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Abstract— Economic load dispatch is one of the optimization
problems in power systems. This paper presents an improved
genetic algorithm for economic load dispatch with valve-point
loadings. New crossover and mutation operations are introduced.
The solutions of the economic load dispatch with valve-point
loadings under three cases are solved by the improved genetic
algorithm. Test results are given and compared with those from
different published genetic algorithms. It will be shown that the
proposed improved genetic algorithm performs better than the
published genetic algorithms. ’

Index Terms—Economic
algorithm (GA).

load dispatch (ELD), genetic

1. INTRODUCTION

Engincers always concern the cost of products or services.
[n a power system, minimizing the operation cost is very
important, Economic load dispatch (ELD) is a method to
schedule the power generator outputs with respect to the load
demands, and to operate a power system most economically.
The input-output characteristics of modern generators are
nonlinear by nature because of valve-point loadings and rate
limits. The problem of ELD is multimodal, discontinuous and
highly nenlinear.  Global search techniques had been
employed to solve the ELD problems [1-5, 9-11]. These
techniques include evolutionary programming [1-3}, Tabu
search [4] and genetic algorithm [5, 9-11).

Genetic algorithm {GA) is one of the global search
techniques especially useful for the complex optimization
problems with a large number of parameters of which an
analytical solution is difficult to obtain. Traditional GA [6]
has some drawbacks when applying to multidimensional,
high-precision numerical problems. Different genetic
operations have been proposed to improve the efficiency of
GA. Genetic operations usually refer to the operation of
crossover and mutation.  While random mutation and
crossover are widely used, different modifications to the
crossover and mutation operations have been reported. For the
crossover operation, arithmetic crossover, heuristic crossover
and simple crossover were proposed [6-8]. For the mutation
operation, uniform mutation and non-uniform mutation can be
found [6-8]. .

In this paper, an improved genetic algorithm for economic
load dispatch is proposed. New genetic operations of
crossover and mutation are introduced. On realizing the
crossover operation, the offspring spreads over the domain so
that a higher chance of reaching the global optimum*can be
obtained. On realizing the mutation, cach gene will have a
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chance to change its value. The search domain of the selected
gene will be contracted at a rate governed by a monotonic
decreasing function. Consequently, the search domain will
become smaller when the training iteration number increases
in order to realize a fine-tuning process. By introducing these
genetic operations, the proposed GA performs more efficiently
and provides a faster convergence than the published GAs.

This paper is organized as follows. Section II presents the
economic load dispatch with valve-point loadings problem.
Section lII presents the improved genetic algorithm. The
modified genetic operations will be introduced. Economic
toad dispatch using the proposed GA will be discussed in
section ['V. An application example on economic load dispatch
is given in session V. A conclusion will be drawn in section
VI

H. ECONOMIC LOAD DISPATCH WiTH VALVE-POINT LOADINGS
PROBLEM.

The economic load dispatch with valve-point loading
problem can be formulated into the following objective
funciion:
Min},C,(P,), (1)

i=l

where C, (P,{ } is the operation fuel cost of generator /, and »

denotes the number of generator. The problem is subject to
balance constraint and generating capacity constraints as
follows:

D=YP = Pios » {2)
i=1

f

1.min

<P <P,

f,man

,i=1l...n,

3

where D is the load demand, P, is the output power of the i-th

generator, P,

085

is the transmission loss, P, and P, are
L:,max F min

the maximum and minimum output powers of the i-th
generator respectively.

The operation fuel cost function with valve-point loadings
of the generators is given by,

P, =P +bp, o+l xsinlxlp, - P, )] Y
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where ¢, b, and ¢,, are coefficients of the cost curve of the

i-th generator, ¢ and f, are coefficients of the valve-point

loadings.  (The generating units with multivalve steam
turbings exhibit a greater variation in the fuel-cost functions.
The valve-point effects introduce tipples in the heat-rate
curves.)

1. IMPROVED GENETIC ALGORITHM

The published GA process [6-8] is shown in Fig. 1. First,
a population of chromosomes is created. Second, the

chromosomes are evaluated by a defined fitness function.

Third, some of the chromosomes are selected to undergo
genetic operations. Forth, genetic operations of crossover
(arithmetic, heuristic or one-point crossover, depending on
which one gives the best result in each iteration) and non-
uniform mutation are performed. The produced offspring
replaces the chromosome with the smallest fitness value in the
mitial population, and forms a new population. This GA
process repeats until a user-defined criterion is reached. In
this paper, new genetic operations are intreduced to improve
the performance. The modified GA process is shown in Fig. 2.
Its details are given as follows.

A. Inifial Population

The initial population is a potential solution set P. The first
set of population is usually generated randomly.

P={p. P il ) (5)

p=lp, p b, b | L2 popsice
ji=1,2, ..., no_vars; ' (6}
paral | < p, < paral | 16)]

where pop_size denotes the population size; no_vars denotes
the number of variables to be tuned; Py, s i=1,2 ..,

pop_size; j =1, 2, ..., no_vars, are the parameters to be tuned;

E)

; - .
para,, and para,  are the minimum and maximum values

of the parameter b, respectively for all i. It can be seen from
(3) to (7) that the potential solution set P contains some
candidate solutions p, (chromosomes). The chromosome p;

contains some variables o, (genes).

B Evaluation

Each chromosome in the population will be evaluated by a
defined fitness function. The better chromosomes will return
higher values in this process. The fitness function can be
written as,

Jitness = f{(p,) . (8)

The form of the fitness function depends on the application.

Procedure of the published GA
begin
T—=0. # 7. iteration number
Initialize P(1). #P(7): population for iteration 7
Evaluate f{P(1)). # AP(T))-fitmess function
while (not termination condition) do
begin
T 7+
Select 2 parents p; and p, from P(1— 1).
Perform genetic operations (crossover and mutation),
Reproduce a new P(7).
Evaluate f{P(1)).
end
end .

Fig. 1. Published GA process.

Procedure of the improved GA
begin
T30, {1 T iteration number
Initialize P(T). #P(7): population for iteration 7
Evaluate f{P(7)). # AP(D):fitness function
while (not termination condition} do
begin
T=>T1+1.
Select 2 parents p; and pz from P(t - 1}.
Perform crossover operation according te equations {11)-(14).
Perform mutation operation accerding to equation (18).
Select the largest offspring between that after crossover and
mutation processes as the actual offsproing os.
/f reproduce a new P(7)
if random number < p,
acceptance
0$ replaces the chromosome with the smallest
fitness value in the popuiation,
else if fos) > smallest fitness value in the P(1—- 1)
os replaces the chromosome with the smallest
fitness value.

// pa: probability . of

end
Evaluate f{P(7)).
end

end

Fig. 2. Improved GA process.

C. Selection

Two chromosomes in the population will be selected to
undergo genetic operations for reproduction by the method of
spinning the roulette wheel [6]. It is believed that high
potential parents will produce better offspring (survival of the
best ones). The chromosome having a higher fitness value
should therefore have a higher chance to be selected. The
selection can be done by assigning a probability ¢; to the
chromosome p,:

__Jf®)
ql - pop _ size

fpy)

k=1

Li=1,2, ..., pop_size.

&)

The cumulative probability g, for the chromosome p, is
defined as,

4,=34q.i=1,2, .., pop_size. (10)
k=l
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The selection process starts by randomly generating a nonzero
floating-point number d € [0 l] . Then, the chromosome p,

is chosen if g?H <d<gq ,i=12, .., pop_size, and 4o =0.

In this way, a chromosome having a larger f{p,) will have a
higher chance to be selected.  Consequently, the best
chromosomes will get more offspring, the average will stay
and the worst will die off. The process is repeated so that two
chromosomes are selected to undergo the genetic operations.

D. Genetic Operations

The genetic operations generate some new chromosomes
{offspring) from their parents after the selection process. They
include the crossover and the mutation operations.

I} Crossover: The crossover operation is mainly for
exchanging information from the two parents, chromosomes
m and p,, obtained in the selection process. The two parents
will produce one offspring. The details of the crossover
operation are as follows. First, four chromosomes will be
generated according to the following formulae,

_ +p
o, =_o}i oy - Osl.,._»mi|:—p1 5 z, (b
0; =0, 04 o }: Proax (1= W) + max (p,,p, )w
(12)
0, =0, 0y o0y ] =P, (1- W)+ min (pi P ) w
(13)
o, = {o . O, o, :\
S¢ R 52 Sno _vers
(14)
— P PP M= W) + (P +P,)W
2
Pow = [Parall'nax para:mx para:;;;"""l ! {15)
pmm = [para:nll‘l para:'nn para::n_uar‘rJ > (16)

where we [0 1] denotes the weight to be determined by

users, max(p,,pz) denotes the vector with each element
obtained by taking the maximum between the corresponding
elements of P and P2 For instance,

max([t -2 3][2 3 1]j=[2 3 3] Similarly,

min(p,,p, ) gives a vector by taking the minimum value. For
instance, min([l -2 3],[2 3 l])z[l -2 I] . Among

O’,

e

too,, the one with the largest fitness value is used as the

offspring of the crossover operation.
crossover operation is defined as,

The offspring after

O ]
Sno _vars sios

where /,; denotes the index { which gives a maximum value of
floy)i=1,234

If the crossover operation can provide a good offspring, a
higher fitness value can be reached in less iteraticn. In general,
two-point  crossover, multipoint crossover, arithmetic
crossover or heuristic crossover can be employed to realize the
crossover operation [6-8]. However, the offspring generated
by these methods may not be better than that of our approach.
As seen from (11) to (14), the offspring spreads over the
domain: (11) and (14) will move the offspring near the centre
region of the concerned domain (as w in {14) approaches 1,

PP
2

o, approaches ), and (12) and (13) will move the

offspring near the domain boundary (as w in {12) and (13)
approaches 0, 0, and 0, approaches Ppumax and P

respectively).

2) Mutation: The offspring (17) will then underge the
mutation operation, which changes the genes of the
chromosomes. Consequently, the features of the
chromosomes inherited from their parents can be changed. In
general, various methods like boundary mutation, uniform
mutation or non-uniform mutation [6-8] can be employed to
realize the mutation operation. Boundary mutation is to
change the value of a randomly sclected gene to its upper- or
lower-bound value. Uniform mutation is to change the value
of a randomly selected gene to a value between its upper and
lower bounds. Non-uniform mutation is capable of fine-tuning
the parameters by increasing or decreasing the value of a

randomly selected gene by a weighted random number. The
weight is usually a monolonic decreasing function of the
number of iteration. In this paper, a different process of
mutation is proposed. The details are as follows. Every gene
of the offspring o, of (17) will have a chance to mutate
governed by a probability of mutation, p, € [O 1] , which 1s
defined by the user. This probability gives an expected
number ( p, X no_vars) of genes that undergo the mutation.
For each gene, a random number between 0 and 1 will be
generated such that if it is less than or equal to p_ , the
operation of mutation will take place on that gene and updated
instantly. The gene of the offspring of (17} is then mutated by:

0, * 8ol if f(o, +80,)2 (o, ~B0})

o, = s y 2y ey
Y e, — Aol if flo, +Ae]) < f(o, —Ae!)

no_vars, (18)

where

Aog = wmr( parag,, —o, ) , (19)

AoI’; =W, r(o“ - paral, ), (20}
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aof =[0 0 Aol - 0], 21)
Aol =[0 0 -~ Aot - 0], 22

re[0 1] is a randomly generated number; w, (0 1]isa

weight governing the magnitudes of Ao and Ao; . The

value of weight w, is varied by the value of %, which serves

a fine-tuning purpose; 1 is the current iteration number, 7 is
the total number of iteration. In order to perform a local

T .
search, the value of w, becomes small as T increases in

order to reduce the significance of the mutation. Under this
assumption, a monotonic decreasing function governing w,,

is proposed to be,
{23)

where w, € [0 1] and w, > 0 are both variables to be chosen

to determine the initial value and the decay rate respectively.
For a large value of wy, it can be seen from (19} and (20) that

7 & Lo X I,
Ao;‘ = r(para,,, —o,) and Aau = r(o,, — para,,) initially
i
T I .
as (]L?] =1, which ensure a large search space. When

the value of [l—%]“r =(, it can be seen that the values of

Ao” and Ao, are small to ensure a small search space for
S
fine-tuning.

E. Reproduction

After going through the mutation process, the offspring
with a larger fitness value between that of (17) and that after
mutation will be taken as the actual offspring in the
reproduction process. This new offspring will replace the
chromosome with the smallest fitness value among the
population if a randomly generated number within G to 1 is

smaller than p,€[0 1], which is the probability of

acceptance defined by users. Otherwise, the new offspring
will replace the chromosome with the smallest fitness value
only if the fitness value of the offspring is greater than the
fitness value of that chromosome in the population.

After the above operations, a new population is generated.
This new population will repeat the same process to produce
another offspring. Such an iterative process can be terminated
when a defined condition is satisfied, e.g. a sufficiently large
number of iteration has been reached.

F. Choosing the parameters

The GA is effectively secking a balance between the
exploration of new regions and the exploitation of already

sampled regions in the search space. This balance, which
critically controls the performance of the GA, is governed by
the right choices of control parameters: the probability of
mutation (p,), the probability of acceptance (p,), the
population size (pop_size), the weight in the crossover
operation (w), and the parameters in the mutation operation
(w.and wy). Some views about these parameters are included
as follows:

- Increasing p,, tends to transform the genetic search into a
random search. This probability gives us an expected number
(P X no_vars) of genes that undergo the mutation. When p,, =
1, all genes will mutate, The value of p, depends on the
desirable number of genes that undergo the mutation operation.

- Increasing p, will increase the chance that a poor
offspring joins the population. This reduces the probability
that the GA prematurely converges to a local optimum, From
a p, of 0.1 is a good enough choice for many optimization
problems.

- Increasing the population size will increase the diversity
of the search space, and reduce the probability that the GA
prematurely converges to a local optimum. However, it also
increases the time required for the populatien to converge to
the optimal region in the search space. From experience, a
population size of 10 is an acceptable choice.

- Changing the value of w will change the characteristics of
the crossover operations. It is chosen by trial and error, which
depends on different optimization problem. For example, as w

. +
in (14) approaches 1, o, approaches El—i—l-)i

- Changing the parameters w; and w, will change the
characteristics of the monotonic decreasing function of the
mutation operation w, . " The w, will perform fine-tuning

faster as w. is decreasing, and the value wyis the initial value
ofw, .

1V. IMPROVED GA FOR ELD

In this section, the improved GA is used to solve the
economic load dispatch problem. The chromosome is defined
as follows:

p=|[7, l £, P, Pl (24)
where n denotes the number of generator and
P"imin < P_,_!_ < PL.-m yi=1,2, .., n—1. From(2), we have,

a=1

P, =D-YP +F,,. (25)
i=l

In this paper, the power loss is not considered. Therefore,

(26)

‘To ensure F, falls within the range [PLW‘,.’PL..M] , the

following conditions are considered:
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P, =p, +(p, —PL"M)

if P, > P, , 27
N R Per =PLn max ( )
TABLEI
P, =P _(PL _~P, ) UNITS DATA (13 SYSTEMS WITH VALVE-POINT LOADINGS): 2 ($/MWh), b
if P, <P, ! ! i g 28 ($/MWh), ¢ (8/h), e ($/h) AND f (rad/MW) ARE COST COEFFICIENTS,
n n Mk PL :PL vU;xi:t P "»}f,‘; i{:«} t.r 'y f T, Eb;” e e, 1] ?»xf
- n,f0in . "-L’.I', ; . i f; N ‘!fﬁ Loy 0”5‘«:& gh T
. . LN RN L N I B -
It should be noted from (27) and (28) that if the valuc of 7, is | () |(Mw) || 3 IR
. . . i 1 0 680 Q.00028 8.1 300 | 0.035
also outside the constraint boundary. The exceeding portion 2 7 360 0.00056 | 8.1 200 | 0.042
of the power will be shared by other generators in order to 3 0 360} 0.00056 | 8.1 200 | 0.042
make sure that all generators’ output power is within the safety |4 60 180 | 0.00324 | 7.74 150 1 0.063
Referr: | he £ f . for this ELD 5 60 180} 0.00324 | 7.74 | 240 | 150 | 0.063
range. Referring to (1), the fitness function for this 3 50 %0 1560354 T 772 1 240 | 150 1 0063
problem is defined as, 7 60 180__| 0.00324 | 7.74 | 240 | 150 | 0.063
8 60 180 0.00324 | 7.74 | 240 | 150 | 0.063
- g 60 130 0.00324 | 7.74 | 240 | 150 | 0.063
Jitness = —E_;C,.(P L) 29 10 40 120 | 000284 | 8.6 | 126°| 100 | 0.084
= 11 40 120 (100284 8.6 | 126 | 100 | 0.084
: . g : S 12 55 120 0.00284 8.6 | 126 | 100 | 0.084
where C, (‘PL,- )15 defined in (4). The objective is to maximize 3 =5 120 v00288 | 8.6 126 1100 T0.082
the fitness function (29), which minimizes the operation cos
function . TABLE IT
- RESULTS FOR LOAD DEMAND OF 1800MW.
Method Mean Cost |’ Max. Cost Min. Cost Std. Dev,
V. SIMULATION RESULT AGA 18195.23 18452.63 18078.39 94.620
. . . HGA 18196.95 18529.15 18077.49 90.826
In this section, the improved GA (IGA) goes t_hrgugh the SGA TTYEERT] 18517 66 1808320 101.758
ELD preblem and the results will be compared with other AHSGA 18178.92 18385.29 18078.39 77831
published GAs with arithmetic crossover and non-uniform 1GA 18096.40 18293.47 18063.58 45.795
mutation (AGA), heuristic crossover and non-uniform
TABLE III

mutation {HGA), simple crossover and non-uniform mutation THE OPTIMAL DISPATCH SOLUTION

(SGA) [6-8], and AHSGA which choose the best offspring TP W) AGA BGA SGA AHSGA IGA
among those produced by arithmetic crossover, heuristic il i
crossover and simple crossover in each iteration. The results £ 35904 | 48690 | 359.04 35904 | 26929
are the averaged ones out of 100 runs. P 224,40 150,10 154.18 22440 22027
The improved and the published GAs are applied to a 13- 2
generator system, which was adopted as an example in [10]. Tt Fs 224.40 130.00 225.18 22440 26920
is a large system with many local minimum points. The data Pq 109.87 109.91 159.74 109.87 159.73
of the units with valve-point loadings are tabulated in Table 1.
The load demand (D) is 1800MW in this example. The Py 109.87 | 10595 | 10987 | 10987 | 10934
population size used for all GAs is 10. The probability of B, 109.87 109.87 109.91 109 .87 109.87
crossover and mutation for AGA, HGA, SGA and AHSGA are - 10957 B A - -
set at 0.6 and 0.4 respectively through trial and error. The o : . i . :
shape parameter of non-uniform mutation is set at 3. -For the B 109.86 110.10 109.87 109.86 109.87
IGA, the probability of mutation and probability of acceptance 5 0987 15972 0987 109.87 109.86
is set at 0.4 and 0.1 respectively. The parameters of w, w,and s
Wy are set at 1, 0.8 and 0.1 respectively. For all approaches, Fio 7740 7188 7743 1740 77.40
the number of iteration is 1000. The simulation results over P
100 runs are shown in Table IT and Fig. 3. It can be seen that ik 740 i o 7 o
the proposed IGA performs better than other published GAs £z 92.40 93.16 92.40 92.40 92.40
(AGA, HGA, SGA, and AHSGA) in terms of operation cost B, 8576 55.00 55.01 85.76 55.00
and standard deviation. The average cost is $18096.40/h and g
the minimum cost is $18063.58/h. The optimal dispatch (MW) 1800 1800 1300 1800 1800
solution is summarized in Table 1II. In Fig. 3, it can be seen Total Cost | \on70 30 | 1807749 | 1808320 | 1207839 | 18053 58
that the IGA converges much faster than the published GAs. (3h) -

The final dispatch solution over 100 runs is shown in Fig. 4,
which reveals the reliability of the GAs. From this figure it
can be scen that the IGA produces 70% solutions at or very
near to the global optimum. However, the published GAs

_ produces about 5-25% solutions at or very near to the global
optimum only. The IGA is therefore more reliable.
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Fig. 3. Simulation results of AGA, HGA, SGA, AHSGA and IGA.
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Fig. 4. Final dispatch solutions over 100 runs.

VI. CONCLUSION

The problem of economic load dispatch with valve-point
leadings has been investigated in this paper. An Improved GA
has been proposed to help solve this problem. New genetic
operations (crossever and mutation) have been introduced. By
using the proposed crossover operation, the offspring spreads
ovet the domain so that the probability of reproducing good
offspring is increased. In the proposed mutation operation, the
search domain of the selected gene will be contracted at a rate
governed by a monotonic decreasing function. An economic
load dispatch problem has been presented and solved by the
improved GA. The results show that the improved GA has
performed better, in terms of operation cost, convergence rate
and reliability, than some published GAs.
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