of (23). The control law is given by

(25)

The feedback gains are arbitrarily chosen
as and

. As a result, we have
, and their eigenvalues are2 2.

Step IV) We choose such that

for .
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if

otherwise

if

otherwise

Fig. 6. Control signals ofu(t) given by the linear state feedback controller
(dotted line) and the proposed nonlinear state feedback controller (solid line).

Step V) The nonlinear gains of the nonlinear state feed-
back controller are chosen according to Lemma 1,
as shown in the equation at the top of the page.

Figs. 4 and 5 show the system responses of and
of the mass-spring-damper system under the control of the non-
linear state feedback controller (solid lines) with the initial con-
dition . The responses are compared with those
from a linear state feedback controller with
(dotted lines). The open-loop system responses (dashed lines)
are also displayed in Figs. 4 and 5, respectively. We can see
that the responses given by the nonlinear state feedback con-
troller are better. Furthermore, the closed-loop responses are
much better than the open-loop responses. Fig. 6 shows the con-
trol signals given by the nonlinear state feedback controller and
the linear state feedback controller.

V. CONCLUSION

A nonlinear state feedback controller has been proposed for
nonlinear systems represented by a-rule fuzzy plant model.

The system stability of this fuzzy control system has been
proven, which requires the satisfaction ofLMI conditions.
A design methodology of the nonlinear gains of the nonlinear
state feedback controller has been given under the considera-
tion of the system stability. An application example has been
presented to show the merits and the design procedures of the
proposed nonlinear state feedback controller.
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