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Nonlinear State Feedback Controller for Nonlinear Systems: Stability
Analysis and Design Based on Fuzzy Plant Model

H. K. Lam, F. H. F. Leung, and P. K. S. Tam

Abstract—This paper presents the stability analysis of a fuzzy- provide a methodology for designing the nonlinear gains of the
model-based control system consisting of a nonlinear plant and proposed nonlinear state feedback controller. An application
a nonlinear state feedback controller and the design of the non- example on stabilizing a nonlinear mass-spring-damper system

linear gains of the controller. The nonlinear plant is represented ill be ai ¢ ifv th Its of thi
by a fuzzy model havingp rules. A nonlinear state feedback con- W'l P€ given 1o verify the results of this paper.

troller is designed to close the feedback loop. Under this design, the

stability condition is reduced top linear matrix inequalities. Anap-  Il. Fuzzy PLANT MODEL AND NONLINEAR STATE FEEDBACK
plication example on stabilizing a mass-spring-damper system will CONTROLLER
be given.

We consider a multivariable nonlinear control system with
all system states assumed to be accessible. The plant can be
represented by a fuzzy plant model. A nonlinear state feedback
controller is to be designed to close the feedback loop.

Index Terms—Nonlinear controller, nonlinear systems, stability
analysis.

I. INTRODUCTION

UZZY control has been found capable of tackling iII-deA' Fuzzy Plant Model

fined nonlinear plants [1], [2]. However, without carrying Let p be the number of fuzzy rules describing the nonlinear
out an in-depth analysis, the design of the controller may corp@nt [3], [7]. Theith rule is of the following format:
with no guarantee of system stability. One common approach . ) i ) i
of analysis is based on a fuzzy plant model [3], [7], which ex- Rule: IF z,(t) is My and... andzn(t) is M,
presses a nonlinear system as a weighted sum of some linear THEN x(t) = A;x(t) + B;u(t) 1)
subsystems. Under this structure, some linear control techniques . : ,
and stability analysis methods can be applied. Some authors m/%l_ereMk Is a fuzzy tgrm of rule correspon(ililg to the state
posed a fuzzy controller to control this class of nonlinear sy%—’;‘ffz;lk =L2...,ni=12...,pA; ¢ " andB, ¢ _
tems. This fuzzy controller is a weighted sum of some line ari;{'? system matrix and mpu.t matrix, reif)xelc'_nvely,
state feedback controllers [4], [6], [8]-[10], [13].#x ¢ linear X(t)_ €R is the system state ve(_:tor_, and) € R IS
matrix inequality (LMI) problem was derived in [4], [6], andthe input vector. The system dynamics is described by

[8]-[10], wherep and¢ are the numbers of fuzzy rules of the P
fuzzy plant model and the fuzzy controller, respectively. The x(t) = Zwi(x(t))(Aix(t) + B;u(t)) )
LMI problem can be solved by using some LMI tools, such as i=1

MATLAB, numerically [12]. In the case wherg = ¢, and the \yhere

premises of the fuzzy plant model and fuzzy controller are the »

samep(p—+1) LMI conditions were derived in [6] and [8]-[10]. ‘ _ ‘ P

In this paper, we propose a design method that can further re- ;w’(x(t)) =1 wilx()elo 1] foralli  (3)
duce the number of LMI conditions ta ;

The contributions of this paper are threefold. First, wi§ @ known nonlinear function ak(¢) and (4) shown at the
propose a nonlinear state feedback controller [11] to contf@pttom of the next page:,,; (xx(t)) is the grade of member-
the nonlinear plant. The only conceptual difference betweship of the fuzzy term\f;.
the conventional fuzzy controller and the proposed nonlinear )
state feedback controller is that the grades of membershipEbf Nonlinear State Feedback Controller
the former controller are now regarded as nonlinear gains thaiA nonlinear state feedback controller similar to a fuzzy con-
can take positive or negative values. Second, by introducing tieller with ¢ rules is to be designed for the plant. The output of
signed nonlinear gains, the number of LMI stability conditionthe nonlinear state feedback controller is given by
is reduced top, which is independent of the number of rules .
of the controlle_r. As the numbe_r of L_MI co_nditions is reqluced, u(t) = Z m; (x(£))Gyx(t) (5)
the chance of finding the solution will be increased. Third, we ot
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m;(x(t)) is a nonlinear gain function of(¢) defined as Let
i (x(t i =— (HEP +PH,,) . 13
m;(x(t)) = > a J‘(u( ,k((i)( ) @) Qi; = — (H;;P + PH;;) (13)
RN From (12)
andp - (x(t)) is to be designed.
V———ZszmJ ) Qiyx(t)
[ll. STABILITY ANALYSIS AND DESIGN i=1 j=1
In this section, stability of the nonlinear control system _ _lim, X(t)sz:wiQixX(t) _ (14)
formed by the fuzzy plant model and nonlinear state feedback ! ; !

controller connected in closed-loop will be investigate

A design methodology ofn;(x(1)), j_ = L2,...c wil shown in (15) and (16) at the bottom of the next
be provided under the consideration of the closed lo%%ge From (7), (15), and (16), it can be seen that
system stability. For simplicity, we writev;(x(t)) as w; > ' m; = Zc’ IMNJ'( ) = 1. From (14)—(16) and
and m;(x(t)) as m,. From (2) and (5) and the property J p

J conS|der|ng the case that X ieg Wi Quyx(t 0,
that 350w = 355 my = 0L, 35 wim; = 1, the we have BLjos () s X #

e design the nonllnear gaingni (x(t)) in (7) as

nonlinear control system becomes .
g P < 5o x() LI, wiQux(?) )
P ° =75 c TN 0.
x(t) = 3w <Aix<t> +B Y ijjx@)) 2\ 2 DT 2y i Q)
i=1 j=1 r
p e X X(t)T Z wiQilx(t)
= Z meJ(AZ + BiGj)X(t) ‘ 5
i=1 j=1 Z =1 win‘jX(t))
p e E |x Efz w; Qi x(t)]
= Z Z meJH“X(t) (8) Jc ! T P ! !
i=1 j=1 < L 1 2= X)) 20 wiQax(2)
where = 20T T (T o, wiQux(D)]
p
Hij = Ai+B,G;. © x %67 3w, Qux(?). (17)
To investigate the stability of (8), we employ the following Lya- ‘
punov function in quadratic form: We choose
V= EX( )TPX( ) (10) Qi1>0 fori=1,2,...,p. (18)

where(-)T denotes the transpose of a vector or matrix Bnd Theg x(t)T 32 wiQux(t) > 0 whenx(f) # 0 and
Rnn is a symmetric positive definite matrix. Differentiating®(!)" 2i—1 wiQax(f) = 0 whenx(#) = 0. From (17) and

(10), we have (18) and asl — (37, x(#)" 220, wiQux(1)/(5, |

x()T 27 w;Qu; x(t)[) > 0, we can conclude that

: _1 . T T .
V= RROTROEXOTRRO). @D (S x®T T, wiQux()
From (8) and (11), we have = 9 E;‘, xBTS w Qux(t)]
T
P c
(ZZwﬂnJH“X(t)) PX(t) X Zw7 Q71X )— . (19)
=1 j=1
! Equality holds Whenx = 0. Next, we consider the case
P that >°0_, [x(0)" 30_, wiQix(t)] = 0. From (18), as
x(0)"P Y Y wim H;x(t) x(t)T P, wiQilx( ) = 0 only whenx(t) = 0, it implies
i=1j=1 that 325, [x()" 220, wiQiyx(t)] = 0 occurs only when
x(t) = 0. Hence, we can conclude that the system is asymptot-
——— Z Z wim X HTP +PH,;) x(t). (12) ically stable. The analysis can be summarized by the following
lemma.
=1 j=1

wz(x(t)) _ 12975 (xl(t)) X Hng (-TQ) X +o e X pupgi (xn) . @
Z?:l (wa(xl(t)) x MA423'(x2(t)) X oee X N]\{%(xn(t))>
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Lemma 1: The nonlinear control system of (8) is guaranteed
to be asymptotically stable if the following LMI conditions
are satisfied:

Qi =—- (H4YP+PH; ) <0 foralli=12,...,p

and the nonlinear gains of the controller are designed as shown
in (15) and (16).
From Lemma 1, we can see that the number of LMI condi-
tions isp. It should be noted that the LMI conditions in Lemma
1 is actually a subset of the LMI conditions corresponding to
(12). Hence, if the LMIs derived from (12) are satisfied, so are
the LMIs in Lemma 1. Our approach does not result in more
conservative IMI conditions. The procedure for finding the nof5g 1. A mass-spring-damper system.
linear state feedback controller can be summarized as follows.
Step ) Obtain the mathematical model of the nonlinear
plant to be controlled.
Step II) Obtain the fuzzy plant model for the system stated
in Step 1) by means of a fuzzy modeling method as

The operating range of the states is assumed to be
within the interval 1.5, 1.5]. (The fuzzy plant
model derived later will not be valid when the
system states are outside this interval.) The pa-

that proposed in [3] and [7].

Step Ill) Choose the gaind;) of the nonlinear state feed-
back controller.

Step IV) FindP by solving thep linear matrix inequalities
of (18). If P cannot be found, go back to Step IIl)
and choose other gaifi&s ;) for the nonlinear state
feedback controller.

Step V) Design the nonlinear gains of the nonlinear state
feedback controller based on Lemma 1. Step I1)

IV. APPLICATION EXAMPLE

An application example based on a nonlinear
mass-spring-damper system [5] is given in this section to
illustrate the design procedure of the nonlinear state feedback
controller.

Stepl)  Fig. 1 shows the diagram of a mass-spring-damper
system. Its dynamic equation is given by

rameters are chosen as follows: = 1.0,¢; =
0,c0 = 1,e3 = 0.01,c4 = 0.1, andc;, = 0.13.
The system then becomes

= —&(t) — 0.01x(t) — 0.1x(t)®
+ (1.4387 — 0.132()H)u(t).

#(t)
(22)

The nonlinear plant can be represented by a fuzzy

model. Theith rules are given by

Rulei: IF z(t) is M; AND i(t) is M}
THEN x(t) = A;x(t) + B,u(t),

i=1,2,34 (23)

where the membership functions .,k
1,2,¢ = 1,2,3,4, as shown in Figs. 2 and 3,
respectively, are given by

Mi(t) + g(x(8), (1) + f(x(8)) = p(z(B)u®)  (20)
where M is mass;u is force; f(z(t)) is spring o (2(8) = e (z(t) =1 — z(t)”
nonlinearity;g(x(t), £(t)) is damper nonlinearity; ' ' 22-25
and¢(x(t)) is input nonlinearity. Let povs (2(8)) = paga (2(2)) = 3’72(;)r
9(@(£), (1)) = cra(t) + cai (1) g ((8) = ppgz @ (8) = 1= T2
F(@(t)) = esalt) + caa(t)? s
(1) = 1+ esi(t)2. (21) paag (E(8) = oy (2(8)) = = (24)
([, Timx® SlwQux)\ S| o
e (x(8) = (1 TS RIS, WiQin(t)|> 2 lt) 2 wiQu(t) #0 5
{ %, otherwise
([ x(®)" 37 wiQuyx(t) £ S TS wiQux()] £ 0
piavs (x(1)) = § 2=t KO 2y wiQux(O | ; " ; Qlt) # forj =2,3,....c (16)
%, otherwise
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Fig. 2. Membership functions of the fuzzy plant model of the nonlinedrig. 4. Responses of; (t) of the mass-spring-damper system controlled by
mass-spring-damper systep;, 1 () = p,,2(2) = 1 — (#2/2.25) (solid a linear state feedback controller (dotted line), the proposed nonlinear state

e, 373 () = o503 (2) = (x2/2.25) (dotted line). feedback controller (solid line), andt) = 0 (dashed line).
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Fig. 3. Membership functions of the fuzzy plant model of the nonlinedrig- 5. Responses of:(t) of the mass-spring-damper system controlled by
mass-spring-damper systepn;,1 (+) = p,,3(i) = 1 — (42/6.75) (solid @ linear state feedback controller (dotted line), the proposed nonlinear state

€, 2 (i) = o503 (i) = (2 /6.75) (dotted line).

Step Il
<= [20] - [+69] "
Ar=Aqr = —00.01 —11}
As= A= :—0?235 —11}
B =B, = :1.4?587}
Bz =B.= :0.5%13} '

(Details about the derivation of the fuzzy plant Step IV)
model for the mass-spring-damper system can be
found in [5].)

feedback controller (solid line), andt) = 0 (dashed line).

A nonlinear state feedback controller similar to a
two-rule fuzzy controller is designed for the plant
of (23). The control law is given by

u(t) = 3 my(x(£)Gx(1). (25)

The feedback gains are arbitrarily chosen
as G; = [-2.7732 —2.0852] and G2 =
[-6.7076 —5.3447]. As a result, we have
H,; = H,y, and their eigenvalues are2, —2.

We chooseP = [(1)1222 %’;;Sg] such that

Qi1 = —(HLP+PH,;) < 0fori=1,2,3,4.
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¢ 2 T N4 2 :
Lox(t = wix(t .
1_ 221—2 () 21—1 Qux(*) . if Z x(t)TZwiQijx(t) #0
pn (x(t) = 2 =1 ‘X(t)T 2im1 wiQ”X(t)‘ =t =
\ %’ otherwise
[ x()T S wiQux(t S s
. () 21—14 2x(1) . if Z x(t)TZwiQin(t) #0
() = § i O Sy mQuxtl] =S
17 otherwise
\ 2
1 . ’ r ‘ : ' : , : The system stability of this fuzzy control system has been

proven, which requires the satisfaction @fLMI conditions.

A design methodology of the nonlinear gains of the nonlinear

1 state feedback controller has been given under the considera-
tion of the system stability. An application example has been
presented to show the merits and the design procedures of the
proposed nonlinear state feedback controller.

u(t)
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