
Single machine scheduling with a time-dependent learning effect

Ji-Bo Wang,a,b,1 C.T. Ng,b T.C.E. Chengb
aDepartment of Science, Shenyang Institute of Aeronautical Engineering,

Shenyang 110034, People’s Republic of China
bDepartment of Logistics, The Hong Kong Polytechnic University,
Hung Hom, Kowloon, Hong Kong SAR, People’s Republic of China

Abstract
In this paper we consider the single machine scheduling problem with a time-dependent learning

effect. The time-dependent learning effect of a job is assumed to be a function of the total normal
processing time of the jobs scheduled in front of the job. For the following three objective functions:
the weighted sum of completion times, the maximum lateness and the number of tardy jobs,
we show by examples that the optimal schedule of the classical version is not optimal in the
presence of a time-dependent learning effect. But for some special cases, we prove that the weighted
shortest processing time (WSPT) rule, the earliest due date (EDD) rule and Moore’s algorithm
can construct an optimal sequence for these objective functions, respectively. We also give the
worst-case error bound of these three rules for the general cases.
Keywords: Scheduling, Single machine, Learning effect, Time-dependent

1 Introduction

In classical scheduling problems the processing time of a job is assumed to be a constant.
However, in many realistic problems of operations management, both machines and workers
can improve their performance by repeating the production operations. Therefore, the actual
processing time of a job is shorter if it is scheduled later in a sequence. This phenomenon is
known as the “learning effect” in the literature (Badiru [2]). Although learning theory was first
applied to industry more than 60 years ago (Wright [20]), it appears to have become a topic in
scheduling research only in recent years.

Biskup [3] and Cheng and Wang [5] were among the pioneers that brought the concept
of learning into the field of scheduling, although it has been widely employed in management
science since its discovery by Wright [20]. Biskup [3] proved that single machine scheduling with
a learning effect remains polynomial solvable if its objective is to minimize the deviation of job
completion times from a common due date or to minimize the sum of job flow times. Cheng
and Wang [5] considered a single machine scheduling problem in which the job processing times
decrease as a result of learning. A volume-dependent piecewise linear processing time function

1 Corresponding author. E-mail addresses: wangjibo75@yahoo.com.cn; lgtctng@polyu.edu.hk;

lgtcheng@polyu.edu.hk

1

This is the Pre-Published Version.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyU Institutional Repository

https://core.ac.uk/display/61008707?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


was used to model the learning effect. The objective is to minimize the maximum lateness. They
showed that the problem is NP-hard in the strong sense and then identified two special cases
that are polynomially solvable. They also proposed two heuristics and analysed their worst-
case performance. Mosheiov [13, 14] investigated several other single machine problems and the
minimum total flow time problem on identical parallel machines. Liu et al. [11] proved that
the weighted shortest processing time (WSPT) rule, the earliest due date (EDD) rule and the
modified Moore-Hodgson algorithm can construct optimal sequences under certain conditions
for the following three objectives: the total weighted completion time, the maximum lateness
and the number of tardy jobs, respectively. They also gave an error estimation for each of these
rules for the general cases. Lee and Wu [9] proposed a heuristic algorithm to solve the total
completion time minimization problem in a two-machine flow shop with a learning effect. Lee
et al. [10] studied the learning effect in a bi-criterion single machine scheduling problem, with
the objective of minimizing a linear combination of the total completion time and the maximum
tardiness. They presented a branch-and-bound and a heuristic algorithm to search for optimal
and near optimal solutions. Mosheiov and Sidney [15] considered a job-dependent learning curve,
where the learning rate of some jobs is faster than that of the others. Biskup and Simons [4]
considered a scheduling problem where the processing times decrease according to a learning rate,
which can be influenced by an initial cost-incurring investment. They presented a formulation
of the common due date scheduling problem with autonomous and induced learning effects.
They further proved some structural properties, which enable the development of a polynomial
bound solution procedure. Mosheiov and Sidney [16] introduced a polynomial time solution
for the single machine scheduling problem to minimize the number of tardy jobs with general
non-increasing job-dependent learning curves and a common due-date. Wang [18] considered
flow shop scheduling problems with a learning effect. He suggested the use of Johnson’s rule as
a heuristic algorithm for two-machine flow shop scheduling to minimize the makespan. He also
developed polynomial time solution algorithms for some special cases of the following objective
functions: the weighted sum of completion times and the maximum lateness. Wang and Xia [19]
considered the same problem of Wang [18]. The objective was to minimize one of two regular
performance measures, namely the makespan and the total flow time. They gave a heuristic
algorithm with a worst-case error bound of m for each criterion, where m is the number of
machines. They also found polynomial time solutions for two special cases of the problem, i.e.,
identical processing times on each machine and an increasing series of dominating machines. Kuo
and Yang [7] considered a single machine scheduling problem with a time-dependent learning
effect. The time-dependent learning effect of a job is assumed to be a function of the total normal
processing time of the jobs scheduled in front of it. They showed that the SPT-sequence is the
optimal sequence for the objective of minimizing the total completion time. Kuo and Yang
[8] considered the single machine group scheduling problem with a time-dependent learning

2



effect. They showed that the single machine group scheduling problem with a time-dependent
learning effect remains polynomially solvable for the objectives of minimizing the makespan and
minimizing the total completion time. A survey of this line of scheduling research can be found
in Bachman and Janiak [1].

In this paper we consider the same model as that of Kuo and Yang [7], but with different
objective functions. The remaining part of this paper is organized as follows. In Section 2 we
formulate the model. In Section 3 we consider three classical single machine scheduling problems.
The last section presents the conclusions.

2 Problem formulation

The focus of this paper is to study the time-dependent learning effect in scheduling. The
model is described as follows. There are given a single machine and n independent and non-
preemptive jobs that are immediately available for processing. The machine can handle one job
at a time and preemption is not allowed. Let pj be the normal processing time of job j and
p[k] be the normal processing time of a job if it is scheduled in the kth position in a sequence.
Associated with each job j (j = 1, 2, ..., n) is a weight wj and a due-date dj . Let pj,r be the
processing time of job j if it is scheduled in position r in a sequence. Then

pj,r = pj(1 + p[1] + p[2] + . . . + p[r−1])
a, (1)

where a ≤ 0 is a constant learning index. It is clear that the learning effect satisfies the following
conditions: 0 < (1 +

∑r−1
k=1 p[k])a ≤ 1.

For a given schedule π = [[1], [2], . . . , [n]], Cj = Cj(π) represents the completion time of job
j and f(C) = f(C1, C2, . . . , Cn) is a regular measure of performance. Let

∑
wjCj , Lmax =

max{Cj−dj |j = 1, 2, . . . , n} and
∑

Uj , where Uj = 1 if Cj > dj (i.e., the job is late) and Uj = 0
otherwise, j = 1, 2, . . . , n, represent the weighted sum of completion times, the maximum lateness
and the number of tardy jobs of a given permutation, respectively. For convenience, we denote
the time-dependent learning effect given by (1) by LEt [7]. We use 1|LEt|f(C) to denote single
machine scheduling with a time-dependent learning effect that is job-independent.

3 Several single machine scheduling problems

First, we give several lemmas, which are useful for the following theorems.

Lemma 1 (x− y)ba + y(b + x)a − x(b + y)a ≤ 0 if 0 < x ≤ y, b ≥ 1 and a ≤ 0.

Proof The proof can be found in Kuo and Yang [7]. 2

3



Lemma 2 [8] For the problem 1|LEt|Cmax, there exists an optimal schedule in which the job
sequence is determined by the SPT rule.

Lemma 3 If pi1 ≤ pi2 ≤ . . . ≤ pim ≤ pim+1, then the makespan of sequence (i1, i2, . . . , im) is
not greater than the makespan of any sequence of the form

(i1, i2, . . . , ik−1, ik+1, . . . , im+1), k ∈ {1, 2, . . . , m}.

Proof The proof is trivial and omitted. 2

Similar to Mosheiov [13], for the next three problems, we show that the optimal schedule of
the classical version is not optimal for the problems 1|LEt|

∑
wjCj , 1|LEt|Lmax and 1|LEt|

∑
Uj ,

respectively.

Example 1. n = 2, p1 = 1, p2 = 2, w1 = 10, w2 = 21, a = −0.5. The schedule according to
the WSPT rule is [2, 1], yielding the value

∑
wjCj = 67.77. Obviously, the optimal sequence is

[1, 2], yielding the optimal value
∑

wjCj = 60.70.

In order to solve the problem approximately, we will use the WSPT rule as a heuristic for the
problem 1|LEt|

∑
wjCj . The performance of the heuristic will be evaluated by its worst-case

error bound.

Theorem 1 Let S∗ be an optimal schedule and S be a WSPT schedule for the problem 1|LEt|
∑

wjCj.
Then

∑
wjCj(S)/

∑
wjCj(S∗) ≤ 1/(1+

∑n
j=1 pj−pmin)a, where pmin = min{pj |j = 1, 2, . . . , n},

and the bound is tight.

Proof Without loss of generality, we can suppose that p1/w1 ≤ p2/w2 ≤ . . . ≤ pn/wn. Then
∑

wjCj(S) = w1p1 + w2[p1 + p2(1 + p1)a] + . . . + wn[p1 + p2(1 + p1)a

+ . . . + pn(1 + p1 + p2 + . . . + pn−1)a]

≤
n∑

j=1

wj(
j∑

k=1

pk),

∑
wjCj(S∗) = w[1]p[1] + w[2][p[1] + p[2](1 + p[1])

a] + . . . + w[n][p[1] + p[2](1 + p[1])
a

+ . . . + p[n](1 + p[1] + p[2] + . . . + p[n−1])
a]

≥
n∑

j=1

w[j](
j∑

k=1

p[k])(1 +
n−1∑

j=1

p[j])
a

≥
n∑

j=1

wj(
j∑

k=1

pk)(1 +
n∑

j=1

pj − pmin)a,

4



hence ∑
wjCj(S)/

∑
wjCj(S∗) ≤ 1/(1 +

n∑

j=1

pj − pmin)a.

It is not difficult to see that the bound is tight, since if a=0, we have
∑

wjCj(S)/
∑

wjCj(S∗) =
1. This result is intuitive as when a=0, the WSPT schedule is optimal. 2

Obviously, the result obtained
∑

wjCj(S)/
∑

wjCj(S∗) depends greatly on the parameter
values.

Example 2. n = 2, p1 = 1, p2 = 100, d1 = 1, d2 = 0, a = −0.5. The schedule according to
the EDD rule is [2, 1], yielding the value Lmax = 100. Obviously, the optimal sequence is [1, 2],
yielding the optimal value Lmax = 71.7.

In order to solve the problem approximately, we will use the EDD rule as a heuristic for
the problem 1|LEt|Lmax. To develop a worst-case performance ratio for a heuristic, we have to
avoid cases involving nonpositive Lmax. Similar to Cheng and Wang [5], the worst-case error
bound is defined as follows:

Lmax(S) + dmax

Lmax(S∗) + dmax
,

where S and Lmax(S) denote the heuristic schedule and the corresponding maximum lateness,
respectively, while S∗ and Lmax(S∗) denote the optimal schedule and the minimum maximum
lateness value, respectively, and dmax = max{dj |j = 1, 2, . . . , n}.

Theorem 2 Let S∗ be an optimal schedule and S be an EDD schedule for the problem 1|LEt|Lmax.
Then

Lmax(S) + dmax

Lmax(S∗) + dmax
≤

∑n
i=1 pi

C∗
max

,

and the bound is tight, where C∗
max is the optimal makespan of the problem 1|LEt|Cmax.

Proof Without loss of generality, we can suppose that d1 ≤ d2 ≤ . . . ≤ dn, then

Lmax(S) = max{p1 + p2(1 + p1)a + . . . + pj(1 + p1 + p2 + . . . + pj−1)a

−dj |j = 1, 2, . . . , n}
≤ max{p1 + p2 + . . . + pj − dj |j = 1, 2, . . . , n}
= L

′
max(S),

where L
′
max(S) is the optimal value of the classical version of the problem, i.e., pj,r = pj .

Lmax(S∗) = max{p[1] + p[2](1 + p[1])
a + . . . + p[j](1 + p[1] + p[2] + . . . + p[j−1])

a

5



−d[j]|j = 1, 2, . . . , n}

= max{
j∑

i=1

p[i] − d[j] −
j∑

i=1

p[i] +
j∑

i=1

p[i](1 +
i−1∑

k=1

p[k])
a|j = 1, 2, . . . , n}

≥ max{
j∑

i=1

p[i] − d[j]|j = 1, 2, . . . , n} −
n∑

i=1

p[i] +
n∑

i=1

p[i](1 +
i−1∑

k=1

p[k])
a

≥ L
′
max(S)−

n∑

i=1

pi + C∗
max,

hence,

Lmax(S)− Lmax(S∗) ≤
n∑

i=1

pi − C∗
max,

and so

Lmax(S) + dmax

Lmax(S∗) + dmax
≤ 1 +

∑n
i=1 pi − C∗

max

Lmax(S∗) + dmax
≤ 1 +

∑n
i=1 pi − C∗

max

C∗
max

≤
∑n

i=1 pi

C∗
max

,

where C∗
max can be obtained by the SPT rule (see Lemma 2).

It is not difficult to see that the bound is tight, since if a=0, we have Cmax =
∑n

i=1 pi and
Lmax(S)+dmax

Lmax(S∗)+dmax
= 1. This result is intuitive as when a=0, the EDD schedule is optimal. 2

Let J denote the set of jobs already scheduled, Jd be the set of jobs already considered for
scheduling, but that have been discarded as they will not meet their due dates in the optimal
schedule, and Jc denote the set of jobs not yet considered for scheduling. The problem 1||∑Uj

is known to be solved by Moore’s algorithm [12] as follows:

Moore’s Algorithm.
Step 1: Order the jobs in non-decreasing order of their due dates (EDD).
Step 2: If no jobs in the sequence are late, stop. The schedule is optimal.
Step 3: Find the first late job in the schedule. Denote this job by α.
Step 4: Find a job β with pβ = maxi=1,2,...,α pi. Remove job β from the schedule and process it
after the completion of all the jobs that were processed. Go to Step 2.

As a special case, it is known by Jackson’s lemma [6] that if a schedule with no tardy jobs
exists, then the EDD sequence will contain no tardy jobs. Example 3 shows that Jackson’s lemma
does not hold for 1|LEt|

∑
Uj (therefore, Moore’s Algorithm is not optimal for the problem).

Example 3. n = 2, p1 = 1, p2 = 100, d1 = 91, d2 = 90, a = −0.5. The schedule according to
the EDD rule is [2, 1], yielding the value

∑
Uj = 2. Obviously, the optimal sequence is [1, 2],

yielding the optimal value
∑

Uj = 0.

6



In order to solve the problem approximately, we will use Moore’s Algorithm as a heuristic for
the problem 1|LEt|

∑
Uj . The performance of the heuristic will be evaluated by its worst-case

error bound.

Theorem 3 Let S∗ be an optimal schedule and S be the schedule obtained by Moore’s Algorithm
for the problem 1|LEt|

∑
Uj. Then

∑
Uj(S)−

∑
Uj(S∗) ≤ n− 1.

Proof It suffices to prove that
∑

Uj(S) ≤ n − 1 for the case
∑

Uj(S∗) = 0. Without loss of
generality, we can suppose that d1 ≤ d2 ≤ . . . ≤ dn, the optimal sequence is [i1, i2, . . . , in], and
in this optimal sequence job 1 is the m-th job processed, m ≥ 1. Then by

∑
Uj(S∗) = 0, we

know that
pi1 + pi2(1 + pi1)

a + . . . + pim(1 + pi1 + pi2 + . . . + pim−1)
a ≤ dim ,

in which im = 1, so pi1 ≤ dim ≤ di1 .
Thus, as we solve the problem by Moore’s Algorithm, if there is a job completed in time

in J as we pick the jobs successively from Jc = (1, 2, . . . , n) and put them into set J , then the
theorem has been proved; if all the job scheduled before job i1 in Jc are tardy in J as they
are picked successively from Jc and put into J , then by Moore’s Algorithm the next job that
may be picked from Jc is job i1. By pi1 ≤ di1 , we know that job i1 is completed on time, thus∑

Uj(S) ≤ n− 1. The proof is completed. 2

For the three objective functions of minimizing the weighted sum of completion times, min-
imizing the maximum lateness, and minimizing the number of tardy jobs, the above examples
show that the optimal solutions for the classical versions do not hold with a time-dependent
learning effect. But some special cases of these scheduling problems with a time-dependent
learning effect modelled as (1) can be solved in polynomial time.

Theorem 4 For the problem 1|LEt|
∑

wjCj, if the jobs have agreeable weights, i.e., pj ≤ pk

implies wj ≥ wk for all the jobs j and k, an optimal schedule can be obtained by sequencing the
jobs in non-decreasing order of pj/wj, i.e., the WSPT rule is optimal.

Proof. (By contradiction). Consider an optimal schedule π that does not follow the WSPT rule.
In this schedule there must be at least two adjacent jobs, say job j followed by job k, such that
pj/wj > pk/wk, which implies pj ≥ pk. Assume that job j is scheduled in position r. Perform
an adjacent pair-wise interchange of jobs j and k. Whereas under the original schedule π job j

is scheduled in position r and job k is scheduled in position r + 1, under the new schedule job k

is scheduled in position r and job j is scheduled in position r + 1. All other jobs remain in their
original positions. Call the new schedule π′. The completion times of the jobs processed before

7



jobs j and k are not affected by the interchange. Furthermore, the completion times of the jobs
processed after jobs j and k cannot be increased by the interchange since pj ≥ pk. Under π,

Cj(π) = p[1] + p[2](1 + p[1]) + . . . + p[r−1](1 +
r−2∑

q=1

p[q])
a + pj(1 +

r−1∑

q=1

p[q])
a,

Ck(π) = p[1] + p[2](1 + p[1]) + . . . + p[r−1](1 +
r−2∑

q=1

p[q])
a + pj(1 +

r−1∑

q=1

p[q])
a + pk(1 +

r−1∑

q=1

p[q] + pj)a,

whereas under π′, they are

Ck(π′) = p[1] + p[2](1 + p[1]) + . . . + p[r−1](1 +
r−2∑

q=1

p[q])
a + pk(1 +

r−1∑

q=1

p[q])
a,

Cj(π′) = p[1] + p[2](1 + p[1]) + . . . + p[r−1](1 +
r−2∑

q=1

p[q])
a + pk(1 +

r−1∑

q=1

p[q])
a + pj(1 +

r−1∑

q=1

p[q] + pk)a.

So we have
∑

wjCj(π)−
∑

wjCj(π′)

≥ wjpj(1 +
r−1∑

q=1

p[q])
a + wk[pj(1 +

r−1∑

q=1

p[q])
a + pk(1 +

r−1∑

q=1

p[q] + pj)a]

−wkpk(1 +
r−1∑

q=1

p[q])
a − wj [pk(1 +

r−1∑

q=1

p[q])
a + pj(1 +

r−1∑

q=1

p[q] + pk)a]

= (wj + wk)


(pj − pk)(1 +

r−1∑

q=1

p[q])
a + pk(1 +

r−1∑

q=1

p[q] + pj)a − pj(1 +
r−1∑

q=1

p[q] + pk)a




+wkpj(1 +
r−1∑

q=1

p[q] + pk)a)− wjpk(1 +
r−1∑

q=1

p[q] + pj)a.

Since pj ≥ pk, wkpj > wjpk (because pj/wj > pk/wk), (1+
∑r−1

q=1 p[q]+pk)a ≥ (1+
∑r−1

q=1 p[q]+
pj)a (because xa is non-increasing for a ≤ 0) and (pj − pk)(1 +

∑r−1
q=1 p[q])a + pk(1 +

∑r−1
q=1 p[q] +

pj)a − pj(1 +
∑r−1

q=1 p[q] + pk)a ≥ 0 (due to Lemma 1), then
∑

wjCj(π) −∑
wjCj(π′) > 0. It

follows that the weighted sum of completion times under π′ is strictly less than that under π.
This contradicts the optimality of π and proves the theorem. 2

The following two theorems are corollaries of Theorem 4.

Theorem 5 For the problem 1|LEt, pj = p|∑wjCj, an optimal schedule can be obtained by
sequencing the jobs in non-increasing order of wj.

8



Theorem 6 For the problem 1|LEt, wj = kpj |
∑

wjCj, an optimal schedule can be obtained by
sequencing the jobs in non-decreasing order of pj, i.e., the SPT rule is optimal.

Theorem 7 For the problem 1|LEt|Lmax, if the jobs have agreeable conditions, i.e., pi ≤ pj

implies di ≤ dj for all the jobs i and j, an optimal schedule can be obtained by sequencing the
jobs in non-decreasing order of dj, i.e., the EDD rule is optimal.

Proof. Consider an optimal schedule π that does not follow the EDD rule. In this schedule
there must be at least two adjacent jobs, say j and k in the rth and (r+1)th positions of π,
respectively, such that dj > dk, which implies pj ≥ pk. Schedule π′ is obtained from schedule π

by interchanging jobs in the rth and in the (r + 1)th positions of π. From the proof of Theorem
4, under π, the lateness of the jobs are

Lj(π) = Cj(π)− dj ,

Lk(π) = Ck(π)− dk,

whereas under π′, they are

Lk(π′) = Ck(π′)− dk,

Lj(π′) = Cj(π′)− dj .

Since dj > dk and pj ≥ pk, we have Cj(π′) ≤ Ck(π) and Ck(π′) ≤ Cj(π) [8], hence it is easily
verified that

max{Lj(π′), Lk(π′)} < max{Lj(π), Lk(π)}.
Hence, interchanging the positions of jobs j and k will decrease the value of Lmax. This is a
contradiction. 2

Theorem 8 For the problem 1|LEt, pj = p|Lmax, an optimal schedule can be obtained by se-
quencing the jobs in non-decreasing order of dj, i.e., the EDD rule is optimal.

If dj = kpj , the jobs have agreeable conditions, i.e., pi ≤ pj implies di ≤ dj for all the jobs i

and j. Hence, the following corollary can be easily obtained.

Corollary 1 For the problem 1|LEt, dj = kpj |Lmax, an optimal schedule can be obtained by
sequencing the jobs in non-decreasing order of dj, i.e., the EDD rule is optimal.

Theorem 9 For the problem 1|LEt|
∑

Uj, if the jobs have agreeable conditions, i.e., pi ≤ pj

implies di ≤ dj for all the jobs i and j, an optimal schedule can be obtained by Moore’s Algorithm.

9



Proof. Without loss of generality, we can assume that d1 ≤ d2 ≤ . . . ≤ dn, then under the
condition of the theorem, we can further assume p1 ≤ p2 ≤ . . . ≤ pn. Let Jk denote a set of jobs
{1, 2, . . . , k} that satisfies the following two conditions :

(a) All the jobs in Jk have the maximum number of no-late jobs, say nk.
(b) Among all sets with nk no-late jobs among the first k jobs, Jk is a set such that it has

the smallest total processing time.
Note that set Jn corresponds to an optimal schedule. As in Pinedo [17], the proof that the

algorithm leads to Jn is by induction.
Obviously, for k = 1, it is true that the algorithm that constructs J1 satisfies the conditions

(a) and (b).
Suppose for k = m, the set Jm = {1, 2, . . . , m} constructed by Moore’s Algorithm satisfies

the conditions (a) and (b). Now we prove for k = m+1, the set Jm+1 constructed starting with
set Jm also satisfies the conditions (a) and (b). There are two cases to be considered.

Case 1. Job m + 1 is completed by its due date in set {Jm,m + 1}. The conditions (a)
and (b) clearly hold for Jm+1 = {Jm,m + 1}, for it is impossible to construct such a set in
{1, 2, . . . , m + 1} with the number of no-late jobs more than the number of no-late jobs in the
set Jm+1. It is also clear that the last job has to be part of the set Jm+1, and the set has a
minimum total processing time among sets with the same number of no-late jobs.

Case 2. Job m + 1 is not completed by its due date in set {Jm,m + 1}. From the fact that
nm is such a set of {1, 2, . . . , m} for which the maximum number of jobs to be completed on time
and that set Jm has the smallest total processing time among sets with nm on-time completions,
we know that nm+1 = nm. Adding job m + 1 to set Jm does not increase the number of no-late
jobs. And we know from Lemma 3 that adding job m + 1 to the set and deleting the largest job
among {Jm,m + 1} keeps the same number of no-late jobs and reduces the total time it takes
to process these jobs. It can be easily shown that Jm+1 satisfies the conditions (a) and (b). The
proof is completed. 2

Theorem 10 For the problem 1|LEt, pj = p|∑Uj, an optimal schedule can be obtained by
sequencing the jobs in non-decreasing order of dj, i.e., the EDD rule is optimal.

Theorem 11 For the problem 1|LEt, dj = d|∑Uj, an optimal schedule can be obtained by
sequencing the jobs in non-decreasing order of pj, i.e., the SPT rule is optimal.

If dj = kpj , the jobs have agreeable conditions, i.e., pi ≤ pj implies di ≤ dj for all the jobs i

and j. Hence, the following corollary can be easily obtained.

Corollary 2 For the problem 1|LEt, dj = kpj |
∑

Uj, an optimal schedule can be obtained by
Moore’s Algorithm.

10



4 Conclusions

A type of scheduling problems with a time-dependent learning effect was studied in this pa-
per. It was shown by several examples that the weighted sum of completion times minimization
problem, the maximum lateness minimization problem and the number of tardy jobs mini-
mization problem cannot be optimally solved by the corresponding classical scheduling rules,
respectively. But for some special cases, the problems can be solved in polynomial time. We
also used the classical rules as a heuristic algorithm for these three general problems, respec-
tively, and analyzed their worst-case error bounds. Future research may focus on determining
the complexity of these three problems as they remain open.

Acknowledgements

This research was supported in part by The Hong Kong Polytechnic University under grant
number A628 from the Area of Strategic Development in China Business Services. The research
of the first author was partially supposed by the foundation of Shenyang Institute of Aeronautical
Engineering under grant number 05YB08.

References

[1] Bachman A, Janiak A. Scheduling jobs with position-dependent processing times. Journal
of the Operational Research Society 2004; 55: 257-264.

[2] Badiru AB. Computational survey of univariate and multivariate learning curve models.
IEEE transactions on Engineering Management 1992; 39: 176-188.

[3] Biskup D. Single-machine scheduling with learning considerations. European Journal of
Operational Research 1999; 115: 173-178.

[4] Biskup D, Simons D. Common due date scheduling with autonomous and induced learning.
European Journal of Operational Research 2004; 159: 606-616.

[5] Cheng TCE, Wang G. Single machine scheduling with learning effect considerations. Annals
of Operations Research 2000; 98: 273-290.

[6] Jackson JR. Scheduling a production line to minimize maximum tardiness. Research Report
43, Management Sciences Research Project, UCLA, January, 1955.

[7] Kuo W-H, Yang D-L. Minimizing the total completion time in a single-machine scheduling
problem with a time-dependent learning effect. European Journal of Operational Research
(to appear).

11



[8] Kuo W-H, Yang D-L. Single-machine group scheduling with a time-dependent learning effect.
Computers & Operations Research (to appear).

[9] Lee W-C, Wu C-C. Minimizing total completion time in a two-machine flowshop with a
learning effect. International Journal of Production Economics 2004; 88: 85-93.

[10] Lee W-C, Wu C-C, Sung H-J. A bi-criterion single-machine scheduling problem with learn-
ing considerations. Acta Informatica 2004; 40: 303-315.

[11] Liu J, Sun S, He L. Some single machine scheduling problems with learning effect under
consistent condition. OR Transactions 2003; 7 (3): 21-28.

[12] Moore J. An n job, one machine sequencing algorithm for minimizing the number of late
jobs. Management Science 1968; 15: 102-109.

[13] Mosheiov G. Scheduling problems with a learning effect. European Journal of Operational
Research 2001; 132: 687-693.

[14] Mosheiov G. Parallel machine scheduling with a learning effect. Journal of the Operational
Research Society 2001; 52: 1165-1169.

[15] Mosheiov G, Sidney JB. Scheduling with general job-dependent learning curves. European
Journal of Operational Research 2003; 147: 665-670.

[16] Mosheiov G, Sidney JB. Note on scheduling with general learning curves to minimize the
number of tardy jobs. Journal of the Operational Research Society 2005; 56: 110-112.

[17] M. Pinedo. Scheduling Theory, Algorithms, and Systems, Prentice Hall, New Jersey, 1995.

[18] Wang J-B. Flow shop scheduling jobs with position-dependent processing times. Journal of
Applied Mathematics and Computing 2005; 18: 383-391.

[19] Wang J-B, Xia Z-Q. Flow-shop scheduling with a learning effect. Journal of the Operational
Research Society 2005; 56: 1325-1330.

[20] Wright TP. Factors affecting the cost of airplanes. Journal of the Aeronautical Sciences
1936; 3: 122-128.

12




