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Abstract 

This paper presents the stability and robustness 
analyses of uncertain nonlinear control systems. TO 
proceed with the analysis, the uncertain nonlinear system 
is represented by a fuzzy model with uncertainties. Based 
on this model, under a single-grid-point (SGP) approach, 
a fuzzy controller is designed to close the feedback loop. 
A simple stability criterion is derived by estimating the 
norm of the system parameters and the matrix measure, 
and a robust area in the uncertain parameter space is 
defined. The design methodology of a multiple-grid-point 
(MGP) fuzzy controller for  nonlinear systems subjected to 
large parameter uncertainties is developed based on the 
analysis results of the SGP approach. 

1. Introduction 

Our major concerns on fuzzy control systems are the 
system stability and a systematic design methodology. 
Many research works have been done in this area. 
Recently, the stability analysis is carried out based on a 
fuzzy model [l].  The stability condition for this class of 
fuzzy control systems was derived [2, 61, which involved a 
common positive definite matrix P. It is a difficult task to 
find such a P, especially when the number of rules of the 
fuzzy model is large. Moreover the result is valid only 
when the fuzzy model can exactly represent the plant. The 
robustness analysis and robust controller design for fuzzy 
control systems were also investigated 23, 51. For the work 
in [ 5 ] ,  the fuzzy control problem must be formulated into 
an H ,  problem in advance. It may be a difficulty for some 
practical engineers or designers to understand the theories. 
More importantly, these works did not consider the 
situation when the uncertainties are too large to be handled 
by the designed fuzzy controller. The aims of this paper 

' The authors are with the Department of Electronic Engineering, The 
Hong Kong Polytechnic University. This work was supported by the 
Research Grant of The Hong Kong Polytechnic University with the 
project account code 0350 525 A3 420. 

are to analyze the stability and robustness of uncertain 
fuzzy control systems, and to develop an easy-to- 
understand fuzzy stability theory and a simple design 
methodology for the fuzzy controllers. 

2. Fuzzy plant model and fuzzy controller 

A general multivariable uncertain nonlinear control 
system can be represented as a fuzzy plant model with 
uncertainties and a fuzzy controller. 

2.1. Fuzzy plant model with uncertainties 

Let p be the number of fuzzy rules describing the 
uncertain nonlinear plant. The i-th rule is of the following 
format, 
Rule i : IF xl is MIi and . . . and x, is M,' 

where M i  is a fuzzy term of rule i corresponding to the 
state xk, k = 1,2 ...., n, i = 1,2 ,..., p ;  AAi E%""' and 

ABi E 31""" are the uncertainties of A ' €  Snxn and 
Bi E 3""" respectively; x E %""' is the system state 
vector and UE%""' is the input vector. The inferred 
system states are given by 

THEN ~ = ( A ~ + A A ' ) x + ( B ~  + A B ' ) U  (1) 

P 

i = l  
i =  I ~ ~ ' ( ( A '  + A A ' ) ~ + ( B '  +AB')") (2) 

P 

;= 1 
where 2 w' = 1,  wi E [O, 

weight of rule i and is a nonlinear function of x. 

11 'd i ,  wi is the normalized 

2.2. Fuzzy controller 

A fuzzy controller with c fuzzy rules is to be designed 
for the plant. Thej-th rule is of the following format, 
Rulej: IF X I  is N,' and . . . and x, is N,' 

where NJ is a fuzzy term of rule j corresponding to the 
state x,, 1 = 1, ..., n, j = 1, ..., c;  G' ~ ' 3 " " ~  is the 

THEN u = G i x + r  (3) 
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feedback gain of rule j, and r E nmxl is the reference 
input vector. The inferred output of the fuzzy controller is, 

U =  :m'(G?x+r) (4) 
j=1 

where :mi = 1 ,  m' E [0, 11 V j , m' is the normalized 

weight of rule j and is a nonlinear function of x. 
j=1 

3. Stability and robustness analysis of 
single-grid-point approach 

Stability and robustness of an uncertain fuzzy control 
system are to be analyzed in this section. Three design 
approaches closing the feedback loop are investigated. 

3.1. General Design Approach (GDA) 

General design approach allows differences in the 
number of rules and the rule antecedents between the fuzzy 
plant model and the fuzzy controller. From (1) to (4), the 
closed-loop fuzzy system is given by, 

x=A,x+B,r+CCw'm'((H'' +AH" -A,)x+(B'-B,+AB')r)(5) 
P C  

[=I,=] 

where H'j = A '  + BIG' (6) 
AIP = A A '  + A B ' G J  (7) 

The system of (5) deviates from the linear system of 
X = A ,x + B ,r by the third term in the LHS of (5). 

3.2. Parallel Design Approach (PDA) 

Parallel design approach uses the same number of rules 
and rule antecedents of the plant model in the fuzzy 
controller. The closed-loop fuzzy system is then given by, 

P 

I =I 
X = A , x +  B,r + 

+ (B' +AB' - B , ) r ) + 2  C w ' w '  (J'] +AJ" - A , ) x  

w' (w' (H" +AH'' - A,)x  

P (8) 

'<l 

(9 )  
H" +HI'  AJ" = AH" +AH" 

2 '  2 
where J" = 

3.3. Simplified Design Approach (SDA) 

Simplified design approach requires the subsystem in 
each rule of the fuzzy plant model possesses a common 
input matrix B=B,, and the fuzzy controller has the same 
number of rules with the same antecedents as the fuzzy 
plant madel. The closed-loop fuzzy system is given by, 

x = A , x + B r +  cw ' ( (H '  +AH'-A,)x+ABr) (11) 
P 

J = 1  

where H J  = A' + BG' , (12) 
AH] = A A ;  + ABG; (13) 

B' = B ,  ABi = A B ,  (14) 

C ~ B '  =B, CW'AB' =AB (15) 

It should be noted that in order to simplify (5) to (1 l), 
either one of the following conditions should hold: 

P P 

i=I i= l  

If (14) holds, a linear system can be obtained by feedback 
compensation (i.e. pole placement technique); otherwise, it 
is obtained by feedback linearization with respect to linear 
sub-systems satisfying (15). 

3.4. Stability and robustness analysis 

In the following paragraph, we proceed to the stability 
and robustness analysis with reference to GDA. The 
analysis procedures for PDA and SDA are similar to those 
of GDA, and the results will be given without proof. 
Consider the Taylor's series 

(16) 
where o(Ar) is the higher order terms and At > 0 ,  
x(t +At) = x(t) +X(t)At + o(At) 

A ~ + o +  At 
From (5) and (1 6), 

+ AHg - A , )x(i) + (B - B , )r + AB'r))AtIl+ I[o( At)[/ 

where 11 . 11 denotes the 12 norm for vectors and l2 induced 
norm for matrices. From (1 8), 

(B' - B,)r + AB'r)]At/l + Ilo(Af)ll} / At 
From (17) and (19), 

((I + A ,At(( - 1 
p[Ao]= lim 

Ar+O+ At 

is the corresponding matrix measure of the induced matrix 
norm / /Ao 11 ; A,,, (.) denotes the largest eigenvalue of the 

matrix; A,' denotes the conjugate transpose of A,. From 
(W, 
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P 

1=1 
+ c WI I ~ ( B I  + AB' )rll 

Let p [ A o ]  be designed such that 

p [ A  , ] I -(liH1' - A , 11 + 11AH" l l m a x  ) - E for all i ,  j (23) 

where l1AHr1 11 is the maximum value of the uncertainty 

IIAH') 11,  and E is a designed positive constant. Increasing 

the value of E will usually result in a system with improved 
performance but degraded robustness. From (22) and (23). 

max 

where to is an arbitrary initial time. Based on (24), there 
are two cases to prove the system stability: r = 0 and 
r + O .  
Proof. For r = 0, from (24), 
d 
- ( ~ ~ x ( t ) ~ ~ e E ( r - f ~ )  I o 
dt - IIx(t)lleE(r-rn) I Ilx(t, 

3 ilx(t)ll I IJx(t, )Ile-E(r-lo) (25) 

Since E is a positive value, IIx(t)ll+ o as t --;r CQ . 
For r f 0 ,  from (24), 

~ ~ x ( t ) ~ ~ e E ( r - r o )  I ~ ~ x ( t o ) ~ ~ + ~ ~ o  5 wi/l(Bi +AB1)rlke(r-'o)dr 

* lix(t)lleE(r-fo) I ~ ~ x ( t o ) ~ ~ + ~ ~ ( f i  + AB)rllj; ea('-'o)dz 

where 

F l  

Since the right hand side of (26) is finite if r is bounded, 

Hence, condition (23) provides a sufficient criterion of 
stability for the system of (5) .  The stability criterion and 
the robust area in the uncertain parameter space of the 
closed-loop fuzzy systems can be summarized by the 
following two theorems. 
Theorem 1. Under GDA, the fuz zy  control system as 
given by ( 5 )  without uncertainty, i.e. IIAH'jII = 0 ,  is stable 

the system states are also bounded. QED 

if A, is designed such that p [ A , ]  as defined in (21) has 
the property: 
p[A, ] I -1IHO - A , / /  - E , for  all i and j .  (27) 

Under PDA, the fuzzy control system as given by (8) 
without uncertainty, i.e. I/AH"I/ = 0 and I/ AJv  II = 0 ,  is 

stable if A ,  is designed such that p[A,] as defined in 
(21) has the property: 

p[A,]<llHI' - A , / ~ - E ,  fora l l i .  (28) 
and 

p[A,]IlIJ'j -A,II-E,foralli<j (29) 

Under SDA, the fuzzy control system of (11) without 
uncertainty, i.e. llAHJ[I = 0 ,  is stable if A, is designed 

such that p[Ao] as defined in (21) has the property: 

p[A,] I llHj - A, I/ - E ,for all j .  (30) 

Theorem 2. The robust area of a fuzzy control system is 
defined as the area in the parameter space inside which 
uncertainties are allowed to exist without affecting the 
system stability. 

Under GDA, with the uncertain fuzzy control system given 
by (5), the robust area is governed by, 
IbH ij I/ Robust area S-p[A,]- / IH" -A,II-E fora l l i , j  (31) 

The uncertain fuzzy control system is stable if the 
uncertainty I/AH"/I, with ~ ~ A H " ~ ~  as its maximum 

max 
value, satisfies the following condition: 

IIAH1 '  11 I / A H 1 '  llmax / I A H "  I/Robust area , for all i, j (32) 

Under PDA, with the uncertain fuzzy control system given 
by (8), the robust area is governed by, 

I-p[A,]-JJH" -A011-e, forall i (33) 
Robust area 

JJ AH ji 11 
and 

S - p [ A o ] - I / J v  -AOII-&, fora l l  i<j (34) 
lIuij 11 Robust area 
The uncertain fuzzy control system is stable i f  the 
uncertainties IIAH" I/ and I/AJ" 11, with I/AH" I/ and 

max 

IIAJ" 11 max 
the following conditions: 

as their maximum values respectively, satish 
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Under SDA, with the uncertain fuzzy control system given 
by (1 l), the robust area is governed by 

I +[Ao] - llHJ - Ao/I - E ,  for  a l l j  (37) 

The uncertain fuz zy  control system is stable i f  the 
uncertainty IIAH’lI, with IIAH’II as its maximum 

values, satisfies the following condition. 

11” I/ ‘ k H ’ l l m a x  ‘ IIAH’llRoburt area ,for all j 

/Im ’ I/ Robust area 

max 

(38) 

esign ~ ~ t h o ~ o l ~ ~ y  of ~ u ~ t i ~ l e ~ g r i ~ - ~ o ~ t  
fuzzy controller 

Based on the analysis result of the last section, a 
systematic MGP design methodology is introduced to deal 
with nonlinear systems subjected to large parameter 
uncertainties that cannot be handled by employing the SGP 
approach. The proposed MGP approach is to design a 
number of SGP fuzzy controllers which give good 
performance in local regions of the parameter space. The 
SGP fuzzy controllers are combined so that the union of 
their robust areas fully covers the whole uncertain 
parameter space. The situation is depicted in Figure 1. In 
this Figure 1, the circles denote the robust areas of the 
grid-points (which are the centers of the circles denoting 
the nominal system parameters of the local systems). The 
dotted rectangle is the operating uncertain parameter 
space. During the operation, an SGF fuzzy controller is 
chosen if the parameter are inside its robust area. 

On designing controllers in other grid-points, it can be 
assumed that the nominal parameters at grid-point GO are 
shifted to grid-point Gq by AA,, E YInX” and 

AB,, E %””” which are constants. A compensated 

feedback gain , AGG, E 31“’” corresponding to grid-point 

Gq is needed to compensate the uncertainties to keep the 
system stable. The closed-loop systems in (5 )  (GDA) and 
(1 1) (SDA) which deviate from grid-point GO by AA,, 

Gq are given as follows. (The design procedures 

for FDA is similar to that of GDA). 
t 

I .e 

Figure 1. The idea of the multiple-grid-point approach. 

P C  

X = A o x + B o r  + c w‘m’((”” +AHLJ +AA,, 
1=1 J=l 

+ A B G , ( ~ d o  + A G ~ ~ ) + ( B ~  +AB’)AG,, - ~ , > x  (39) 

+(B’ -Bo)r+(AB’  +ABGq)r)  
For the case with a common input matrix (B) (SDA), 

Y 

X=A,x+Br+  C w ’ ( ( H ’ + ~ ’ + a A , , + ~ , , ( G ~ ,  
J=l W )  

t AGG,) + (B + AB)AGGq - A,)x + (AB + ABG,)T)  
The stability criterion for (39) becomes 

llAH” + M G ,  + A B , ( G ~ ,  +AGGq) 
(41) + (B’ + AB’ )AG ,, I/ I -y[Ao]- IIHv - A o  1)- E max 

and that for (40) becomes 

The resultant feedback gain 6 / ~ ,  is defined as 

G;, = CAo +AGGq (43) 
Based on (41) and (42), there are two cases to be 
considered for the design of the feedback gains on other 
grid-points. 
Case I: Common input matrices (B) and hB = 0 

system of (42) become (23) with AB = AB,, = 0 .  
occurs when, 

The solution of (42) is, 

This is the simplest case. The trick is to make the 
It 

A A G q  +BAGG, = 0  (44) 

AGGq = -B-’AAGq if B is a square matrix (45) 

AGG, = -(BTB)-l BTAAG, if B is not a square matrix(46) 

Note that (46) is a solution only when 
AAGq-B(BTB)-lBTAAGq = Q .  If it can not be 

satisfied, the design methodology given in case I1 should 
be used. The value of AA Gq is given by 

(47) 

where aki is an integer corresponding to the number of 
shifts for the row-k column-1 parameter of AAGq from 

A,, , k and 1 =1,2, ..., n. The distance of this element from 

that of GO is akl IAal. IAul is the bound of each uncertain 

element of AA and is defined as 

For the case without common input matrix (B) (GDA), 
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(48) 
Robust area 

m i n i p  11 
I4= ' n 
By choosing the bound of fAul as (48), 

~/IA'4'llmaX > -I1 AA which 

means the stability criterion is always satisfied. The proof 
can be obtained from Appendix A by assuming [Ab[ = 0 .  
From (44) to (47), (42) becomes (23), implying that the 
system is stable by using the control law of (43) when the 
parameters are shifted by AAGq. In this case, the size of 
robust area for each grid-point is the same as that of GO. 
Case II: AB f 0 

In this case, the design of the feedback gain on other 
grid-points becomes difficult. As in case I, we want the 
sum of the terms with subscript Gq in (41) and (42) to be 
equal to zero. However, there are no solutions for both 
cases. One way to design the controllers for grid-points 
other than GO is by choosing another A, and redesign the 
fuzzy controller such that the inequalities of (41) and (42) 
hold. In this way, the robust area for each controller may 
be different. The design can be summarized as follows. 
Assume that the set of control laws is 

llmi I1 Robust area = I i M i  llRobust area 

~ ( G G I  I , ( A A G I I .  -GI I ) ) .  (GGI~. (MGI I  s A B c 1 2 ) ) .  '.. (GcI,. (AA,,, ,ABcir)X (49) 

(Gc,, . (AAc,I.ABG,I )I. (GG,~.  (aG,\, . A B c , ~ ) ) ,  '.. (GG,, . (a,,, . AB,,, 1)) 

where r, s and t are positive integers, GGuv is a matrix 
containing all GLuv is the control laws corresponding to 
the parameters shifted by ( AA Guw , AB Guv ). They serve 
the same function of AAGq and ABGq as in case I. 

Corresponding to each pair, a control law, GG,,, is 
designed. For each fuzzy controller with control law GG~", 
there are robust areas existed in the A and B parameter 
spaces. Hence, stable and robust fuzzy controllers for each 
local plant which has system parameters of Abo +AAGjk 

and B& +ABGjk can be designed. For each designed 

fuzzy controller, it has its robust area in the A parameter 
space and B parameter space. These robust areas must be 
designed such that they overlap with the adjacent ones and 
the whole operation spaces in A and B parameter spaces 
are fully covered. The bounds of the elements of the 
uncertain parameters for the local system with a given 
robust area are given in Appendix A. 

5. Selection of control law and its effect to the 
overall system stability 

When the robust area of a SGP fuzzy controller cannot 
cover the whole operation parameter spaces, changing of 
the fuzzy controller from one grid-point to another is 
necessary to keep the system stable. The choice of the 

FUZZ-IEEE'97 

SGP fuzzy controller is based on the information of the 
parameter uncertainties. Intuitively, if either one of the 
following conditions occurs, the current control law must 
be changed to stabilize the system. 

IAa jk I = WiAUfik > lAUl fOrj, k=1,2 ,..., n (50) 

lAb,ll= $ W ; A ~ : ~  > ( A b (  forj=1,2 ,..., n, 1=1,2 ,..., m (51) 

where Aufik and Abjr (measured or estimated parameter 

uncertainties), are the row-j column-k and row-j column-l 
elements of AA' and AB' respectively. The control law 
corresponding to a grid-point is used if the distance 
between the measured or estimated parameters and the 
grid-point is the shortest and the robust area of that grid- 
point covers the uncertainties. 

Due to the changing of the fuzzy controllers to cope 
with the unexpected contingencies, it seems that there is a 
possibility to cause instability. This case is revealed in 
Figure 2. In this figure, the left and the middle diagrams 
are two stable local systems. However, when these two 
systems switch at the instants during the phase trajectory 
hits the horizontal axis of the left diagram or the vertical 
axis of the middle diagram, the resultant phase trajectory 
becomes the one in the right diagram. This is an unstable 
system as the system states move away from the origin. 
Still, this case never happens in our MGP approach. as the 
norm of the system states is exponential decaying which is 
governed by the time constant, 1 / ~  ( ( 2 5 )  and (26)). Hence. 
the systems states of a MGP control systems must always 
approach the origin for (25) (globally exponentially stable) 
or be bounded (26). 

i = l  

;=I 

f x2 

Figure 2. Phase planes of stable and unstable systems 

6. Accessibility of uncertainties and its effect 
to the overall system stability 

The fuzzy controller is selected based on the 
information of the uncertain parameters. For measurable 
uncertain parameters, the measured information is then 
used directly for choosing the control law. For 
unmeasurable uncertain parameters, a parameter estimator 
can be applied to estimate the uncertain parameters and use 
them to choose the control law. 

The overall system stability is guaranteed for the latter 
case by the following proof (assuming tha. the problem 
mentioned in section 5 is solved). Consid- ~ an uncertain 
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fuzzy control system with a parameter estimator applying 
GDA (Similar results can be obtained for PDA and SDA), 

x =  C C w ‘ m J ( ( A ’  + A A i ) x f ( B ’  +Ak’)u+f(e ,e ) )  (52) 

where AA’  E nnxn and A g ’  E nnxm are the estimated 
parameters, e E % n x l  is the difference between the actual 
and estimated system states, and f (e ,e)  E nnxi is the 
error function which satisfies the following condition, 

P C .  

i = l  j=1 

l imf(e ,e )=O (53) 
i--fm 

Refer to (52), the system can be viewed as subjecting to 
estimated uncertain parameters with f (e ,e )  as an extra 
input. When f (e, e) f 0 ,  it can be shown that the norm of 
the system states are bounded by following the steps in 
section 3.4. Hence, the overall system is stable. When 
f ( e ,  e) = 0 ,  (52) is reduced to the system of (5), and (25) 
or (26) can be obtained. Hence, the overall system is still 
stable if the control law is applied and the estimated 
uncertain parameters are inside its robust area. This is an 
important issue which has not been mentioned in [4]. 

7. Conclusions 

The stability and robustness of a general multivariable 
uncertain fuzzy control system are analyzed. The stability 
criterion and robust area with respect to a single-grid-point 
in the parameter space are derived. By using the simple 
and easy-to-understand stability theory derived, a stable 
and robust fuzzy controller can be  designed easily and 
systematically. Based on the analysis results on the SGP 
approach, a systematic design methodology for uncertain 
nonlinear systems subjected to large uncertainties using a 
multiple-grid-point approach is presented. 
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Appendix A 

The bounds of the elements of the parameter 
uncertainties of AA’ E nnxn and AB‘ E !)Inxm are 
defined in this appendix such that the stability criteria in 
theorem 1 and 2 are always satisfied. we start with 

G should be chosen if it maximizes (A2). Let (A2) 
= min1lAH” 11 , then, 

1.J Robust area 

min1lAHu 11’ 
‘ I  Robust area 

= O  - 
n 

By choosing lAal and IAbI with (A3), the following 
condition holds. 

For a SGP approach and a given robust area, if lAal and 

]Ab1 are chosen using (A3), then (A4) will always be 
satisfied. 
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