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Abstract 
This paper presents the stability and robustness 

analyses of an uncertain fuzzy control system which is 
formed by an uncertain fuzzy plant model and a fuzzy 
controller. The fuzzy plant model with parameter 
uncertainties describes exactly the behavior of an 
uncertain nonlinear plant. Three design approaches are 
introduced to close the feedback loop. Based on the 
Lyapunov's stabili9 theory, new stability criteria and 
robust areas are to be derived without resorting to a 
common Lyapunov function. An application example on 
stabilizing an uncertain nonlinear mass-spring-damper 
system will be given to illustrate the merit. 

1. Introduction 
As fuzzy control was found capable of tackling 

uncertain nonlinear systems, it has become a hot topic of 
research. The design is usually by heuristic methods. 
Although they are simple and easy to understand, the 
stability and performance are not guaranteed. To prove the 
stability, researchers had derived different conditions 
based on sliding mode control technique [3] and adaptive 
technique [4]. One significant work [l] proposed the use 
of a fuzzy model. If this fuzzy model can describe exactly 
the system dynamics, a stability condition can be derived 
by finding a common Lyapunov's function [2, 51. 
However, the condition is valid to systems without 
parameter uncertainties. In this paper, we analyze the 
stability and robustness of an uncertain fuzzy control 
system. The fuzzy model is modified to one with 
parameter uncertainties such that it can exactly describe 
the behavior of an uncertain nonlinear system [6]. Based 
on this modified fuzzy model, stability conditions and 
robust area are derived by applying Lyapunov's stability 
theory. Unlike [l], the Lyapunov's functions used no 
longer need to be common. 

2. Fuzzy plant model and fuzzy controller 
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An uncertain multivariable fuzzy control system can be 
regarded as consisting of a fuzzy plant model and a fuzzy 
controller closing the feedback loop. 

2.1. Fuzzy plant model with Uncertainties 
Let p be the number of fuzzy rules describing the 

uncertain nonlinear plant. The i-th rule is of the following 
format, 
Rule i: IF x1 is MI' and . . . and x,, is M,,' 

where ML is a fuzzy term of rule i corresponding to the 
stake xk,  k = 1, ..., n, i = 1, ..., p;  AAi E%"Xn and 

are the uncertainties of A'ER"'" and mi , - p m  

respectively; XE%"'' is the system state B; E 3 nxm 

vector and UE%" is the input vector. The inferred 
system states are given by 

THEN X = ( A ' + A A ' ) X + ( B '   AB')^ (1) 

i ( t )  = E wi ( X ) ( ( A ;  + AA; )x( t )  + (B' + mi ) u( t ) )  (2) 
i=I  

2.2. Fuzzy controller 
A fuzzy controller with c fuzzy rules is to be designed 

for the plant. Thej-th rule of the fuzzy controller is of the 
following format: 
Rule j: IF x1 is N) and . . . and x,, is N,' 

where Nd is a fuzzy term of rule j corresponding to the 
state xp, /.? = 1, ..., n, j = 1, ..., c; GJ E % ~ ~ "  is the 
feedback gain of rulej, r E Rmxi is the input vector. The 
inferred output of the fuzzy controller is given by 

THEN u = G i x + r  (5 )  

U = i m J ( G j x + r )  
j=  I 

0-7803-4863-Xl98 $10.0001998 iEEE 511 

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on July 7, 2009 at 04:37 from IEEE Xplore.  Restrictions apply.



In this section, the system stability and the robustness 
('I are analyzed. Theorem 1 to 4 summarize the analysis 

results for the three design approaches respectively. 
(8) Theorem 1 and 2 are directly extended from El], whereas 

Theorem 3 and 4 describe the less conservative conditions. 

'4 i m I ( x )  = 1 ,  mj(x> E io, 11 for all j 

PN{ ( X l )  O PN; (x, )o** -PUN; (%I) 

c (PN; (x1) O PN; (x, >O"."!$q: (x ,  1) 
"(x)= 

/=1 

p . ( x ~ )  is the grade of membership. 
N: 

3. Stability and robustness analysis 
The stability and robustness of the uncertain fuzzy 

control system are to be analyzed in this section. Three 
cases of controller design approaches will be investigated. 

3.1. General Design Approach (GDA) 
General design approach allows differences in the rule 

antecedents between the fuzzy plant model and the fuzzy 
controller. This approach gives designers the largest 
freedom on controller design. From (1) to (8), the closed- 
loop fuzzy system is given by, 

(9) 

(10) 

x = f w'mj((Hg + AHi)x + (B' + AB' )r) 
;=I j=1 

H" '' = A'+B'Gj,AH'i = A A ' + m ' G i  

3.2. Parallel Design Approach (PDA) 
Parallel design approach uses the same rule antecedents 

of the plant model in the fuzzy controller. Hence, some of 
the terms in (9) can be grouped together. This makes the 
stability criterion to be satisfied more easily. The closed- 
loop fuzzy system is given by, 
x =  $w'w'(H" + A H H " ) x + * $ w ' w q J U  +AJJ")x+$w'(B' +AB')r (11) 

i=l ;< j , = I  

_ _  HU + ~ j i  AHu + AHji 
(12) 

(13) 

J" = , d J u  = 
2 2 

H U  = A' + B ' G ~ ,  AHV = AA; + D ' G j  

Theorem 1. 
given by (9) without uncertainty, i.e. AH'' = 0, is stable 
the following inequality holds: 

H" P + PH" < -&I for all i andj 
where P E  32"'" is a symmetric positive definite matrix, E 

is a positive value and I E 9Inxn is an identity matrix, 1\11 
denotes the lz vector norm or induced matrix norm. 

Under PDA, the fizzy control system as given by (12) 
without uncertainty, i.e. AH" = 0 and AJ" = 0 ,  is stable 
if the following inequalities hold 

Under GDA, the fuzzy control system as 

T 

H " ~ P  + PHI' < --E1 for all i 

J ~ ~ P  + PJ" < -E][ for all i<j 

Under SDA, the fizzy control system of (15) without 
uncertainty, i.e. AH' = 0 ,  is stable if the following 
inequality holds: 

H ' ~ P  + P H ~  < -&I for all j 

Definition 1. The robust area of afizzy control system is 
defined as the area in the parameter space inside which 
uncertainties are allowed to exist without aflecting the 
system stability. 

Theorem 2. Under GDA, with the uncertain fizzy control 
system given by (9) the robust area is governed by, 
lbsTp + p ~ s  [I 
The uncertain fuzzy control system is stable if the 

I < - ( H ~ ~ P  + p ~ " )  - d for all i and j .  
Robust m a  

3.3. Simplified Design Approach (SDA) 
Simplified design approach that requires the sub-system 

matrix B, and the fuzzy controller has the same number of 
in each rule of the fuzzy plant model has a common input 

rules with the same antecedents as the fuzzy plant model. 
The closed-loop fuzzy system is given by, 

as its maximum value, satisjies the following condition: 
[m"TP+pAH" <  AH^^^+^^^" <  AH^'^^+^^^" 
i andj  

given by (12), the robust area is governed by, 

for all 
area ill I,, I 

Under PDA, with the uncertain fizzy control system 
P 

]=I 
x =  Cw'((H' +AH')x+(B'+AB')r) (14) 

I < -(H"=P +PHI' ) - &I for all i 

Ib'l'P+PJ"[( I<-(JuTP+PJU)-~Iforall  i<j 
H i = A 1 + B G ' ,  AHJ =AAJ+ABG'  
Because the input matrices are common, we have, 
B = B ' ,  AB=AB-' or, 

]=I C w'B' = B , /=1 C w'AB' = AB 

Robust m d  

(16) The uncertain fuzzy control system is stable if the 

(17) uncertainty Ik"TP+PAH'lII  and I/41"TP+PAJ"ll, 
P P 

3.4. Stability and Robustness Analysis 
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their maximum values respectively, satisfy the following 
conditions: 

miiTp + pAHii < HiiTp + pAHii < AHiiTp + pmii for all i Ix. I, I I-- 
ijTp + PAJS~ < (IU"Tp + P A J ~ ~  < JblBTp + P A J ~ ~  for all i<j 

mu Rabauama 

Under SDA, with the uncertain fuzzy control system 
given by (15), the robust area is govemed by 

l P J T p  + p m j [  I < - ( H ~ ~ P  + PHI) - d for  all j 
Robust m a  

The uncertain jufuur control system is stable if the 

as its maximum value, satisfies the following condition: 
p + PAHJl < p T P  + PAHJI < PJ'P + PAHJ 

Theorem 3. Under GDA, the fuur control system as 
given by (9) without uncertainty, i.e. AHg = 0 ,  is stable if 
the following inequalities hold: 

for all j 
Inax I,, Iu 

I ?I P +P"EN<--d 

forall i, k = I ,  ...* p; j ,  1 = 1, ..., c. 
Under PDA, the fuzzy control system as given by (12) 

without uncertainty, i.e. AHii = 0 and AJg =0, is stable 
if the following inequalities hold: 
\ H k t T  P ct +P&H"<-d 

fori ,  k = I ,  ..., p;  j = 1, ..., c, 
Under SDA, the fuzzy control system of (15) without 

uncertainty, i.e. AHi =0, is stable if the following 
inequalities hold.: 

H kT P k +P'H*<--d 

+(I--)mut[L(HiTP' +PkH'). O]<-d p t* 

for all j ,  k = I ,  ..,, p. 

Theorem 4. Under GDA, with the uncertainfiuzy control 
system given by (91, the robust area is govemed by, 

Tpkl+ptlHjl I 
P X C  Robuam 

for all i, k = 1, ..., p;  j ,  1 = 1, ..., c, and ij # kl. 

The uncertain fuzzy control system is stable if the 

&TPkI +p"L\Hij with uncertainty II 
p c T p '  + P ~ A H ~  as its maximum value, satisfies 

the following condition: 

< + pkl"j-1 
Robust area 

for all i and j .  

given by (12). the robust area is govemed by, 
Under PDA, with the uncertain fuzzy control system 

Hbt'Pbt+PBHbt 1 
<- - ( I -7 )L(JeTPbt  +P"JS)I-dforaIlk; i <  j 

bijTPbt +Pet J Y I -  +L(JSTPct  +Py J N  ) 20 for all i < j; k 
P 2  P 

The uncertain fuur control system is stable if the 

uncertainty I* + p'mul and b,'., + pM@ 

1 and p + p f i ~ g i  as 

its maximum value respectively, sat i f i  the following 
conditions: 

lllpx mu 

.Tpu +pim~i<p + p u a ~ l  <p + p u m ~ l b ,  forg i ,  
I I 

r J - T  P + P A J + ~ < ~  +P'AJJ"] I <p +P~AJ"IU_ IC. fwaicj; t 

Under SDA, with the uncertain fuay control system given 
by (15). the robust area is governed by 

H"P'+P'Hk 1 
-(I--)&fH"Pk +P*H')-d IT k P P 

P + + H * ~ - - + ~ ( W ~ P ~  + P ~ W ) > O  

for all k + i. 
The uncertain fuzzy control system is stable if the 

uncertainty 1 p . I i T p '  +PkAH'I, with 

I ~ A H ~ ~ P ~  + P ~ A H '  as its maximum value, satisjies 

the following condition: 
I, 
IPk +P"I <II..'TP' +P" 

11111 

for all k # i. 
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Proof: In the following, we will prove the theorems above 
under GDA only. The proofs for PDA and SDA are 
similar to those of GDA and are omitted. Consider the 
Lyapunov's functions, 

Vk'=-x P x fo rk ,= l ,  ..., p a n d l = I ,  ..., c, k # i  and 1 T kl 

2 
l r j .  (18) 
Differentiate (1 8), we obtain, 

(19) 

L e t V k ' = V , P k l = P a n d  
~ ' i ~ p + p ~ ' i  + &jTp+pmBn I<-&I for all i andj. (21) 

From (20) and (21), 
I1 milx 

From (22), there are two cases to be investigated: r = 0 and 
r # 0 . For the former case, (22) becomes, 

(23) 
E E v 5 ---XTX = -- 2 2 Ilxll' 5 

From (19), we have 
1 1 v = y X T h  2 -&,,,, 2 (P)1$112 3 V 2 &,,n ( P ) l $ l l T  (24) 

where Ln(.) denotes the minimum eigenvalue of a matrix. 
From (23) and (24), 

where to is an arbitrary initial time. (25) implies 

llx(t)/l+ 0 as t 00 . For r # 0 , from (22) and (24), 

m a x j ~ ( 5 '  +m')rs- -- 
(I-e z,&P)(~-'*)) (27) 

From (27), 11x(?)ll is bounded if r is bounded. Hence, we 
can prove the condition of (21) is a condition for system 
stability. By assuming that the system has no parameter 
uncertainty, the stability condition for GDA in Theorem 1 
is proved. The robust area under GDA in Theorem 2 can 

be proved by replacing AHQTP+PAH1' // with 

This ends the proofs of the 

-- 
!Jx(r) ls llx(t. z & p )  + I 

& 

ll max 

. 
Theorem 1 and Theorem 2. 

Robust area 
I1mTp + PAHQ (1 
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It should be noted that if 

, the above condition is reduced to (21). 
Let 
&TPki + p k ~ H i j  + b i j T T P t l  + p k ~ m i j  I-_ 

for all i, j ,  k, I ,  0 # kl. 
Condition of (28) will lead to the conditions for GDA in 
Theorem 3 and Theorem 4. Under (28), 

E 

2 i= I 
v k' 5 - - -XTX + 5 W i X T P  (B' + ")r (29) 

Compare (21) and (28), we find that the condition of (28) 
is less conservative than (21). (29) is similar to (22). 
Hence, the stability of the uncertain system can be proved 
for the two cases of r mentioned early. Recalling that the 
inequality (29) holds under the assumption that the product 
of the grades of membership wkm' is the largest, the 
system is stable only in a certain range of x that satisfies 
the assumption. This range of x will change as the largest 
product value of the grades of membership changes during 
operation. Hence, the stability is guaranteed for a local 
system corresponding to a particular range of x. To prove 
the overall system stability, (25) and (27), we can see that 
the norm Ib(r)ll is always exponentially decaying. The 
switching from one local system to another only results in 
a change of time constant only. Therefore, the system 
stability is guaranteed globally. This ends the proofs of 
Theorem 3 and 4. For the Theorem 3 and 4, the total 
number of Lyapunov's functions involved is pxc. 

4. Application Example 
An application example on stabilizing an uncertain 

nonlinear mass-spring-damper system is given [5]. The 
behavior of this system can be described by 

where M is the mass and U is the force, f ix)  describes the 
spring nonlinearity and uncertainty, g(x,.i) describes the 
damper nonlinearity and uncertainty, and #(i) describes 
the input nonlinearity and uncertainty. Let 
g ( x , x )  = D(c,x + cz.i + c3(t)x) 

M i  + g ( x , i )  + f ( x )  = Q ( i ) u  (30) 

f ( x )  = K(c,x+':sx3 +c, ( t )x )  (31) 
#(i) =1.4387+c7i2 + c 8 ( i )  

The operating range of the states is assumed to be within - 
1.5 and 1.5. The parameters are chosen as follows: 
M = 1.0, D =  K=1.0, c1 =o, c2 = 1 ,  

so that cy +c," 
) sin( lot) cy +c: 

c3 ( t )  = - +(c,L -2 
2 

so that c6" +c," c6" + c I  )CO@) 
c6(t)=- + (c," -2 

2 
c7 = -0.13, L U  

C6(t)E[C6 rC6 1 %  
) cos(5t)) cos(%) so that c8" +c: c8" +c: 

+(C: -- CfI ( t )  = (- 

c 8 ( i ) E [ c 8  ,c8 1,  c: =-0.1, ck =-1.26, c t  =-0.1, 

cy = 0.1, c t  = 1.26, cf = 0.1. It can be seen that the 
parameter uncertainties c3, c6 and c8 are modeled as 
functions of time in order to show the robustness of the 
designed controller. The nonlinear system then becomes 
P = - i - O . O l x - O . l ~ ~  - ~ ~ ( t ) X - - ~ ~ ( t ) ~ + ( 1 . 4 3 8 7 - 0 . 1 3 i ~  +c,(~))u (32) 
which can exactly be represented by the following rules. 
Rule i: IF x is MI and is Mi 
THEN x = (A' +AA')x+(B' +")U, i = 1,2,3,4 (33) 
with the r-norm operation being chosen as the 
multiplication. The fuzzy rules of the fuzzy controller 
designed by GDA are defined as follows, 
Rule 1: F x i s  MI and f is Mi 

where the membership functions of M', , i= 1,2, 3,4, 01 = 

2 2 
L U  

THEN u=Gix j =  1,2 ,3 ,4  (34) 

X 2  
1, 2, are &I (X I  = &; ( x )  = l-- 

2.25 ' 

A'=[ -2 0 1, .'=[ -2 "1, A3=[ - 2  "1, 
-2.01 1 -2.01 1 -2.235 1 

B'=[ 1.4387 " 1. A4=[ -2.235 - 2  "1; 1 B2=[ 0.5613 1, 
B3=[ 1.4387 " 1, 

gains are designed as G"=[1.3971 -2.08521, GI2=[ 3.5810 
-5.34471, GI3=[1.5535 -2.08521 and GI4=[3.9818 - 
5.34471 so that H I '  = HZ2 = H33 =Ha = 
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p = [ y ]  . Figure. 1 and 2 show the responses of x ( t )  

and i ( t )  with (solid lines) and without (dotted lines) 
parameter uncertainties with initial states of x = [-1, - 11 . 
The analysis results are tabulated in Table I which shows 
that the system is stable according to Theorem 2. 
Moreover, from (25), the system performance can be 
predicted to lie inside the range: 

D 
-02 

-0.4 

-0.6 

-0.8 

IIX(t>li I fit?-$ 
where E is chosen as 0.01. 

. 

. 

- 

(35) 

5. Conclusions 
The stability and robustness of uncertain fuzzy control 

systems have been analyzed. Three design approaches of 
fuzzy controller have been introduced and investigated. 
Stability conditions and robust areas for each design 
approaches have been derived based on Lyapunov’s 
stability theorem. The Lyapunov’s functions for different 
subsystems are allowed to be distinct, and as a result, less 
conservative stability conditions have been obtained. An 
application example on stabilizing an uncertain nonlinear 
mass-spring-damper system has been given. 
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D 

Figure 1. Response of x(t) of system with (solid 
line) and without (dotted line) parameter 
uncertainties. 

‘0 2 4 6 a 10 
Time (Sec.) 

Figure 2. Response of i ( t )  of system with (solid 
line) and without (dotted line) parameter 
uncertainties. 

Table 1. The stability and robustness analysis result. 
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