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Abstract. Precise flood forecasting is desirable so as to have more lead time for 
taking appropriate prevention measures as well as evacuation actions. Although 
conceptual prediction models have apparent advantages in assisting physical 
understandings of the hydrological process, the spatial and temporal variability 
of characteristics of watershed and the number of variables involved in the 
modeling of the physical processes render them difficult to be manipulated 
other than by specialists. In this study, two hybrid models, namely, based on 
genetic algorithm-based artificial neural network and adaptive-network-based 
fuzzy inference system algorithms, are employed for flood forecasting in a 
channel reach of the Yangtze River. The new contributions made by this paper 
are the application of these two algorithms on flood forecasting problems in real 
prototype cases and the comparison of their performances with a benchmarking 
linear regression model in this field. It is found that these hybrid algorithms 
with a “black-box” approach are worthy tools since they not only explore a new 
solution approach but also demonstrate good accuracy performance. 

1 Introduction 

Numerical models for flood propagation in a channel reach can broadly be classified 
into two main categories: conceptual models [1-5]; and, empirical models based on 
system analysis or “black-box” approach. Huge amount of data are usually required 
for calibration of these conceptual models. In many cases, a simple “black-box” 
model may be preferred in identifying a direct mapping between inputs and outputs. 
During the past decade, several nonlinear approaches, including artificial neural 
network (ANN), genetic algorithm (GA), and fuzzy logic, have been employed to 
solve flood forecasting problems. Smith and Eli [6] applied a back-propagation ANN 
model to predict discharge and time to peak over a hypothetical watershed. Tokar and 
Johnson [7] compared ANN models with regression and simple conceptual models. 
Liong et al. [8] employed an ANN approach for river stage forecasting in Bangladesh. 
Cheng and Chau [9] employed fuzzy iteration methodology for reservoir flood control 
operation. Chau and Cheng [10] performed a real-time prediction of water stage with 
ANN approach using an improved back propagation algorithm. Chau [11] calibrated 
flow and water quality modeling using GA. Cheng et al. [12] combined a fuzzy 
optimal model with a genetic algorithm to solve multiobjective rainfall-runoff model 
calibration. Chau [13-14] performed river stage forecasting and rainfall-runoff 
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correlation with particle swarm optimization technique. Cheng et al. [15] carried out 
long-term prediction of discharges in Manwan Reservoir using ANN models. 

In this paper, two hybrid algorithms, namely, genetic algorithm-based artificial 
neural network (ANN-GA) and adaptive-network-based fuzzy inference system 
(ANFIS), are applied for flood forecasting in a channel reach of the Yangtze River. 
To the knowledge of the authors, these types of algorithms have never been applied to 
hydrological and water resources problems. The new contributions made by this paper 
are the application of these two algorithms on flood forecasting problems in real 
prototype cases and the comparison of their performances with a benchmarking linear 
regression (LR) model in this field.  

2 Genetic Algor ithm-Based Artificial Neural Network (ANN-GA) 

A hybrid integration of ANN and GA, taking advantages of the characteristics of both 
schemes, may be able to increase solution stability and improve performance of an 
ANN model. A genetic algorithm-based artificial neural network (ANN-GA) model is 
developed here wherein a GA [16] is used to optimize initial parameters of ANN 
before trained by conventional ANN. In the GA sub-model, the objective function 
used for initializing weights and biases is represented as follows:  
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where W is the weight, θ  is the bias or threshold value, i is the data sequence, p is 

the total number of training data pairs, iX  is the ith
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data, and represents simulated output. The main objective of the sub-
model is to determine optimal parameters with minimal accumulative errors between 
the measured data and simulated data.  

3 Adaptive-Network-Based Fuzzy Inference System (ANFIS) 

In this study, the output of each rule is taken as a linear combination of input variable 
together with a constant term. The final output is the weighted averaged of each rule’s 
output. The fuzzy rule base comprises the combinations of all categories of variables. 
As an illustration, the following shows a case with three input variables and a single 
output variable. Each input variable ( x , y , and z ) is divided into three categories. 
Equally spaced triangular membership functions are assigned. The categories are 
assigned: “low,” “medium,” and “high.” The number of rules in a fuzzy rule base is 

nc , where c  is the number of categories per variable and n  the number of variables. 
The optimal number of categories is obtained through trials and performance 
comparison. The format of the rule set contains an output kjio ,,  for a combination of 



category i  of input variable x , category j  of input y , and category k  of input 
variable z , respectively.  

If a rule is triggered, the corresponding memberships of x , y , and z will be 

computed. The weight kjiw ,,  to be assigned to the corresponding output kjio ,,  will 
be furnished by the result of a specific T-norm operation. Multiplication operation is 
adopted here. A single weighted average output will then be acquired by combining 
the outputs from all triggered rules as follows: 
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Fig. 1. Performance comparison in terms of absolute errors for different algorithms 

For this flood forecasting model, some parameters, including each triangular 
membership function and the consequence part of each rule, have to be obtained 
through learning by ANN. The algorithm is able to enhance the intelligence when 
working in uncertain, imprecise, and noisy environments and to accomplish faster 
convergence. It possesses the characteristics of both the neural networks, including 
learning abilities, optimization abilities, and connectionist structures, and the fuzzy 
control systems, including human like “if-then” rule thinking and ease of 
incorporating expert knowledge, etc. In this system, the parameters defining the shape 
of the membership functions and the consequent parameters for each rule are 
determined by the back-propagation learning algorithm and the least-squares method, 
respectively.  



4 Application Case 

The studied channel reach from Luo-Shan to Han-Kou is located at the middle of the 
Yangtze River. The water elevation at Luo-Shan station ranges from 17.3m during the 
non-flooding period to 31.0m during the flooding period whilst the mean levels are 
20.8m and 27.1m during the non-flooding and flooding periods, respectively. The key 
objective of this study is to forecast water stages of the downstream station, Han-Kou, 
on the basis of its counterparts at the upstream station, Luo-Shan.  

For the ANN-GA model, a three-layer network is adopted with three input nodes 
and one output node. As an initial data preprocessing, the input and output data are 
normalized to be ranging between 0 and 1, corresponding to the minimum and the 
maximum water stages, respectively. ANN-GA models are trained with different 
number of nodes in the hidden layer so as to determine the optimal network geometry 
for these data sets. A testing set is incorporated so as to avoid the overfitting problem. 
Training is stopped when the error learning curve of the testing set starts to increase 
whilst that of the training set is still decreasing. It is found that, amongst them, the 
architecture with 3 nodes in the hidden layer is the optimal. 

For an ANFIS model, more number of categories will furnish higher accuracy, but 
at the same time will have the disadvantages of larger rule bases and higher 
computation cost. Trial and error procedure is performed with a view to selecting the 
appropriate number of variable categories. Careful treatment is also made to avoid 
overfitting, though it is anticipated that more subspaces for the ANFIS model might 
result in better performance. An optimal number of categories of 3 is adopted, after 
having taken into consideration of the computational time, root mean square error in 
training (RMSE_tra), and root mean square error in validation (RMSE_vali). 

Table 1. Performance comparison for different models in flood prediction 

Models RMSE_tra 
(m) 

RMSE_vali 
(m) 

Training time 
(s) 

Number of 
parameter 

LR 0.238 0.237 Nil 4 
ANN-GA 0.213 0.226 135 16 
ANFIS 0.204 0.214 49 135 

5 Results and Analysis 

The performance comparison of the LR, ANN-GA, and ANFIS models in forecasting 
1-day lead time water levels at Han-Kou on the basis of the upstream water levels at 
Luo-Shan station during the past three days is shown in Figure 1. The fluctuation of 
absolute error is the largest for the LR model and is smallest for the ANFIS model. 
Table 1 shows the performance comparison using RMSE_tra, RMSE_vali, training 
time, and number of parameters. The ANFIS model is able to attain the highest 
accuracy, yet requires less training time than ANN-GA model. However, it should be 
noted that the ANFIS model involves more number of parameters than the other two 
models.  



Their differences in performance can be explained somewhat by the fact that the 
LR model can only fit a linear function to input-output data pairs whilst both the 
ANN-GA and ANFIS models can contort themselves into complex forms in order to 
handle non-linear problems. It is justifiable that an ANN-GA model with 16 
parameters is more flexible than LR model with 4 parameters since the coupling of 
ANN and GA can take advantage of the local optimization of ANN and the global 
optimization of GA. The results indicate that the local approximation approach of the 
ANFIS model has better performance in mapping the connectivity of input-output 
data pairs than the global approximation approach of the ANN-GA model. More 
importantly, the ANN-GA model entails more training time than the ANFIS model 
due to the time consuming searching nature of GA. Nevertheless, with the recent rate 
of development of computer technology, it will not be a major constraint. As such, it 
is trusted that hybrid algorithms, including ANN-GA and ANFIS, will have 
significant potentials as alternatives to conventional models in solving hydrological 
problems. 

6 Conclusions 

In this paper, two hybrid “black-box” models are applied for real flood forecasting. 
Both ANN-GA and ANFIS models are able to produce accurate flood predictions of 
the channel reach between Luo-Shan and Han-Kou stations in the Yangtze River. 
Amongst them, the ANFIS model, having the characteristics of both ANN and FIS, is 
the optimal in terms of the simulation performance, yet requires a larger amount of 
parameters in comparison with the benchmarking LR model. The ANN-GA model 
adequately combines the advantage of ANN with the advantage of GA, yet consumes 
most computation cost. Both ANN-GA and ANFIS models could be considered as 
feasible alternatives to conventional models. The new contributions made by this 
paper are the application of these two algorithms on flood forecasting problems in real 
prototype cases and the comparison of their performances with a benchmarking model 
in this field. 
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