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Abstract: This paper addresses the stable fuzzy controller design 
problem of nonlinear systems. The methodology is based on a 
fuzzy logic approach and the genetic algorithm (GA). I n  order to 
analyze the system stability, the TSK fuzzy plant model is 
employed to describe the dynamics of the nonlinear plant. A 
fuzzy controller is then developed to close the feedback loop. The 
stability conditions are derived. The feedback gains of the fuzzy 
controller and the solution for meeting the stability conditions are 
determined using the GA. An application example on stabilizing 
an inverted pendulum system will he given. Simulation and 
experimental results will he presented to verify the applicability 
of the proposed approach. 

I. INTRODUCTION 
Fuzzy control is particularly useful for ill-defined nonlinear 

systems. Control actions of a fuzzy controller are usually 
described by some linguistic rules, making the control 
algorithm easy to understand. To facilitate a systematic tuning 
procedure, a fuzzy controller implemented by a neural-fuzzy 
network was proposed in [7-81. Through tuning, fuzzy rules 
can be generated automatically. Genetic algorithm (GA), 
which is a powerful searching algorithm [ 5 ] ,  has been applied 
to fuzzy systems to help generate the membership functions 
and/or the rule sets [16]. These methods make the design 
simple; however, they do not guarantee the system stability. 

In order to investigate the system stability, the 
Takagi-Sugeno-Kang (TSK) fuzzy plant model approach was 
proposed [l-2, 10, 14,21-241. Anonlinear system is modeled 
as a weighted sum of some simple sub-systems. It gives a 
fixed structure to some of the nonlinear systems, and facilitates 
the analysis of them. There are two ways to obtain the fuzzy 
plant model: 1) by performing identification methods through 
the use of the input-output data of the plant [l-2, 10, 14],2) by 
deriving directly from the mathematical model of the nonlinear 
plant [9]. Stability of the fuzzy system formed by a fuzzy plant 
model and a fuzzy controller was investigated. Different 
stability conditions based on the Lyapunov stability theory [3, 
6, 91 and other methods [II-13, 15, 17-19, 23-24] were 
reported. Using these stability conditions, the closed-loop 
system stability can be tested after finding the fuzzy controller 
parameters, which are usually determined by trial and error. 
Furthermore, the ways to solve the stability condition are 
usually not considered. If the stability conditions can be 
formulated as some linear matrix inequalities (LMIs) [9, 231, 
some software can help find the solution numerically. 
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However, formulating the stability conditions into an LMI 
problem will limit the realm of the stability analysis. In order 
to have a systematic method to obtain a fuzzy controller with 
guaranteed system stability, a fuzzy controller derived from 
CA [20, 241 is proposed. The stability conditions for fuzzy 
control system are first derived. Based on these conditions, the 
parameters of the fuzzy controller are obtained using GA. 

11. TSK FUZZY PLANT MODEL AND FUZZY CONTROLLER 
We consider a fuzzy control system formed by a nonlinear 

plant connected with a fuzzy controller in closed loop. The 
TSK fuzzy plant model is employed to describe the dynamics 
of the nonlinear plant. 
A. TSK Fuzzy Plant Model with Parameter Uncertainfies 

plant. The i-th rule is of the following format, 
Rule i: IF f i ( x ( t ) )  is Mi and .., and f v ( x ( f ) )  is ML 

Let p be the number of fuzzy rules describing the nonlinear 

THEN x ( t )  = A,x(t)  + B, u(f) (1) 
where Mb is a fuzzy term of rule i corresponding to the 
function fa ( x ( t ) )  containing the parameter uncertainties of 
the nonlinear plant, a = 1, 2, ..., K i = 1, 2, ..., p ,  'f'is a 
positive integer; A; E !U""" and Bj E ' R " * ~  are known 
constant system and input matrices respectively; ~ ( t )  E 'R"" is 
the system state vector and U(/) E Si""' is the input vector. 
The inferred system is given by, 

x ( t )  = i=, i w j ( x ( t ) ) ( A j x ( f ) +  B,u(f)), (2) 

(3) where Ewi(x(t))  = 1 ,  wj(x(t))  E [O. I] for all i 
j = ,  

is a nonlinear function of x ( f )  and p M L ( f a ( x ( f ) ) )  is the 

membership function corresponding to Mh . The value of 
pMb (f, ( ~ ( 1 ) ) )  can be known or unknown. If it is an unknown 

function, fa ( ~ ( t ) )  reflects the parameter uncertainties of the 
nonlinear plant. A fuzzy controller will he obtained based on 
the TSK fuzzy plant model of (2). 
B. Fuzzy Confroller 

A fuzzy controller with c fuzzy rules is to he designed for the 
plant. Thej-th rule of the controller is of the following format: 
Rulej: IF g, (x( t ) )  is N: and ... and gn(x( f ) )  is N; 

THEN u(t)  = G , x ( f )  ( 5 )  
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IITX(f + Af)ll-IITx(f)ll < 
where N$ is a fuzzy term of rule j corresponding to the 

function g a ( x ( t ) ) ,  p = 1, 2, ._., r;! j = 1, 2, .._, c, R is a 

positive integer; G j  ER" is the feedback gain nf ru le j  to 
be designed. The inferred output of the fuzzy controller is 

given by u(f) = imj(x(f))Gjx(f) 

where j - l  fmj (x ( t ) )= l ,  mj(x(t))EIO, I] forall j  (7) 7 Ar+O1 Af 

2 lim 
AWI* 

l i m . [ ~ ~ w ~ m j ~ ~ I + T H , T ~ ' A f ~ ~ - 1 ) ~ T x ( t ) ~ ~ + ( ~ T o ( A t ) ~ ~ ] / A t  
u-0 (=I,=, 

From (12) and (14), 

(14) At 

(6) ,f iwjmj[lI + TH,T-'Af(l-I) 
IITX@)ll 

dl1 Tx(Oll ~ lim ?=I j-l  
j - l  

pN{ (g, ( x ( m  x .U,,: (gz(x(r))) x-x  pNb (g,(x(r))) (8) - < jil 5 j - l  fw,mjp[TH,T-']/Tx(f)I( (15) 
m,(W)= zk,: (g,(x(i))) x pNt (g , (x ( r ) ) )  x - - X  pNb (g , (x (~ ) ) )  where 

t-l 

is a nonlinear function of x(t) and p N I  , (g,(x(t))) is the p[TH,T-']= & d o .  lim ~ = ~ - ( T H , T ~ I + ( T H , T ~ ~ ) .  2 ] (16) 
M 

membership function corresponding to N$ to be designed. 

C. Fuzzy Contml System 

system should be obtained. From (2) and (6), 

i ( r )  = ,f w, (x(r))m, (x( t ) )~ ,x( t )  

is the corresponding matrix measure [4] of the induced matrix 
norm of I(TH,T-'II (or the logarithmic derivative of 

llTHuT-'l[); L-C) denotes the largest eigenvalue, * denotes 

the conjugate transpose. From (15), if p[TH,T-'] satisfies 

In order to cany out the analysis, the closed-loop fuzzy 

(9) the following inequality, ;=I j-l 

where HI = Ai + BiG (IO) p[TH,T-'] <-& foralliandj. (17) 
where E is a nonzero positive constant, it can be proved (15) 
implies a stable system of (9). Before conducting this proof, 
consider the following inequality obtained from (15) and (17). 
dllTx(Oll p 

111. STABILITY ANALYSIS 
To analyze the stability of the fuzzy control system of (9), 

(18) 
consider the Taylor series, 
x ( f  + AI) = ~ ( t )  + i(f)At + o(At) 
where o(Af) = - x ( f ) - i ( f ) b +  x(tcAr) is the emor term and 
Af>O,  

< -E wjm,&llTx(f)ll = -&IITx(t)ll 
(11) 7 t i l , = ,  

where 1, < f  is an arbitrary initial time, show that 
(19) implies an exponentially stable closed-loop system of (9), 
and x ( f )  + 0 as f + m . 

we 

(12) 
lim --0 Ilo@t)ll - 

A r 4 '  At 
From (9) and ( I I ) ,  writing w,(x(t)) as wi and m j ( x ( f ) )  as 
m, , and multiplying a transformation matrix T E R""" of rank [- + E~~Tx(l)~~]ec(,.,a, < - 
n to both sides, we have 
Tx( t+At)=Tx( t )+~~w~m,TH,x( t )Af+To(At )  - ( I I~x( t ) l le" '~" ' )<  d 0 2 ~~Tx(f)~~e'('~'a' < ~ ~ T x ( z o ) ~ ~  

Proof From(18), 

(19) df 

df ;=I j - l  

=(l+ffwjmjTH,T-lAt Tx(l)+To(Af) 3 IITx(I)ll 5 IITx(to)Ile-""-'a' (20) 
i i l  j - I  1 

,=,,-I 11 IITx(f)ll2 = x(f)'T'Tx(f) (21) 

Since &is a positive value, llTx(f)ll+ 0 as f + m . In order to The reason for introducing T will be given at the end of this 
section, Taking norm on both sides of the above equation, show X(f) --f 0 as --f 2 *e following Property 
/~Tx(t+AI)~~ ~ ~ ~ f ~ w j m j ( I + T H , T ~ ' A t  ~~Tx( t )~~+~~To(Al )~~  (13) and T has rank n, 

where (1 ' 1 )  denotes the hnorm for Vectors and 12 induced norm As T ~ T  is symmetric positive definite (T has rank n), kom 

I/T~(l+Af)ll< 5 fw,mj~(I+TH,T~'Af~~~~Tx(f)II+IITo(Af)II 
3 nTx(r+Ar)ll-IT~(r)lii 5 ~ w , m , $ I I + T H p T ~ ' A r I ) - ~ ~ ~ l r ( i ) l ~ + l l T ~ ( ~ r ) l l  

for matrices. From (13), (21), IITx(t)ll+ 0 only when x ( f )  --f 0 .  QED 

The stability conditions of the closed-loop fuzzy system can j-1 

be summarized by the following l e m a :  

Lemma 1. The f u z q  control system as given by (9). which may 
have parameter uncertainties, is exponenfially stable ij 

,-,,=, 
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TH,T-' is designedsuch that, 

,u[TH,T-'] < -E for all i andj 
where E is a nonzero positive constant scalar: 

It should be noted that with the use of a suitable 
transformation matrix T, any Hurwitz matrix having a positive 
or zero matrix measure can be transformed into another matrix 
having a negative matrix measure (see (17)). The stability 
conditions derived can then be applied. The problem left is to 
find such a matrix T for a given system. This will be discussed 
later. From the above derivation and Lemma 1, we also see the 
system stability is not affected by the membership functions of 
the fuzzy controller. 

VI. STABILITY CONDITIONS AND FEEDBACK GAINS 
In this section, the problems of solving the stability 

conditions derived in the previous section and obtaining the 
feedback gains of the fuzzy controller will be tackled using the 
FA with arithmetic crossover and non-uniform mutation [5]. 
From Lemma 1, the uncertain fuzzy control system i s  stable if 
there exists a transformation matrix T satisfying the following 
conditions, 
p[T(Ai + B , G , k - ' ]  < - E ,  i =  1,2, ..., p , j = I ,  2, ..., c (22) 

The objectives are to find T= [:I T!, T,, 1 1 :  and 

~, =[r 1:: "j such that the above conditions are 

satisfied. Let a fitness function be defined as follows, 

T"1 T", "' T". 
G:, ... G/" 

C:, C:, ... GLm 

fitness = ffn,,u[T(Aj jk, jkl + B j G , k - ' ]  (23) 

1) Obtain the fuzzy model of the nonlinear plant. 
2) Determine the number of rules and the membership 
functions of the fuzzy controller. 
3) Solve T and Gj with the fitness function defined in (23) 
and nu = 1, i = 1, 2, , . . , p ,  j =I ,  2, ..., c using the GA. If T and 
Gj cannot be found, adjust nu accordingly. 

VI. APPLICATION EXAMPLE 
An application example on stabilizing an inverted pendulum 

(Model 505 inverted pendulum) [25] as shown in Fig. 1 will be 
given in this section. Referring to Fig. 1, the plant consists of a 
pendulum rod that supports a sliding balance rod. The balance 
rod is driven via a toothed belt and a pulley, which in turn is 
driven by a drive shaft connected to a dc servomotor below the 
pendulum rod. The inverted pendulum can stand upright by 
steering the sliding rod in the presence of gravity. The balance 
weight in the bottom may be adjusted to alter the center of the 
gravity of the pendulum rod and hence the system dynamics (a 
source of parameter uncertainties). The plant has 2 sensors for 
measuring the system states in real time. The first one is a 
high-resolution encoder to measure the angle of the pendulum 
rod. Another one is a shaft encoder to sense the position of the 
sliding rod. The objective of this application example is to 
design a fuzzy controller to balance the inverted pendulum 
based on the design procedures mentioned in the previous 
section such that qt) = 0 andx(t) = 0 (Fig. 2). 

1). Referring to Fig. 2, the state space equations representing 
this inverted pendulum are as follows, 

. . .1 ._ , , , , 

The problems of finding T and G, are now formulated into a 
minimization problem. The aim is to minimize the fitness 
function of (23) using the GA. As T .md Gj are the variables of 
the fitness function of (23), they will be used to form the genes 
of the chromosomes. The'finding of the solution to this 
minimization problem, however, does not imply that the 
conditions of (22) are satisfied. Hence, different nu, i = I ,  2, . . , , 
p ,  j =I,  2 ,  . . ., c, may need to be tried to weight the conditions of 
(22) in order to change the significance of different terms on 
the right hand side of (23). For instance, one of the terms in 
(23) is very negative, which returns a very small fitness value. 
However, under this case, the conditions of (22) may not be 
satisfied. A small value of nu corresponding to that term can be 
used to attenuate the effect of that term in the fitness function. 
This may help the GA process to find a solution that satisfies 
the conditions of (22) during the minimizing process. 

The procedure to obtain the fuzzy controller using the CA 
can be summarized into the following steps. 

is the position of the sliding rod (in m) and X(t) is the velocity 
of the sliding rod (in d s ) .  The plant is operating in the region 

c[f1 " f,,] =[-15.7716 -14,44571, 
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e[f, - -  f, ] =[48.4863 56.45011 

f, (NO) = 
( J o g  -m,ln2 + m,lcl,)gsin 6'(t)/B(t) 

J ,  + m,Ioz 

E [f, -" f,, 1 = [14.2482 15.01 161 

-m,'l,gcosB(/)+ J,&)' + 2m,loi(t)b(/) 
J ,  + m,l,' 

f, (x(0) = 

f4-%] =[-18.5884 -1S.9605], 

Ja/ml E // / 6  ] = [7.5303 7.61781; I,, = 
6.. - J ,  + m,),' J6(f) = 

. .~ 

0.330 m is the length of pendulum rod from the pivot to the 
sliding rod T section, mi = mi, + mWl is mass of the complete 
sliding rod including all attached elements, ml, 4 .103  kg is 
mass of the sliding rod with belt, belt clamps, and rubber end 
guardsput without sliding rod brass "dount" weights), m,, = 
0.11 0 kg is the combined mass of both of the sliding rod brass 
"dount" weights, m2 = m20 + mv2 is the mass of the complete 
assembly minus m,, ml, = 0.785 kg is the mass of the complete 
moving assembly minus ml and mw2, mw2 = 1 kg is the mass of 
brass balance weight, I ,  = 0.071 m is the position of the c.g. of 
the complete pendulum assembly with the sliding rod and 
balance weight removed, g = 9 . 8 d s 2  is the acceleration due to 

gravity, I ,  = mwJw + m L '  , I ,  = -  (T+'c+ 'b) ,T=0.05m, 

I, ~[0.074 0.080] m, lb = 1, + 0.031 m, 
J,, =J,'+m,laz+m,l,z , J: = 0.0246 kgm2 and 
J ,  = Joe + m,x( t ) ' .  The system of (24) can be approximated 
by the TSK model with the following rules: 

Rule i: 

mZ 2 

IF f;(x(t)) is M: AND / > ( x ( t ) )  is M i  AND .__ .  
AND f 6 ( x ( r ) )  is M', 

THEN xi( t )=A,x(t)+B,u(t)  f o r i = l , 2 , 3  ,..., 64 (25) 

(26) 

The dynamics of the plant is described by, 

i ( t )  = x y ( x ( t ) ) ( A A f )  + Biu(Q) 
61 

i = 1 , 2  ,,.., 32; f,, = A ,  fori=33,34 ,..., 64; f2, = f,.,. for 
i =  1,2, ..., 16,33,34, ... 48; fz, = f,- fori= 17, 18, ..., 32, 
49, 50, ..., 64; f,, = f,m fori = 1,2, ._., 8, 17, 18, ..., 24, 33, 
34, ..., 40, 49, 50, ..., 56; f,, = f,*" fori = 9, 10, ..., 16, 25, 
26, .._, 32, 41,42, ..., 48, 57, 58, ..., 64; f,, = fori = 4 a  

+ 1 ,..., 4a+ 4; a= 0, 2, .._, 14; /,, = f,, fori = 4 a +  I ,..., 
4 a + 4 ; a = l , 3  ,.._, 15; f,, = f,- f o r i = 4 a + 1 , 4 a + 2 ; a =  
0,1,2 ,..., 15; / 5 ,  = f5- ,  fo r i=4a+3 ,4a+4 ;a=0 ,1 ,2  ,..., 
15; f 6 ,  = f6" f o r i =  1, 3, ..., 63; f 6 ,  = f 6 -  fo r i=  2,4, ..., 
64. The memhershb functions are chosen as follows, 

-f3(x(t))+fL for 4 = 1-2 ..., 8.17.1 8.19 ..., 24.33.34, .., 40.49.50.51 ..., 56 

P.: Cr,bcml= 
-'3(x('))+~'L for (I -9.10 ..., 16.25.26 ..., 32.41.42 ..., 48.57.58.59 ...., 64 

2) A 16-rule fuzzy controller is designed to balance the 
inverted pendulum based on the TSK fuzzy plant model of (25). 
The rules of the fuzzy controller are defined as follows. 
Rulej: IF x , ( t )  is N{ AND x z ( t )  is N; AND x , ( / )  is N: 

AND x , ( t )  is N: 
THEN u,(L)=G,x(t) , j=l ,Z,  ..., 16 (33) 

The output of the fuzzy controller is defined as, 

~ ( t )  = ,=I %,(x(t))G,x(t) (34) 

The membership functions for the 4 fuzzy sets are given by, 
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parameters of the membership functions of (35) to (38). 
3) The transformation matrix T and the feedback gains C, 
will be solved based on the fitness function defined in (23) 
using the GA with arithmetic crossover and non-uniform 
mutation [ 5 ] .  In order to reduce the searching space ofthe GA 
process, T, is set to he Ti if i t j. We set nv = 1 for i = 1,2,  , , ., 
64, j =I ,  2, .._, 16. The shape parameters, the probabilities of 
crossover and mutation of the GA are chosen to be 1,0.8,0.01 
respectively. The number of iteration is 50000. After the GA 

process, 1 0,199436499 0.01 1850747 0,183240064 0.012038775 

0.01 1850747 0.049340392 0.036607074 0.050838952 
0,183240064 0.036607074 0,545770386 0047468967 I 0.012038775 0.050838952 0.047468967 0.076149585 

T= 10.‘ x 

and the feedback gains obtained are listed in Table I, It can he 
verified that by applying the results to p[T(Ai + BjC b-’] , 
the matrix measures for all i andj are negative. The maximum 
value of p[T(Ai +BfCjb-’ ]  among all i and j is 
-0.000582145, from Lemma I, E is arbitrary chosen to be 
0.0001. By Lemma 1, the system is guaranteed to he 
exponentially stable. 

We have realized the designed fuzzy controller of (34) 
practically using a real-time digital signal processor (DSP) 
based controller unit, servolactuator interfaces, servo 
amplifiers, and auxiliiuy power supplies. To test the stability 
and robustness, we adjust the height of the balance mass /,from 
0.07m to 0.1 m. The responses under the initial condition of 
x(0) = [0.17 0 -0.55 O]r are obtained from simulations 
and experiments respectively. Fig. 3 to Fig. 5 show the 
simulation and experimental results with /, = 0.07 m, 0.08 m, 
0.09 m and 0.1 m respectively. It can be seen from the system 
responses that the proposed fuzzy controller can stabilize the 

inverted pendulum even when the value of I ,  is a bit outside the 
operating range of the TSK fuzzy plant model. 

VII. CONCLUSION 
Fuzzy control of nonlinear systems has been investigated. 

The nonlinear systems are represented by the TSK fuzzy plant 
models. Based on the TSK model, a fuzzy controller has been 
proposed, and the stability conditions have been derived. GA 
with arithmetic crossover and non-uniform mutation has been 
used to help find the solution to the stability conditions and the 
feedback gains ofthe fuzzy controller. An application example 
on stabilizing an inverted pendulum system has been presented 
to illustrate the merits of the proposed fuzzy controller. 
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(a). Front view. (b). Plan view. . ,  
Fig. I .  lnvertcd pendulum system. 

(a). Whole plant. @). Two principal s t r u c k  members. 
Fig. 2. Plant model of the inverted pendulum. 
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(a). Response ofx,(i). 
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@). Response ofxl(r). 
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(c). Response ofa(1). (d). Response ofx,(l). 
Fig. 3. Simulation (domed lines) and experimental (solid lines) results of thc 

pendulum for I, = 0.07 m. 

(a). Responsc ofxl(r). (b). Response ofx2(l) 

Fig 
(c). Response ofx,(r). (d). Response afx,(l). 

. 4. Simulation (dotted lines) and experimental (solid lines) results of the 
pendulum for I, = 0.08 m. 

(a). Response ofx,(l). @). Response afxl(f) 

(c). Response o f x , ( f ) .  (d). Response ofx4(l). 
Fig. 5. Simulation (dotted lines) and experimental (solid lines) results of the 

pendulum far I, = 0.09 m. 

(a). Response ofxl(t). @). Response ofe(f) .  
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(c). Response ofxl(1). (d). Response afx<(I). 
Fig. 6. Simulation (dotted lines) and expenmental (solid lines) rcsults 

pendulum for I, = 0.1 m. 

Table 1. Feedback gains C,. 

of thc 
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