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Abstract- Economic load dispatch is one of the optimization 
problems in power systems. This paper presents an improved 
genetic algorithm for economic load dispatch with valve-point 
loadings. New crossover and mutation operations are introduced. 
The solutions of the economic load dispatch with valve-point 
loadings under three cases are solved by the improved genetic 
algorithm. Test results are,given and compared with those from 
different published genetic algorithms. It will be shown that the 
proposed improved genetic algorithm performs better than the 
published genetic algorithms. 

Index Terms-Economic load dispatch (ELD), genetic 
algorithm (CA). 

1. INTRODUCTION 

Engineers always concern the cost of products or services. 
In a power system, minimizing the operation cost is very 
important. Economic load dispatch (ELD) is a method to 
schedule the power generator outputs with respect to the load 

chance to change its value. The search domain of the selected 
gene will be contracted at a rate govemed by a monotonic 
decreasing function. Consequently, the search domain will 
become smaller when the training iteration number increases 
in order to realize a fine-tuning process. By introducing these 
genetic operations, the proposed GA performs more efficiently 
and provides a faster convergence than the published GAS. 

This paper is organized as follows. Section I1 presents the 
economic load dispatch with valve-point loadings problem. 
Section 111 presents the improved genetic algorithm. The 
modified genetic operation:; will he introduced. Economic 
load dispatch using thc proposed GA will be discussed in 
section IV. An application example on economic load dispatch 
is given in session V. A conclusion will be drawn in section 
VI. 

11. ECONOMIC LOAD DISPATCH WITH VALVE-POINT LOADINGS 
PI~OBLEM 

demands, and to operate a power system most economically. 
The input-output characteristics of modem generators are 
nonlinear bv nature because of valve-ooint loadines and rate 

The economic load di:;patch with valve-point loading 
problem can he formulatsd into the following objective 

limits. The'prohlem of ELD is multimodal, d i seontkous  and 
highly nonlinear. Global search techniques had been 
employed to solve the ELD problems [1-5, 9-11], These 

function: 

b f i n t C , ( p , ) ,  
techniques include evolutionary programming [ 1-31, Tabu I = ,  

search [4] and genetic algorithm [5, 9-1 I ] .  
Genetic algorithm (CA) is one of the global search 

techniaues esoeciallv useful for the comdex ootimization 

where C,(P,)  is the operation fuel cost of generator I ,  and n 

denotes the number of genf!rator. The problem is subject to . ~ .  
with a la&,e of parameiers ,i which an 

analytical solution is difficult to obtain. Traditional CA [6] f O l h S :  
has some drawbacks when applying to multidimensional, 

balance constraint and generating capacity constraints as 

high-precision numerical problems. Different genetic D = p -PLO, , (2) 
operations have been proposed to improve the efficiency of , = I  

(3) 
CA. 
crossover and mutation. While random mutation and p L ~ m a  ' ' p L ~ , m ~  ' 1 ='""" ' 

Genetic operations usually refer to the operation of 

crossover are widely used, different modifications to the 
crossover and mutation operations have been reported. For the where D is the load demand, P4 is the output power of the i-th 

crossover operation, arithmetic crossover, heuristic crossover 
and simple crossover were proposed [6-81. For the mutation 
operation, uniform mutation and non-uniform mutation can he 
found [6-81. 

In this paper, an improved genetic algorithm for economic 
load dispatch is proposed. New genetic operations of of the generators is given by, 
crossover and mutation are introduced. On realizing the 
crossover operation, the offspring spreads over the domain so 
that a higher chance of reaching the global optimum'can he C,(P,,)=a;P; t biPL, t ci +.le,xsinlf, x(PL,,m,n -..,)I, 
obtained. On realizing the mutation, each gene will have a 

generator, PL,, is the transmission loss, PL,mu and PL,orn are 
the maximum and output powers of the i-th 
generator respectively, 

The operation fuel cost function with valve-point loadings 

(4) 
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where a, ,  b, , and c, , are coefficients of the cost curve of the 

i-th generator, e, and 1; are coefficients of the valve-point 
loadings. (The generating units with multivalve steam 
turbines exhibit a greater variation in the fuel-cost functions. 
The valve-point effects intioduce ripples in the heat-rate 
curves.) 

111. IMPROVED GENETIC ALGORITHM 
The published GA process [6-81 is shown in Fig. 1.  First, 

a population of chromosomes is created. Second, the 
chromosomes are evaluated by a defined fitness function. 
Third, some of the chromosomes are selected to undergo 
genetic operations. Forth, genetic operations of crossover 
(arithmetic, heuristic or one-point crossover, depending on 
which one gives the best result in each iteration) and non- 
uniform mutation are performed. The produced offspring 
replaces the chromosome with the smallest fitness value in the 
initial population, and forms a new population. This GA 
process repeats until a user-defined criterion is reached. In 
this paper, new genetic operations are introduced to improve 
the performance. The modified GA process is shown in Fig. 2. 
Its details are given as follows. 

A .  Initial Population 

set of population is usually generated randomly. 
The initial population is a potential solution set P. The first 

pi = [ p , ,  p, ,  ..' p ,  ... P , ~ ~ - _ - ]  i =  I ,  2, ..., pop-size; 

j = I ,  2, . . ., no-vars; (6) 

para;,, 5 P , ~  5 para:, , (7) 

where pop-size denotes the population size; no-vars denotes 
the number of variables to be tuned; p ,  , i = I ,  2, ..., 

Procedure of the published GA 
begin 

T j O .  11 c iteration number 
Initialize P(i).  
EvaluateflP(r)). /lflP(r)):fimess function 

begin 

l/P(r): population for iteration r 

while (oat termination condition) do 

r+ T+ 1. 
Seleet2parentspland~fromP(r- I ) .  
Perform genetic operations (crossover and mutation). 
Reproduce anew P(T). 
EvaluateflP(7)). 

end 
end 

Fig. 1. Published CA process. 

Procedure ofthe improved GA 
bfgin 

7-0. 11 c iteration number 
Initialize P(T). 
EvaluateflP(r)). llflP(r)):fitness function 

while (not termination condition) do 
begin 
? j T +  I .  
Select2parentspiandp,fmmP(r- I ) .  
Perfarmcrossover operation according to equations ( I  1)-(14). 
Perform mutotion operation according to equation ( I  8). 
Select the largest offspring between that after EIOSSOVCT and 
mutation processes as the actual offsproing os. 
11 reproduce a new P ( 3  

llP(r): population for iteration r 

if random number < pa 11 p.: probability. of 
acceptance 

os replaces the chromosome with the smallest 
fitness value in the population. 

os replaces the chromosome with the smallest 
fimess value. 

else ifflos) > smallest fitness value in the P(r- I )  

end 
EvaluateflP(r)). 
end 

end 

Fig. 2. lmpmved GA process 

pop-size; j = 1, 2 ,  ..., no-vars, are the parameters to be tuned; 
para:,, and para;, are the minimum and maximum values 

of the parameter p,, respectively for all i .  It can be seen from 

( 5 )  to (7) that the potential solution set P contains some 
candidate solutions pi (chromosomes). The chromosome pi 
contains some variables p .  (genes). 

B. Evaluation 
Each chromosome in the population will he evaluated by a 

defined fitness function. The better chromosomes will return 
higher values in this process. The fitness function can be 
written as, 

', 

C. Selection 
Two chromosomes in the population will be selected to 

undergo genetic operations for reproduction by the method of 
spinning the roulette wheel [ 6 ] .  It is believed that high 
potential parents will produce better offspring (survival of the 
best ones). The chromosome having a higher fitness value 
should therefore have a higher chance to be selected. The 
selection can be done by assigning a probability 9, to the 
chromosome p, : 

(9) 

e-I 

The cumulative probability 
defined as, 

for the chromosome p, is 
fitness = f (pj)  . (8) 

The form of the fitness function depends on the application. 
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The selection process starts by randomly generating a nonzero 
floating-point number d E [0 I] .  Then, the chromosome p, 

is chosen if i , ,  < d < 4, , i = 1, 2, ..., pop-size, and io = 0 .  

In this way, a chromosome having a largerflpj) will have a 
higher chance to be selected. Consequently, the hest 
chromosomes will get more offspring, the average will stay 
and the worst will die off. The process is repeated so that two 
chromosomes are selected to undergo the genetic operations. 

D. Genetic Operations 
The genetic operations generate some new chromosomes 

(offspring) from their parents after the selection process. They 
include the crossover and the mutation operations. 

I )  Crossover: The crossover operation is mainly for 
exchanging information from the two parents, chromosomes 
pI and p2, obtained in the selection process. The two parents 
will produce one offspring. The details of the crossover 
operation are as follows. First, four chromosomes will be 
generated according to the following formulae, 

p,, =[para; ,  para:, .'. p a r a ~ ~ v ~ " ]  , (15) 

P,,, =[para;, ,  para,L ... para:;"""] , (16) 

where W E  [0  I] denotes the weight to be determined by 

users, max(p, ,p , )  denotes the vector with each element 

obtained by taking the maximum between the corresponding 
elements of p, and p2. For instance, 
max([l -2 3 ] , [ 2  3 1])=[2 3 31 . Similarly, 

min(p, ,p , )  gives a vector by taking the minimum value. For 

instance, "([I -2 3],[2 3 ' ] )= [ I  -2 I] . Among 

os: to 0,: , the one with the largest fitness value is used as the 

offspring of the crossover operation. The offspring after 
crossover operation IS defined as, 

0, = [o,% o,* ' ' _  (17) 

where i, denotes the index i which gives a maximum value of 

f ( 0 J  , i =  1,2, 3.4,. 

If the crossover operation can provide a good offspring, a 
higher fitness value can he reached in less iteration. In general, 
two-point crossover, multipoint crossover, arithmetic 
crossover or heuristic crossover can be employed to realize the 
crossover operation [6-81. However, the offspring generated 
by these methods may not be better than that of our approach. 
As seen from (11) to (14)', the offspring spreads over the 
domain: ( I  1) and (14) will move the offspring near the centre 
region of the concemed domain (as w in (14) approaches I ,  

o approaches ~ ), and (12) and (13) will move the 

offspring near the domain boundary (as w in (12) and (13) 
approaches 0, o and o approaches pm and pmp 

respectively). 

r: 2 

.: 1: 

2) Mutation: The offspring (17) will then undergo the 
mutation operation, which changes the genes of the 
chromosomes. Consequently, the features of the 
chromosomes inherited from their parents can he changed. In 
general, various methods l.ike boundary mutation, uniform 
mutation or non-uniform mutation [6-81 can be employed to 
realize the mutation opera.tion. Boundary mutation is to 
change the value of a randomly selected gene to its upper- or 
lower-hound value. Uniform mutation is to change the value 
of a randomly selected gena to a value between its upper and 
lower bounds. Non-uniform mutation is capable of fine-tuning 
the parameters by increasing or decreasing the value of a 
randomly selected gene by a weighted random number. The 
weight is usually a monotonic decreasing function of the 
number of iteration. In this paper, a different process of 
mutation is proposed. The (details are as follows. Every gene 
of the offspring os of (17) will have a chance to mutate 
governed by a probability of mutation, p ,  E [0 I ] ,  which is 

defined by the user. This probability gives an expected 
number ( p ,  x no-vars) of genes that undergo the mutation. 
For each gene, a random number between 0 and 1 will be 
generated such that if it is less than or equal to p ,  , the 
operation of mutation will take place on that gene and updated 
instantly. The gene ofthe offspring of (17) is then mutated by: 

o , ~  +Aoj: i f f (o ,  + A o ! ) 2 f ( o S  - h o t )  

os, -hot, i f f (o ,  tAo:)<f(o, -Aofk)  
, k = 1 , 2  ,..., a 

no-vars, 

where 

AO" = wm, r ( para:, - 0.' ) , 
s i  
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A o t = [ O  0 ... Ao,: ... 01, sampled regions in the search space. This balance, which 
critically controls the performance of the GA, is govemed by 
the right choices of control parameters: the probability of 
mutation &), the probability of acceptance (pa), the Ao:=[O 0 ... Aof; ... 01, 

population size @op-size), the weight in the crossover 
'' '1 is a generated number; wmk E ( O  is a operation (w), and the parameters in the mutation operation 

weight governing [he magnitudes of (wr and w,). Some views about these parameters are included 
as follows: 

(21) 

(22) 

and b0L , me 

a fine-tuning purpose; z is the current iteration number, T i s  
the total number of iteration. In order to perform a local 

z .  search, the value of wmb becomes small as - increases in 
T 

order to reduce the significance of the mutation. Under this 
assumption, a monotonic decreasing function goveming wm, 
is proposed to be, 

where MY E [0 I ]  and wr > 0 are both variables to be chosen 
to determine the initial value and the decay rate respectively. 
For a large value of wi, it  can be seen from (19) and (20) that 
Ao" = r(para:, - o , ~  ) and Ao,: = r(04 -para:,,) initially 

s i  

I 

as I -- = I , which ensure a large search spacc. When i :I" I 

the value of I -- 

AO" and 

fine-tuning. 

E. Reproduction 

Aftcr going through the mutation process, the offspring 
with a larger fitness value between that of (17) and that after 
mutation will be taken as the actual offspring in the 
reproduction process. This new offspring will replace the 
chromosome with the smallest fitness value among the 
population if a randomly generated number within 0 to I is 
smaller than p , ~  [0 I ]  , which is the probability of 
acceptance defined by users. Otherwise, the new offspring 
will replace the chromosome with the smallest fitness value 
only if the fitness value of the offspring is greater than the 
fitness value ofthat chromosome in the population. 

After the above operations, a new population is generated. 
This new population will repeat the same process to produce 
another offspring. Such an iterative process can be terminated 
when a defined condition is satisfied, e.g. a sufficiently large 
number of iteration has been reached. 

F. Choosing the parameters 
The GA is effectively seeking a balance between the 

exploration of new regions and the exploitation of already 

= 0 ,  it can he seen that the values of 

are small to ensure a small search space for 
;1" 

'* 

@, x no-wars) of genes that undergo the mutation. Whenp, = 

1, all genes will mutate. The value of p, depends on the 
desirable number of genes that undergo the mutation operation. 

- Increasing pa  will increase the chance that a poor 
offspring joins the population. This reduces the probability 
that the GA prematurely converges to a local optimum. From 
a p .  of 0. I is a good enough choice for many optimization 
problems. 

- Increasing the population size will increase the diversity 
of the search space, and reduce the probability that the GA 
prematurely converges to a local optimum. However, it also 
increases the time required for the population to converge to 
the optimal region in the search space. From experience, a 
population size of 10 is an acceptable choice. 

- Changing the value of w will change the characteristics of 
the crossover operations. It is chosen,hy trial and error, which 
depends on different optimization problem. For example, as w 

in (14) approaches 1, o PI +P2 approaches - 
2 

- Changing the parameters w, and w, will change the 
characteristics of the monotonic decreasing function of the 
mutation operation w,. . ' The w,, will perfom fine-tuning 
faster as wr is decreasing, and the value w, is the initial value 
of w,. , 

IV. IMPROVED GA FOR ELD 
Io this section, the improved CA is used to solve the 

economic load dispatch problem. The chromosome is defined 
as follows: 

P =I.,, . PL, PL, " '  PL.-, 1 2 (24) 

where n denotes the number of generator and 
PL,,,,. 5 Ps 5 PL,,,, , i = I ,  2 ,  ..., n - I .  From (Z), we have, 

In this paper, the power loss is not considered. Therefore, 

To ensure PL, falls within the range [PLm,m,n,PLm,mu] , the 

following conditions are considered: 
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TABLE I 
UNITS DATA (13 SYSTEMS WlTH VALVE-mmT LQADrNos): a ($/MW2h). b 

I t  should be noted from (27) and (28) that if the value of P4 is 

also outside the constraint boundary The exceeding portion 
of the power will be shared by other generators in order to 
make sure that all generators' output power is within the safety 
range. Referring to (I) ,  the fitness function for this ELD 
problem is defined as, 

fi tness= - ~ c , ( P , ) ,  (29) 
,=I 

where C, (P, )is defined in (4). The objective is to maximize 

the fitness function (29), which minimizes the operation cost 
function. 

V. SIMULATION RESULI 

In this section, the improved C A  (IGA) goes through the 
ELD problem and the results will be compared with other 
published GAS with arithmetic crossover and non-uniform 
mutation (AGA), heuristic crossover and non-uniform 
mutation (HGA), simple crossover and non-uniform mutation 
(SGA) r6-81, and AHSGA which choose the best offspring "1 
among those produced by arithmetic crossover, heuristic 
crossover and s imde crossover in each iteration. The results 359.04 486.90 359.04 359.04 269.29 

I.4HLt. 111 
THE OPTIMAL DISPATCH SOLUTION. 

are the averaged ones out of 100 runs. 
The improved and the published GAS are applied to a 13- 

eenerator svstem. which was adooted as an examnle in 1101. It - . ,  
is a large system with many local minimum points. The data 
of the units with valve-point loadings are tabulated in Table I. 
The load demand (D) is 1800MW in this example. The 
population size used for all GAS is IO.  The probability of 
crossover and mutation for AGA, HGA, SGA and AHSGA are 
set at 0.6 and 0.4 respectively through trial and error. The 
shape parameter of non-uniform mutation is set at 3. .For the 
IGA, the probability of mutation and probability of acceptance 
is set at 0.4 and 0.1 respectively. The parameters of w, w,and 
wfare set at 1, 0.8 and 0.1 respectively. For all apyitoaches, 
the number of iteration is 1000. The simulation results over 
100 runs are shown in Table I1 and Fig. 3. It can be seen that 
the proposed IGA performs better than other published GAS 
(AGA, HGA, SGA, and AHSGA) in terms of operation cost 
and standard deviation. The average cost is $18096.40/h and 
the minimum cost is $18063.581h. The optimal dispatch 
solution is summarized in Table Ill. Ih Fig. 3, it can be seen 
that the IGA converges much faster than the published GAS. 
The final dispatch solution over'l00 runs is shown in Fig. 4, 
which reveals the reliability of the GAS. From this figure it 
can be seen that the IGA produces 70% solutions at or very 
near to the global optimum. However, the published GAS 
produces about 5.25% solutions at or very near to the global 
optimum only. The IGA is therefore more reliable. 
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Fig. 3. Simulation results of AGA, HGA, SGA, AHSGA and IGA. 
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VI. CONCLUSION 

The problem of economic load dispatch with'valve-point 
loadings has been investigated in this paper. An Improved GA 
has been proposed to help solve this problem. New genetic 
operations (crossover and mutation) have been introduced. By 
using the proposed crossover operation, the offspring spreads 
over the domain so that the probability of reproducing good 
offspring is increased. In the proposed mutation operation, the 
search domain of the selected gene will be contracted at a rate 
govemed by a monotonic decreasing function. An economic 
load dispatch problem has been presented and solved by the 
improved GA. The results show that the improved GA has 
performed better, in terms of operation cost, convergence rate 
and reliability, than some published GAS. 
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