
 
 

  

Abstract— This paper investigates the system stability of the 
fuzzy-model-based control systems.  New stability conditions in 
terms of linear matrix inequalities (LMIs) will be derived based 
on the Lyapunov-based approach.  It will be shown that the 
proposed stability conditions offer relaxed stability result than 
that of some important published stability conditions.  The 
feedback gains of the fuzzy controller will be designed based on 
the LMI-based approach.  A numerical example will be given to 
show the merits of the proposed stability conditions. 

I. INTRODUCTION 
uzzy-model-based control approach offers a systematic 
approach to handle nonlinear plants.  In this approach, 
the nonlinear plant is represented by the TS-fuzzy model 

[1]-[2].  A fuzzy controller [3]-[4] with similar structure will 
be employed to close the feedback loop to form a fuzzy 
model-based control system.  The system stability was 
investigated in [3]-[4] based on Lyapunov-based approach.  
It was shown that the fuzzy-model-based control system is 
guaranteed to be stable if there exists a solution to a set of 
linear matrix inequalities (LMIs) [5] which can be solved 
numerically and efficiently by some convex programming 
techniques.  When the fuzzy controller shares the same 
premise as those of the fuzzy model, relaxed stability 
conditions can be obtained [6].  Under this design criterion 
of the fuzzy controller, further relaxed stability conditions 
were reported in [7]-[10].  In this paper, the system stability 
of the fuzzy-model-based control systems studied in [3]-[10] 
will be investigated.  Based on the Lyapunov-based 
approach, new LMI stability conditions will be derived.  It 
will be shown analytically and experimentally that the 
proposed stability conditions will offer relaxed stability 
results than those published in [3]-[10].  The LMI-based 
design of the feedback gains of the fuzzy controller will also 
be presented subject to the system stability. 

This paper is organized as follows.  In section II, the fuzzy 
model and the fuzzy controller will be presented.  In section 
III, some important published stability conditions [3]-[10] 
will be reviewed.  In section IV, new relaxed stability 
conditions will be derived for the fuzzy-model-based control 
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systems.  In section V, the design of the feedback gains 
based on the LMI-based approach will be given.  In section 
VI, numerical example will be given to illustrate the 
effectiveness of the new stability conditions.  A conclusion 
will be drawn in section VII. 

II. FUZZY MODEL AND FUZZY CONTROLLER 
A fuzzy-model-based control system comprises a 

nonlinear plant represented by the TS-fuzzy model and the 
fuzzy controller connected in closed loop.  The details of the 
fuzzy model and the fuzzy controller are given as follows. 
 
A.  Fuzzy Model 
 Let p be the number of fuzzy rules describing the 
nonlinear plant.  The i-th rule is of the following format. 
Rule i: IF ))((1 tf x  is i

1M  AND … AND ))(( tf xΨ  is i
ΨM  

           THEN )()()(  ttt ii uBxAx +=  (1) 
where i

αM  is a fuzzy term of rule i corresponding to the 
function ))(( tf xα , α = 1, 2, ..., Ψ, Ψ is a positive integer, i = 
1, 2, ..., p; nn

i
×ℜ∈A  and mn

i
×ℜ∈B  are known constant 

system and input matrices respectively; 1)( ×ℜ∈ ntx  is the 
system state vector and 1)( ×ℜ∈ mtu  is the input vector.  The 
system behavior is described by, 
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is a known nonlinear function of ))(( tf xα .  ( )( ))(

M
tfi xα

α
µ , 

α = 1, 2, …, Ψ, is the grade of membership corresponding to 
the fuzzy term of i

αM . 
 

B.  Fuzzy Controller 
 A fuzzy controller with p fuzzy rules is employed to 
handle the nonlinear plant.  The j-th rule of the fuzzy 
controller is of the following format. 
Rule j: IF ))((1 tf x  is i

1M  AND … AND ))(( tf xΨ  is i
ΨM  

           THEN )()( tt jxGu =  (5) 
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where nm
j

×ℜ∈G  is the feedback gain of rule j.  The inferred 
output of the fuzzy controller is given by, 

∑
p

j=
jj ttwt

1

)())((=)( xGxu  (6) 

 
C.  Fuzzy-Model-Control System 
 The fuzzy-model-based control system is formed by 
connecting the fuzzy model of (2) and the fuzzy controller of 
(6) in closed loop.  From (3), we have the following 
property. 

∑
p

i
i tw
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j
ji twtw

1= 1

))(())(( xx  = 1 (7) 

 From (2), (6) and (7), we have, 
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where 
jiiij GBAH += , i = 1, 2, ..., p; j = 1, 2, ..., p. (9) 

III.  PUBLISHED STABILITY CONDITIONS 
 In this section, some important LMI stability conditions 
which guarantee the stability of the fuzzy-model-based 
control systems in form of (8) will be reviewed. 
 
A.  Wang et al’s Basic Stability Conditions 
Theorem 1:  The equilibrium of the fuzzy-model-based 
control system in form of (8) is asymptotically stable in the 
large if there exists a symmetric matrix nn×ℜ∈= TPP  such 
that the following LMIs hold. 

0>P ; 0T <+ iiii PHPH , i = 1, 2, ..., p; 

0
22

T

≤






 +
+







 + jiijjiij HH
PP

HH
, j = 1, 2, ..., p, i < j, 

0))(())(( ≠twtw ji xx . 
 
Proof:  see [6]. 
 
B.  Tanaka et al’s Relaxed Stability Conditions 
Theorem 2:  The equilibrium of the fuzzy-model-based 
control system in form of (8) is asymptotically stable in the 
large if there exist matrices nn×ℜ∈= TPP  and 

nn×ℜ∈= TQQ  such that the following LMIs hold. 
0>P ; 0≥Q ; 

0)1(T <−++ QPHPH siiii , i = 1, 2, ..., p, 1 ≤ s ≤ p; 

0
22

T

≤−






 +
+







 +
Q

HH
PP

HH jiijjiij , 1 ≤ i < j ≤ p, 

0))(())(( ≠twtw ji xx ; 

where s is an integer denoting the maximum number of fired 
fuzzy subsystems at an instance. 
 
Proof:  see [7]. 
 
Remark 1:  It has been shown in [7] that if the stability 
conditions of Theorem 1 hold, the stability conditions of 
Theorem 2 will also hold. 
 
C.  Kim et al’s Relaxed Stability Conditions 
Theorem 3:  The equilibrium of the fuzzy-model-based 
control system in form of (8) is asymptotically stable in the 
large if there exist matrices nn×ℜ∈= TPP  and 

nn
ijij

×ℜ∈= TXX  such that the following LMIs hold. 
0>P ; 

0T <++ iiiiii XPΛPΛ , i = 1, 2, ..., p; 

0T ≤++ ijijij XPΛPΛ , 1 ≤ i < j ≤ p; 
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Proof:  See [8]. 
 
Remark 2:  It was pointed out in [9] that the stability 
conditions of Theorem 5 can be further improved by 
modifying the LMI conditions 0T ≤++ ijijij XPΛPΛ , 1 ≤ i 

< j ≤ p to 022 TT ≤+++ ijijijij XXPΛPΛ , 1 ≤ i < j ≤ p where 
nn

jiij
×ℜ∈= TXX . 

Remark 3:  It has been shown in [8] that if the stability 
conditions of Theorem 2 hold, the stability conditions of 
Theorem 3 will also hold. 
 
D.  Marcelo et al’s Relaxed Stability Conditions 
Theorem 4:  The equilibrium of the fuzzy-model-based 
control system in form of (8) is asymptotically stable in the 
large if there exist symmetric matrices nn×ℜ∈= TPP , 

nn
ijhijh

×ℜ∈= TTT , nn
ijij

×ℜ∈= Tˆˆ RR  and nn
ijh

×ℜ∈S  such 
that the following LMIs hold. 

0>P ; 
0≥ijhT , i, j, h = 1, 2, ..., p; i < j; 
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where, for i, j, h = 1, 2, ..., p, 

iiiii PHPHQ += Tˆ ; 
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Proof:  See [10]. 
 
Remark 4:  It has been shown in [10] that if the stability 
conditions of Theorem 3 hold, the stability conditions of 
Theorem 4 will also hold. 

IV.  STABILITY ANALYSIS 
 The system stability of the fuzzy-model-based control 
system of (8) will be analyzed.  In the following analysis, 
wi(x(t)) is denoted by wi for simplicity.  From (6), we have 
the following property which will be used later. 
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 To investigate the system stability of (8), the following 
Lyapunov function candidate is considered, 
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where 0T
11 >ℜ∈= ×nnPP .  From (2), (10) and (11), we 

have, 
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where )()(

32

1 mnmn +×+ℜ∈







=

PP
0P

P , nm×ℜ∈2P  and 

mm×ℜ∈3P .  It can be seen that 0)( ≤tV  (equality holds 
when x(t) = 0 and u(t) = 0) if 

0
T

T <







−

+
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P
IG

BA
IG

BA
P

mi

ii

mi

ii , i = 1, 2, ..., p (13) 

which implies the asymptotically stability of the fuzzy-
model-based control system of (8).  The analysis results are 
summarized by the following theorem. 
 
Theorem 5:  The equilibrium of the fuzzy-model-based 
control systems in form of (8) is asymptotically stable in the 
large if there exist matrices nn×ℜ∈= T

11 PP , nm×ℜ∈2P  
and mm×ℜ∈3P  such that the following LMIs hold. 

01 >P ; 0
T

T <
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+
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P
IG

BA
IG
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mi

ii

mi

ii , i = 1, 2, ..., p; 

where 
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32

1

PP
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Remark 5:  Referring to Theorem 5, it can be seen the 
number of LMIs is reduced to p only compared with that in 
Theorem 2 to Theorem 4. 
 

 Furthermore, let j

p
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1=
2 PP ∑=  and j

p

j
jw 3

1=
3 PP ∑=  where 

nm
j

×ℜ∈2P  and mm
j

×ℜ∈3P , j = 1, 2, ..., p, (13) can be 
written as follows. 
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 Let 0T ≥+ ijij RR  where )()(T mnmn

jiij
+×+ℜ∈= RR .  From 

(14), we have, 
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where 
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2
, j = 1, 2, ..., p; i < j.  It can be 

seen that 0)( ≤tV  (equality holds when x(t) = 0 and u(t) = 
0) if 0<S  which implies the asymptotically stability of the 
fuzzy-model-based control system of (8).  The analysis 
results are summarized in the following theorem. 
 
Theorem 6:  The equilibrium of the fuzzy-model-based 
control systems in form of (8) is asymptotically stable in the 
large if there exist matrices nn×ℜ∈= T

11 PP , nm
j

×ℜ∈2P , 
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j
×ℜ∈3P  and )()(T mnmn
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V.  DESIGN OF FEEDBACK GAINS BASED ON LMI APPROACH 
 In this section, the design of the feedback gains Gj will be 
obtained based on the LMI-based approach.  In the 

following analysis, let )()(1
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×ℜ∈N , j = 1, 2, ..., p.  The existence of X will be 
discussed later.  From (12),  






































−

+









−









= −−∑ )(

)(
)(
)(

)( 1
T

T

TT1
T

1= t
t

t
t

wtV

mi

ii

mi

ii

p

i
i u

x
XX

P
IG

BA

IG
BA

P

XX
u
x

 

       




































−

+









−









= −−∑ )(

)(
)(
)( 1

T
T

T1
T

1= t
t

t
t

w

mi

ii

mi

ii

p

i
i u

x
X

IG
BA

X

X
IG

BA

X
u
x

 






































−








+

















−









= −−∑ )(

)(
)(
)( 1

TT

32

1

32

1

T1
T

1= t
t

t
t

w

mi

ii

mi

ii

p

i
i u

x
X

IG
BA

XX
0X

XX
0X

IG
BA

X
u
x

 

)()( T
332

TT
3

T
2

T
3

TT
221

T
1T

1=

ttw
ii

iiiiii
p

i
i z

XXXNBX
XNXBBXXBXAAXz













−−−+
−++++=∑

 (17) 

where 







= −

)(
)(

)( 1

t
t

t
u
x

Xz .  It can be seen that 0)( ≤tV  

(equality holds when x(t) = 0 and u(t) = 0) if 

0T
332

TT
3

T
2

T
3

TT
221

T
1 <













−−−+
−++++=

XXXNBX
XNXBBXXBXAAXQ

ii

iiiiii
i

, i = 1, 2, ..., p (18) 
which implies the asymptotically stability of the fuzzy-
model-based control system of (8).  The analysis results are 
summarized in the following theorem. 
 
Theorem 7:  The equilibrium of the fuzzy-model-based 
control systems in form of (8) is asymptotically stable in the 
large if there exist matrices nn×ℜ∈= T

11 XX , nm×ℜ∈2X , 
mm×ℜ∈3X  and nm

j
×ℜ∈N  such that the following LMIs 
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where the feedback gain is design as 1

1
−= XNG jj , j = 1, 2, 

..., p. 
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seen that 0)( ≤tV  (equality holds when x(t) = 0 and u(t) = 

0) if 0<S , which implies the asymptotically stability of the 
fuzzy-model-based control system of (8).  The analysis 
results are summarized by the following theorem. 
 
Theorem 8:  The equilibrium of the fuzzy-model-based 
control systems in form of (8) is asymptotically stable in the 
large if there exist matrices nn×ℜ∈= T
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, j = 1, 2, ..., p; i < j  and the feedback gain is design as 
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−= XNG jj , j = 1, 2, ..., p. 

 
Remark 6:  It can be seen that if the stability conditions in 
Theorem 7 to Theorem 8 are satisfied, 0T

11 >= XX , and 
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33 <−− XX  for Theorem 7 and 0T

33 <−− jj XX  for 

Theorem 8 are required.  As a result, 
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conditions in Theorem 7 or Theorem 8. 
Remark 7:  The solution of the stability conditions in 
Theorem 4 is also a solution of those in Theorem 6.  
Referring to Theorem 4 and considering that there exist 
symmetric matrices P > 0, Tijk ≥ 0, Rij and matrices Sijk for 
all i, j, k = 1, 2, ..., p; i < j such that the stability conditions 
in Theorem 4 are satisfied.  Referring to Theorem 4, the 
following LMIs hold. 
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It was shown in [10] that 
[ ] [ ] 0IIIHIII =T

2121 pp wwwwww . Hence, 

based on this property, from (22), 0~ <itQ  for all i imply 
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 Under the solution of Theorem 4, the stability conditions 
in Theorem 6 will be considered.  Considering Qij in 
Theorem 6, let PP =1 , PBP T

2 ii = , IP ε=i3 , i = 1, 2, ..., p, 
ε is a non-zero positive scalar and 
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 j = 1, 2, ..., p; i < j, where ε is a 

non-zero positive scalar, we have, 
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In Theorem 6, it is required that 
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S  to guarantee the system 

stability.  From (25) and (26), with proper shifting of rows 
and columns of the matrix S, the matrix S can be written as 
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all i and j.  As 0~ <ςtQ , there must exists a non-zero 

positive ε such that 0
2

T
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− IΘ
ΘQt

εε
ες .  Hence, it can be seen 

that the solution of the stability conditions in Theorem 4 is 
also the solution of those in Theorem 6.  However, the 
solution of the stability conditions in Theorem 6 may not be 
the solution of those in Theorem 4. 
 

VI.  NUMERICAL EXAMPLE 
 A numerical example will be given to illustrate the 
effectiveness of the derived stability conditions.  
Considering the following fuzzy model with p = s = 2, 
Rule i:  IF x1(t) is i

1M  THEN )()()( tutt ii BxAx += , i = 1, 2 (27) 

where 






 −
=

01
102

1A , 






 −
=

31
10

2

a
A , 








=

0
1

1B  and 









=

02

b
B , is considered.  The feedback gains, G1 and G2, of 

the fuzzy controller is designed such that the eignevalues of 
H11 and H22 are all located at −2 respectively for any values 
of parameters a and b.  Fig. 1 to Fig. 5 show the stability 
regions for the stability conditions in Theorem 1 to Theorem 
6 respectively for parameters [ ]410−∈a  and [ ]151∈b .  
Referring to these figures, it can be seen that the stability 
region produced by Theorem 4 is the same as that produced 
by the modified stability conditions in Theorem 3.  

However, the number of LMI stability conditions is reduced 
to p only which can reduce the computational demand on 
solving the solution.  Furthermore, it can be seen that the 
stability conditions in Theorem 6 provide the largest stability 
region. 

VII.  CONCLUSION 
 A new set of LMI stability conditions has been derived to 
guarantee the system stability of the fuzzy-model-based 
control systems.  It has been shown that the proposed 
stability conditions have provided relaxed stability results 
than those of some important published stability conditions.  
The feedback gain design of the fuzzy controller using LMI-
based approach has been provided.  A numerical example 
has been given to illustrate the effectiveness of the proposed 
approach. 
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Fig. 1.  Stability region based on Theorem 1. 
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Fig. 2.  Stability region based on Theorem 2. 
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Fig. 3.  Stability regions based on Theorem 3 with 

modification in Remark 2 and Theorem 5. 
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Fig. 4.  Stability region based on Theorem 4. 
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Fig. 5.  Stability region based on Theorem 6. 
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