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Abstract—This paper presents a neural network with a novel
neuron model. In this model, the neuron has two activation func-
tions and exhibits a node-to-node relationship in the hidden layer.
This neural network provides better performance than a tradi-
tional feedforward neural network, and fewer hidden nodes are
needed. The parameters of the proposed neural network are tuned
by a genetic algorithm with arithmetic crossover and nonuniform
mutation. Some applications are given to show the merits of the
proposed neural network.

Index Terms—Genetic algorithm (GA), neural network,
short-term load forecasting.

I. INTRODUCTION

NEURAL networks are widely applied in areas such as pre-
diction [19], system modeling, and control [18]. Owing

to its particular structure, a neural network is good at learning
[2] using some algorithms such as a genetic algorithm (GA)
[1] and backpropagation [2]. Traditionally, a feedforward neural
network [24] has three layers (input, hidden, and output layers)
of nodes connected in a layer-to-layer manner.

The GA is widely applied in optimization problems [1]–[7]
where the number of parameters is large and the analytical
global solutions are difficult to obtain. It has been applied in
different areas such as fuzzy control [20], path planning [21],
greenhouse climate control [22], modeling and classification
[23], etc.

A novel neural network model is proposed in this paper. Two
activation functions are used in the neuron and a node-to-node
relationship is proposed in the hidden layer. This network model
is found to be able to give better performance than the tradi-
tional feedforward neural network [1]–[3]. A GA with arith-
metic crossover and nonuniform mutation can help in tuning
the parameters of the proposed network. Numerical examples
(three-inputsXOR problem and sunspot number forecasting) are
used to test the proposed network and good results are obtained.
Two applications are also given, which are short-term daily load
forecasting and pattern recognition.

This paper is organized as follows. Section II introduces
the proposed neural network. Training of the neural network
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Fig. 1. Model of the proposed neuron.

with the GA is presented in Section III. Numerical examples
are given in Section IV. Applications on short-term daily load
forecasting and pattern recognition realized by the proposed
GA-based neural network are presented in Section V. A
conclusion is drawn in Section VI.

II. NEURAL NETWORK MODEL

Fig. 1 shows the proposed neuron. It has two activation func-
tions: static activation function (SAF) and dynamic activation
function (DAF) that govern the input–output relationships of
the neuron. For the SAF, the parameters are fixed and its output
depends on the input of the neuron. For the DAF, the parame-
ters depend on the outputs of other neurons and its SAF. With
this proposed neuron, the connection of the proposed neural net-
work is shown in Fig. 2, which is a three-layer neural network.
A node-to-node relationship is introduced in the hidden layer.
Compared to the traditional feedforward neural network [24],
the proposed neural network can offer better performance. The
merits of the proposed neural network will be shown later in the
paper.

A. Proposed Neuron Model

We consider the SAF first. Let be the synaptic connection
weight from the th input node to the th neuron; the output

of the th neuron’s SAF is given by

(1)
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Fig. 2. Connection of the proposed neural network.

where denotes the number of inputs and is the th
static activation function

(2)

where and are the static mean and static standard devia-
tion for the th SAF. The parameters ( and ) are fixed after
the training processing. By using the proposed activation func-
tion in (2), the output value ranges from1 to 1. The shape of
the proposed activation function is shown in Fig. 3. In Fig. 3(a),
the effect of the mean value to the activation function is shown.
The standard deviation of the function is fixed at 0.2, and the
mean value is chosen from 0.4 to 0.4. In Fig. 3(b), the ef-
fect of the standard deviation to the activation function is shown.
The mean value is fixed at 0, and the standard deviation
is chosen from 0.1 to 0.5. It can be observed from these two
figures that as , and as

.
For the DAF, the neuron output of the th neuron is defined

as

(3)

(a)

(b)

Fig. 3. Sample activation functions of the proposed neuron. (a)� = 0:2. (b)
m = 0.

where is the th DAF, which is given by

if

otherwise,

(4)

where

(5)

(6)

and are the dynamic mean and dynamic standard devia-
tion for the th DAF; and represent the SAF’s output
of the th and th neurons, respectively; denotes
the weight of the link between the th node and theth node,
and denotes the weight of the link between the th
node and the th node. It should be noted from Fig. 1 that if

, is equal to , and if , is equal
to . Unlike the SAF, the DAF is dynamic as its parameters
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depend on the outputs of the th and th neurons. Re-
ferring to (1)–(6), the input–output relationship of the proposed
neuron is as follows:

(7)

B. Connection of the Proposed Neural Network

The proposed neural network has three layers withnodes
in the input layer, nodes in the hidden layer, and nodes
in the output layer. In the hidden layer, the neuron model pre-
sented in the previous section is employed. A node-to-node re-
lationship is introduced in the hidden layer. In the output layer,
a static activation function is employed, which is given by

(8)

From (7), we have

(9)
where , ; , denotes the
weight of the link between theth hidden and theth output
nodes; denotes the activation function of the output
neuron

(10)
where and are the mean and the standard deviation of the
output node activation function, respectively. The parameters of
the proposed neural network can be trained by the GA.

III. T RAINING WITH GA

In this section, the proposed neural network is employed to
learn the input–output relationship of an application using the
GA. This GA is implemented with arithmetic crossover and
nonuniform mutation [3]. A population of chromosomesis
initialized and then evolves. First, two parents are selected from

by the method of spinning the roulette wheel [3]. Then, a
new offspring is generated from these parents using crossover
and mutation operations, which are governed by the probabili-
ties of crossover and mutation, respectively. These probabilities
are chosen by trial and error through experiments for good per-
formance. The new population thus generated replaces the cur-
rent population. The above procedures are repeated until a cer-
tain termination condition is satisfied. The termination condi-
tion may be that the algorithm stops when a predefined number
of generations has been processed.

Let the input–output relationship of an application be de-
scribed by

(11)

where is the desired output
corresponding to the input of
an unknown nonlinear function and denotes the number
of input–output data pairs. The fitness function is defined as

(12)

(13)

The objective is to maximize the fitness value of
(12) using the GA by setting the chromosome to be

for all , , . In this
paper, , , , , ,
and . The range of the fitness function of
(12) is [0, 1]. By using the proposed GA-based neural network,
a well-trained neural network with respect to the fitness value
can be obtained.

IV. EXAMPLES

In this section, two examples are given: theXOR problem and
the forecasting of sunspot number.

A. XORProblem

The three-inputXOR function, which is not linearly separable,
has the following input–output relationship:

(14)

The three inputs of the proposed neural network are defined as
, , and is the network output. The number

of hidden nodes ( ) is set at three. Referring to (9), the pro-
posed neural network used for the three-inputsXOR classifica-
tion problem is governed by

(15)
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TABLE I
RESULTS OF THEPROPOSEDNEURAL NETWORK AND THE TRADITIONAL

NEURAL NETWORK FORTHREE-INPUTSXOR CLASSIFICATION PROBLEM

AFTER 1000 ITERATIONS

The fitness function is defined as follows:

(16)

(17)

The GA is employed to tune the parameters of the proposed
neural network of (15). The objective is to maximize the fit-
ness function of (16). The chromosomes used for the GA are

for all and . The initial
values of the parameters of the neural network are randomly
generated. For comparison purpose, a traditional feedforward
neural network (three-input–single-output) trained by the GA is
also used to solve the three-inputXOR classification problem.
The number of hidden node of the traditional neural network is
five. (By using five hidden nodes for the traditional neural net-
work, the number of parameters to be tuned is the same as that
of the proposed neural network, which is 26.) The population
size used for the GA is ten and the number of iterations to train
the neural network is 1000 for both networks. The probabilities
of crossover and mutation for the GA are set at 0.8 and 0.35 re-
spectively, which are chosen by trial and error. The results of the
proposed and traditional neural networks are tabulated in Table I
and shown in Fig. 4. It can be seen that the performance of the
proposed neural network is better.

B. Forecasting the Sunspot Number

The sunspot numbers from 1700 to 1980 exhibit nonlinear,
nonstationary, and non-Gaussian cycles that are difficult to
model and predict. We use the proposed neural network
(three-input–single-output) for the sunspot number forecasting.
The inputs of the proposed neural network are defined as

, , and ,
where denotes the year and is the sunspot numbers at
the year . The sunspot numbers of the first 180 years (i.e.,

) are used to train the proposed neural
network. Referring to (9), the proposed neural network used
for the sunspot forecasting is governed by

(18)
The fitness function is defined as follows:

(19)

(20)

(a)

(b)

Fig. 4. Results of theXOR problem. (a) Fitness values obtained from the
proposed (solid line) and the traditional neural networks (dotted line) for 1000
iterations. (b) The output patterns obtained by the proposed (dotted line with
“�” marks) and the traditional neural networks (dotted line with “�” marks),
as compared with the desired output (solid line with “�” marks).

The GA is employed to tune the parameters of the proposed
neural network of (18). The result is again compared with that
from a traditional three-input–single-output feedforward neural
network. The numbers of hidden nodes of the proposed net-
work and the traditional network are three and nine, respec-
tively, which are chosen by trial and error through experiments
for good performance. The population size used for the GA is
ten and the number of iterations to train the neural network is
1000. The probability of crossover is set at 0.8 for both net-
works. The probability of mutation is set at 0.3 and 0.25 for the
proposed and the traditional networks, respectively. The tuned
neural networks are used to forecast the sunspot number of the
years 1885–1979. The fitness value, training error [governed by
(20)], and the forecasting error [governed by

] are tabulated in Table II. The proposed neural net-
work once again performs better.

V. APPLICATIONS

In this section, two application examples are given, which
are short-term daily home electric load forecasting and pattern
recognition.
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TABLE II
RESULTS OF THEPROPOSEDNEURAL NETWORK AND THE TRADITIONAL

NEURAL NETWORK FORFORECASTING OF THESUNSPOTNUMBER

AFTER 1000 ITERATIONS

A. Short-Term Daily Home Electric Load Forecasting

In the intelligent home system [8], the ac power line network
is used not only for supplying power, but also serves as the data
communication channel for electrical appliances. With this ac
power line data network, short-term load forecasting can be
realized. An accurate load forecasting can bring the following
benefits: 1) increasing the reliability [4] of the ac power line data
network and 2) optimizing electric load scheduling. Artificial
neural network have been considered as very promising tools
for short-term electric load forecasting [9]–[17]. However, the
gradient-descent (GD) algorithms for parameters training of the
feedforward neural networks suffer from the common problems
of convergence to local minima and sensitivity to initial values
of the parameters. Global search techniques such as the GA may
solve these problems.

The idea of the daily electric load forecasting is to construct
seven multi-input–multi-output neural networks, one for each
day of the week. Each network has 24 outputs representing the
expected hourly load for a day. One important job in designing
the forecasting system is the selection of the input variables.
In this electric load forecasting system, we have three main
kinds of input variables: 1) historical data of loads: hourly loads
of the previous day were collected and used as historical load
inputs; these data reflect the family habit of consuming power;
2) temperature inputs: the average temperature of the previous
day and the present day are used as two inputs in this forecasting
system; and 3) rainfall index inputs: the average rainfall indexes
of the previous day and the present day are used as two inputs in
this forecasting system. The range of the rainfall index is from 0
(no rain) to 1 (heavy rain).

One network serves one day type (from Monday to Sunday).
Eachneuralnetworkhas28inputsand24outputs.Thefirst24input
nodes ( ) represent the previous 24 hourly loads and
are denoted by , where . Node
25 ( ) and node 26 ( ) represent the average temperatures of
the previous day and present day, respectively. Node 27 () and
node28( )representtheaveragerainfall indexesoftheprevious
day and present day, respectively. The output layer consists of 24
outputnodes that represent the forecasted24hourly loadsofaday
and are denoted by , . Data of 12
weeks (week 1–week 12) for learning and data of 2 weeks (week
13–week 14) for testing are prepared. Referring to (9), the pro-
posed neural network used for the daily electric load forecasting
is governed by

(21)

TABLE III
RESULTS OF THEPROPOSEDNEURAL NETWORK AND THE TRADITIONAL

NEURAL NETWORK FORDAILY ELECTRIC LOAD FORECASTING FOR

WEDNESDAY

TABLE IV
RESULTS OF THEPROPOSEDNEURAL NETWORK AND THE TRADITIONAL

NEURAL NETWORK FORDAILY ELECTRIC LOAD FORECASTING FORSUNDAY

TABLE V
TRAINING AND FORECASTINGERRORS INTERMS OFMAPE FOR DAILY

ELECTRIC LOAD FORECASTING FORWEDNESDAY

Thenumber ofhidden nodes () is changed from three tonine in
ordertotestthelearningperformance.TheGAisemployedtotune
the parameters of the neural network of (21). The fitness function
is defined as follows:

(22)

(23)

The value oferr indicates the mean absolute percentage error
(MAPE) of the forecasting result. The population size is ten. The
number of the iterations to train the proposed neural network is
2000.Theresultsare tabulated inTables IIIand IVforWednesday
and Sunday, respectively. The fitness value and the number of
parameters of the network are shown. We can observe that the
performance of the proposed neural network is better than the
traditional one. Tables V and VI show the average training error
from week 1 to week 12 in terms of MAPE and the average
forecasting error from week 13 to week 14 in terms of MAPE on
Wednesday and Sunday, respectively. The best training errors
are 1.7829 and 2.0776 for Wednesday and Sunday, respectively.
These imply 24.0% and 32% improvements, respectively, over
the traditional neural network. The best forecasting errors are
1.9365 and 1.9120 for Wednesday and Sunday, respectively.
These imply 31.6% and 30.9% improvements. Fig. 5 shows the
resultsof the dailyelectric load forecasting onSunday (week 13).

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on July 7, 2009 at 00:43 from IEEE Xplore.  Restrictions apply.



798 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 50, NO. 4, AUGUST 2003

TABLE VI
TRAINING AND FORECASTINGERRORS INTERMS OFMAPE FOR DAILY

ELECTRIC LOAD FORECASTING FORSUNDAY

Fig. 5. Daily electric load forecast results on Sunday (week 13) obtained by
the proposed neural network (dotted line) and the traditional neural network
(dashed line), as compared with the actual load (solid line).

We can see that the forecasting result using the proposed neural
network is better and good forecasting is obtained.

B. Pattern Recognition

An application of pattern recognition by the proposed
neural network will be presented in this section. Every point
on a two-dimensional plane is characterized by a number. A
ten-input–three-output neural network is used. The ten inputs
nodes, , , are the numbers corresponding
to ten uniformly sampled points of the input pattern. Three
patterns are to be recognized: rectangle, triangle, and straight
line. We use 300 sets of tem sample points for each pattern
to train the neural network. Hence, we have 900 (3003)
sets of data for training. The three outputs ,
are the output value of each pattern. A larger value of
implies that the input pattern matches more closely the defined
class. For example, a larger implies that the input pattern
more likely is a rectangle. Referring to (9), the proposed neural
network used for the pattern recognition is governed by

(24)

The GA is employed to tune the parameters of the proposed
neural network of (24). The fitness function is defined as

TABLE VII
RESULTS OF THEPROPOSEDNEURAL NETWORK AND THE TRADITIONAL

NEURAL NETWORK FORPATTERN RECOGNITION

follows:

(25)

(26)

The value oferr indicates the mean square error (MSE) of the
recognition system. The initial values of the neural network pa-
rameters are randomly generated. For comparison, a traditional
feedforward neural network (ten-inputs–three-outputs) trained
by the GA is also used to recognize the patterns. The number of
hidden nodes of the proposed network () and the traditional
network are seven and 16, respectively, which are chosen by trial
and error through experiments for good performance. The popu-
lation size is ten and the number of iterations to train the neural
network is 2000. The probability of crossover for the GA is set at
0.8 for both networks. The probabilities of mutation are set at 0.1
and 0.06 for the proposed and the traditional neural networks,
respectively. After training, we use 600 (2003) sets of data for
testing. The results are tabulated in Table VII. From this table,
it can be seen that the training error and forecasting error of the
proposed neural network are smaller. The recognition accuracy
of the proposed network is also better. When seven hidden nodes
for the proposed neural network and 16 hidden nodes for the
traditional neural network are used, the numbers of parameters
to be tuned are 125 and 227, respectively. The proposed neural
network has only 55% of the number of parameters of the
traditional neural network. Hence, the performance of proposed
neural network is better and fewer hidden nodes are needed.

VI. CONCLUSION

A novel GA-based neural network has been proposed. Its
parameters can be tuned by a GA with arithmetic crossover and
nonuniform mutation. A novel neuron model with two activation
functions has been introduced. By employing this neuron model
in the hidden layer, the performance of the neural network is
found to be better than that of the traditional feedforward neural
network. Examples of a multi-inputXOR problem, sunspot
forecasting, short-term daily home electric load forecasting, and
pattern recognition have been given. The performance of the
proposed neural network in these examples is good.
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