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Abstract—This paper presents the design of fuzzy logic con-
trollers (FLC’s) for nonlinear systems with guaranteed closed-
loop stability and its application on combining controllers. The
design is based on heuristic fuzzy rules. Although each rule in the
FLC refers to a stable closed-loop subsystem, the overall system
stability cannot be guaranteed when all these rules are applied
together. In this paper, it is proved that if each subsystem is
stable in the sense of Lyapunov (ISL) under a common Lyapunov
function, the overall system is also stable ISL. Since no fuzzy
plant model is involved, the number of subsystems generated
is relatively small, and the common Lyapunov function can
be found more easily. To probe further, an application of this
design approach to an inverted pendulum system that combines
a sliding-mode controller (SMC) and a state feedback controller
(SFC) is to be reported. Each rule in this FLC has an SMC or an
SFC in the consequent part. The role of the FLC is to schedule
the final control under different antecedents. The stability of the
whole system is guaranteed by the proposed design approach.
More importantly, the controller thus designed can keep the
advantages and remove the disadvantages of the two conventional
controllers.

Index Terms—Combining controllers, fuzzy logic control, Lya-
punov, stability.

I. INTRODUCTION

A LTHOUGH fuzzy logic controllers (FLC’s) had been
proposed for a long time and were successfully applied

in many applications [14], [16], a comprehensive work on the
proof of stability for the closed-loop control system began
only recently. On designing FLC’s, we usually focus on the
system responses for some common operating conditions [14],
[16]. However, these methods cannot guarantee the closed-
loop system stability. A proof of stability over the whole
operation range is necessary before the fuzzy logic control
system is put into real practice.

Recently, Tanaka and Sugeno proposed a stability design
approach [2] which first modeled the plant by a Takagi–Sugeno
(TS) fuzzy model [1]. This fuzzy model represents the plant
as a weighted sum of a set of linear state equations. An FLC is
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designed based on this fuzzy plant model. Then, Lyapunov’s
direct method can be applied to each fuzzy subsystem [2], [18],
[19] that is formed by each rule of the fuzzy plant model and
the FLC. The stability of the whole system can be ensured
if a required positive-definite matrix exists. Similar stability
design approaches related to this fuzzy-model-based approach
can also be found in [3]–[7], [18], and [19]. However, a
major drawback of these stability design approaches is the
difficulty in finding a common Lyapunov function. When
combining the TS fuzzy plant model and the FLC, the number
of subsystems generated can be where is
the number of rules [2], [19]. It is very difficult to find a
common Lyapunov function in general cases to satisfy all
these subsystems.

Besides the fuzzy-model-based approaches, some other ap-
proaches [11]–[13], [17] involve partitioning of the state
space into small parts, and each part is analyzed for closed-
loop stability. However, if the number of rules is large, the
number of partitions will become large and the analysis will
be very time consuming. Moreover, the reported results are
mostly for second-order systems. For higher order systems,
the partitioning of state space cannot be viewed graphically,
and the design procedures will be further complicated. In
addition, these FLC’s usually have some predefined struc-
tures. For example, the input/output membership functions
are of regular triangular or trapezoidal shapes, symmetrical,
and equally distributed in the universe of discourse. Conse-
quently, adding a rule of another form will greatly affect the
analysis.

To guarantee the bounded-input–bounded-output stability of
the closed-loop system, Wang [8], [9] proposed a supervisory
control methodology. This supervisory control will override
the FLC in case the system exits some predefined bounds.
If the width between the bounds is reduced to zero, the
supervisory control is identical to a sliding-mode control. In
all these cases, the stability is maintained by a large control
signal only; the stability analysis of the fuzzy logic control
system is not directly tackled.

In view of these weaknesses, a simple but more general
methodology for designing FLC’s that guarantees system
stability is proposed in this paper. This design methodol-
ogy employs a heuristic design concept for FLC’s. Expert
knowledge that can control the plant well and with guaranteed
stability is first gathered. This knowledge is expressed as fuzzy
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rules of the FLC. The rule base formed then becomes the heart
of the FLC. When the weighted sum defuzzification method
[2]–[4], [8], [9], [16] is used, it will be shown in this paper that
the control output of the FLC is bounded. Under this bounded
control signal, if each individual subsystem corresponding to
each rule of the FLC is stable in the sense of Lyapunov (ISL)
subject to a common Lyapunov function, the overall closed-
loop system (applying the FLC) can be shown to be also stable
ISL [10]. Thus, the system stability is guaranteed by finding
a common Lyapunov function for all rules. This common
Lyapunov function is easier to be found than that in [2] because
the number of fuzzy subsystems involved is only the number
of rules instead of Moreover, by using this
design approach, the adding of a new fuzzy rule becomes very
easy. Unlike the state-space partitioning approaches [11]–[13],
[17], no restriction on the shape and distribution of input
membership functions is needed. An example on designing a
heuristic FLC will be given to illustrate the proposed stability
design approach.

Next, we shall illustrate that one useful application of the
proposed design approach is to combine controllers into a
single FLC. The role of this FLC is effectively to schedule
a suitable control with respect to the operating conditions.
A lot of conventional control algorithms had been developed
for various kinds of systems [15], [20], [21]. However, each
control algorithm has its own advantages and limitations. The
aim of combining controllers and realizing it as an FLC is
to determine the most suitable control from the embedded
controller for a given operating condition, so as to ensure the
best performance. With proper design, the FLC can retain the
advantages and remove the disadvantages of the embedded
conventional controllers. More importantly, thanks to the
proposed stability design approach, the stability of the closed-
loop system is guaranteed if each fuzzy rule of the FLC leads
to a stable subsystem ISL subject to a common Lyapunov
function in its active region. The term “active region” will
be defined in Section II. In this paper, we will combine a
sliding-mode controller (SMC) and a state feedback controller
(SFC) into a single FLC. The resulting closed-loop system
has fast response, due to the SMC. Still, when the states are
near the sliding plane, the FLC will gradually be dominated
by the SFC to avoid chattering. As a result, the advantages of
the two conventional controllers can be kept by this combined
controller.

In Section II, the fuzzy logic control system concerned in
this paper will be introduced. The proposed stability design
approach will be presented in Section III. Section IV will
give a simple example demonstrating the design of a heuristic
FLC by applying the proposed approach. In Section V, we
discuss the designs of an SMC and an SFC for a nonlinear
system and the way of combining them into a single FLC with
stability consideration. This FLC will be applied to control a
car-pole inverted pendulum. A conclusion will be drawn in
Section VI.

II. FUZZY LOGIC CONTROL SYSTEM

Consider a single-input th-order nonlinear system of the
following form:

(1)

where is the state vector,

are functions describing the dynamics of the plant, andis the
control input of the plant, the value of which is determined by
an FLC with inputs depending on The th IF-THEN rule
of the fuzzy rule base of the FLC is of the following form:

(2)

where are input fuzzy levels, and
is the control output of rule can be a single

value or a function of The shape of the membership
functions associated with the input fuzzy levels, the method
of fuzzification, and the algorithm of rule inference can be
arbitrary, because these do not affect the stability design
discussed in this paper. A degree of membership
is obtained for each rule It is assumed that for any in
the input universe of discourse there exists at least one

among all rules that is not equal to zero. By applying the
weighted sum defuzzification method, the overall output of
the FLC is given by

(3)

where is the total number of rules. Here we need to define the
following terms: 1) active/inactive fuzzy rules and 2) active
region of a fuzzy rule.

Definition 2.1: For any input if the degree of
membership corresponding to fuzzy ruleis zero, this
fuzzy rule is called aninactive fuzzy rulefor the input
otherwise, it is called anactive fuzzy rule.An active region
of a fuzzy rule is defined as a region such that its
membership function is nonzero for all

It should be noted that with an inactive fuzzy rule
will not affect the controller output Hence, (3) can
be rewritten so as to consider all active fuzzy rules (where

only,

(4)

Now, among all the of the subsystems corresponding
to the active fuzzy rules, the maximum value and
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the minimum value of can be found. Then,

equality holds

when (5)

In conclusion, the overall FLC output is bounded by
and among the rules if the weighted sum defuzzifi-
cation method is employed to derive

III. D ESIGN OF STABLE FLCS

The premise of the stability criterion in this paper is that,
on applying each rule to the plant individually, the closed-
loop subsystem formed is stable ISL in its active region,
and each rule shares a common quadratic Lyapunov function

such that:

1) is positive definite and continuously

differentiable

2) for all in its active region. (6)

For an input let the maximum and the minimum
control signal among all active fuzzy rules be and

, respectively. From (6), we have the subsystems
formed by these two rules satisfying the following conditions:

for (7)

for (8)

Lemma 3.1: If a system in the form of (1) satisfies the
premise of the stability criterion of (6), we have for
all and FLC output

Proof:

(9)

(10)

From (1),

(11)

where and

Note that both and are scalars. Then, two cases
should be considered: is positive and is negative
for

Case 1: is positive.
By using condition (7),

for

(12)

Case 2: is negative.
By using condition (8),

(13)

for

(14)

From (12) and (13), the lemma is proved.
Q.E.D.

It has been shown in (5) that, for an arbitrary input state
the control output of an FLC is bounded by

and if the weighted sum defuzzification method
is employed. Hence, if all subsystems formed by applying
individual rules to the plant satisfy in the active
regions of the rules, byLemma 3.1, for all ,
and the closed-loop system is stable ISL under the control of
the FLC. In summary, the stability condition for a fuzzy logic
control system can be stated as follows:

Summary 3.1:Consider an FLC as described in Section
II. If every rule of the FLC applying to the plant of (1)
individually gives a stable subsystem ISL in the active region
of the fuzzy rule subject to a common Lyapunov function,
and the defuzzification method is realized as given by (3), the
whole fuzzy logic control system is stable ISL.

A. Adding of Rules

By using the proposed design approach, adding of new
fuzzy rules becomes very easy. According toSummary 3.1,
if we want to add a new rule to the rule base of the FLC,
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we just need to ensure that, on applying the new fuzzy rule
to the plant, a stable subsystem ISL is obtained in the active
region of the new fuzzy rule subject to the same Lyapunov
function. Should this happen, the whole fuzzy logic control
system is also stable ISL when this new rule is added. This
can be explained as follows.

Let the output of this new rule be Since
the subsystem corresponding to this rule is stable ISL, we have

(15)

where is the active region of the new rule. Then three
cases come out.

1) If lies between and by
(5) and (14), the new system is stable ISL.

2) If is replaced by
and condition (7) is replaced by (15).

Following the same analysis procedures, condition (14)
can be obtained by replacing with

3) If similar to the second case,
condition (8) is replaced by (15), and condition (14) can
also be obtained by replacing with

Consequently, the new system is stable ISL after adding the
new rule. Moreover, unlike that in [11]–[13], the new rule is
not restricted in terms of the shape, symmetry, and distribution
of the input membership functions.

B. Robustness of the FLC

The robustness of an FLC can be defined as the ability to
maintain the system stability under the presence of parameter
uncertainties and/or unknown disturbances. Now, let (1) be
rewritten as

Assuming to be positive, when the rule corresponding
to is applied, from (12),

With the worst case consideration, let
take their maximum values with respect to and
Since the subsystem is stable ISL on applying this rule,

Then, for a smaller value of
will become more negative,

resulting in a more robust closed-loop system. We can
conclude that is the least robust rule for positive

Similarly, if is negative, we can also use
condition (13) to conclude that is the least robust
rule. In conclusion, either the rule corresponding to
or is the least robust rule. The robustness of the
whole FLC, of which the output lies between and

will be better than or the same as that offered by
the least robust rule.

TABLE I
FUZZY RULE BASE

Fig. 1. Membership functions ofx and _x.

IV. DESIGN EXAMPLE

In this section, a mass–spring–damper system [18] is to be
controlled by a heuristic FLC. The fuzzy rules of the FLC are
summarized in Table I. The system to be controlled is given by

(16)

where kg is the mass and is the input force,
N m is the spring constant, and is a
nonlinear function describing the damper. Expressing (16) in
the form of (1), we have

where

In Table I, the input variables in the antecedent part of the
rules are and , and the output variable in the consequent
part is P, Z, and N are fuzzy levels representing “posi-
tive,” “zero,” and “negative,” respectively. The membership
functions are shown in Fig. 1. The rules in Table I are read
as, taking rule 5 for example, “Rule 5: IF is P and is
Z, THEN ” The rules are set heuristically. In rule
1, is positive and is increasing (since is positive), so a
big control action is needed, such that Similarly, in
rule 2, is negative and is decreasing, sois set to be 2.
In rule 3, is positive but decreasing, therefore, no control
is needed, and The similar situation happens in rule
4. When one of the states is near the origin, as in rules 5–8,
a proportional control is applied. When the states are at the
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Fig. 2. Responses ofx and _x in the illustrated example.

origin, as described in rule 9, some damping is needed, and a
proportional plus derivative control is employed.

To prove the system stability by the proposed design ap-
proach, the stability of the subsystem on applying each rule
subject to a common Lyapunov function has to be proved.

Proof: Select a Lyapunov function as follows:

(17)

which is obviously positive definite and continuously differ-
entiable. Then,

(18)

For rule 1, and

For rule 2, and

For rules 3 and 4, and and are of opposite sign

For rules 5–8,

For rule 9,

Hence, all of the nine rules in the FLC can lead to stable
subsystems ISL subject to the same Lyapunov function (17).
FromSummary 3.1, the closed-loop system is stable ISL when
all the rules are included into the rule base of the FLC.

Q.E.D.
Simulation results of the zero-input responses of the closed-

loop system with initial values are shown
in Fig. 2. The stability of the fuzzy logic control system is
verified.

Fig. 3. A car-pole inverted pendulum.

V. APPLICATION: COMBINING CONVENTIONAL CONTROLLERS

In this section, a sliding-mode controller (SMC) and a state
feedback controller (SFC) will be combined into a single FLC
by applying the proposed designed approach. This FLC will
be used to balance a car-pole inverted pendulum system [15],
as shown in Fig. 3. When the states are far from the origin
of the state plane, the SMC will take a major part of control
to give a fast transient response. However, when the states
are approaching the equilibrium values (the origin of the state
plane), the SMC will gradually be replaced by the SFC, in
order to avoid chattering. The equations of motion of the
car-pole inverted pendulum are as follows:

(19)

where denotes the angular displacement (in rad) of the
pendulum from the vertical axis, and is the angular velocity
(in rad m is the acceleration due to gravity,

kg is the mass of the pendulum, kg is the
mass of the cart, m is the length of the pendulum,
and is the force applied to the cart (in N);
Reshuffling the terms, (19) can be written in the following
form:

where

A. SMC

An SMC can be designed for this car-pole inverted pendu-
lum. Define a sliding plane

(20)
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where It is obvious that the sliding plane is stable.
An equivalent control can be obtained by considering

(21)

(22)

The final control is realized as where
is a positive constant, and

if
if
if

Defining a Lyapunov function

(23)

we have

(24)

B. SFC

An SFC can also be employed for the system of (19). Design
a state feedback gain

such that the control signal is given by

(25)

By using the same Lyapunov function of (23), if the control
law of (25) is employed, we have

(26)

C. FLC

Define the rules of an FLC as follows:

Rule 1 IF is PETHEN

Rule 2 IF is ZE THEN

Rule 3 IF is NE THEN

Fig. 4. Fuzzy levels of� and their membership functions.

Fig. 5. System response ofx1 for an initial x = [1:5 0]T :

Fig. 6. System response ofx2 for an initial x = [1:5 0]T :

where PE, ZE and NE are fuzzy levels of of which the
membership functions are shown in Fig. 4.

To prove the stability of the fuzzy-controlled inverted pen-
dulum system, we need to ensuretends to for all operation
conditions. Although the Lyapunov function of (23) is a
function of only, but not thanks to the stability of the
sliding plane, tends to if Hence, fromSummary
3.1, the proof of system stability is reduced to proving that
tends to zero on applying each rule to the inverted pendulum.
This cannot be reached immediately, because the conditions

is positive definite and may imply that tends to a
finite constant instead of zero. To verify thatmust finally go
to zero, we need to prove that at for all operation
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(a) (b)

(c) (d)

Fig. 7. System response ofx1: (a) for other initial conditions, (b) form changed to 12 kg, (c) forM changed to 2 kg, and (d) forl changed to 0.25 m.

conditions. This proof is given in the Appendix. Hence, the
closed-loop system under the control of the proposed FLC is
stable.

D. Simulation Results

The designed FLC is applied to the plant of (19), and
simulation results of the closed-loop system responses are
obtained. For comparison, the responses on applying the SMC
alone and the SFC alone are also taken. The initial state is

The responses of and are shown in
Figs. 5 and 6, respectively. It can be seen that the settling time
of on applying the FLC is better than that on applying the
SFC alone. The responses on using the FLC and the SMC are
similar, but no chattering exists in if the FLC is used.

The transient responses of on applying the FLC under
initial states and are shown in
Fig. 7(a). To test the robustness of the FLC, simulations under
different plant parameter values are conducted. Fig. 7(b)–(d)
shows the same transient responses as those in Fig. 7(a), but
with changed to 12 kg, changed to 2 kg, andchanged
to 0.25 m, respectively. From these responses, we can see that
the FLC designed is robust to parameter variations.

VI. CONCLUSION

An approach for designing stable heuristic FLC’s has been
proposed in this paper. It has been shown that a fuzzy logic
control system is stable ISL, provided that every individual
rule applying to the plant gives a stable subsystem ISL in the
active region of the fuzzy rule under a common Lyapunov

function. Therefore, the stability of the fuzzy logic control
systems can be guaranteed by examining each individual
rule in the FLC, which is much simpler than the existing
approaches. The stability of a nonlinear mass–spring–damper
system controlled by an FLC has been analyzed based on the
proposed approach as an illustrative example.

A practical application of the proposed design approach is
to combine conventional controllers by an FLC and generate
the appropriate control according to the operating conditions.
In Section V, an FLC combining an SMC and an SFC has
been reported. The stability of the FLC is guaranteed from the
proposed stability analysis. This FLC is applied to balance
a car-pole inverted pendulum system. It has been clearly
shown that a good transient response, as well as robustness
to parameter variations, can be obtained due to the SMC.
However, chattering does not take place, due to the effect of
the SFC near the equilibrium point. The combined controller
then inherits the merits of the two conventional controllers.

APPENDIX

This appendix is to prove that at for all
operation conditions of the designed FLC. It can be seen from
Fig. 4 that, for any value of only one of the following
two cases will occur:

1) Either Rule 1 or Rule 3 is active.
When this case happens, or from (24),

(A1)

since
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2) Either Rules 1 and 2 or Rules 3 and 2 are active
simultaneously.

Consider Rules 1 and 2 are active, i.e.,
Let and be the outputs of Rules 1 and 2,
respectively. Since the two corresponding subsystems are
stable ISL, we have

Also, let where is the
output of the FLC; then, one of the following two cases will
happen.

Case 1:
In this case, Since

from (A1) , at
Case 2:
Let from (5)

If Otherwise, if
As a result, when

Following the same steps as above, it
can be easily proved that when

Hence, when Rule 1 and Rule 2 are both active.
When Rule 2 and Rule 3 are active, a similar proof can be

carried out to show that at Q.E.D.
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