
Lecture Notes in Artificial Intelligence, Vol. 3029, 2004, pp. 1166-1173 

River  Stage Forecasting with Par ticle Swarm 
Optimization 

Kwokwing Chau 

Department of Civil and Structural Engineering, Hong Kong Polytechnic University, 
Hunghom, Kowloon, Hong Kong 
cekwchau@polyu.edu.hk 

Abstract. An accurate water stage prediction allows the pertinent authority to 
issue a forewarning of the impending flood and to implement early evacuation 
measures when required. Existing methods including rainfall-runoff modeling 
or statistical techniques entail exogenous input together with a number of 
assumptions. The use of artificial neural networks has been shown to be a cost-
effective technique. But their training, usually with back-propagation algorithm 
or other gradient algorithms, is featured with certain drawbacks, such as very 
slow convergence and easily getting stuck in a local minimum. In this paper, a 
particle swarm optimization model is adopted to train perceptrons. The 
approach is demonstrated to be feasible and effective by predicting real-time 
water levels in Shing Mun River of Hong Kong with different lead times on the 
basis of the upstream gauging stations or stage/time history at the specific 
station. It is shown from the verification simulations that faster and more 
accurate results can be acquired. 

1 Introduction 

Flooding is a type of natural disaster that has been occurring for centuries, but can 
only be mitigated rather than completely solved. Prediction of river stages becomes an 
important research topic in hydrologic engineering. An accurate water stage 
prediction allows the pertinent authority to issue a forewarning of the impending 
flood and to implement early evacuation measures when required. Currently, 
environmental prediction and modeling includes a variety of approaches, such as 
rainfall-runoff modeling or statistical techniques, which entail exogenous input 
together with a number of assumptions. Conventional numerical modeling addresses 
the physical problem by solving a highly coupled, non-linear, partial differential 
equation set which demands huge computing cost and time. However, physical 
processes affecting flooding occurrence are highly complex and uncertain, and are 
difficult to be captured in some form of deterministic or statistical model.  

During the past decade, the artificial neural networks (ANN), and in particular, the 
feed forward backward propagation perceptrons, are widely applied in different fields. 
It is claimed that the multi-layer perceptrons can be trained to approximate and 
accurately generalize virtually any smooth, measurable function whilst taking no prior 
assumptions concerning the data distribution. Characteristics, including built-in 
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dynamism in forecasting, data-error tolerance, and lack of requirements of any 
exogenous input, render it attractive for use in river stage prediction in hydrologic 
engineering. Thirumalaiah and Deo [1] depict the use of a conjugate gradient ANN in 
real-time forecasting of water levels, with verification of untrained data. Liong et al. 
[2] demonstrate that a feed forward ANN is a highly suitable flow prediction tool 
yielding a very high degree of water level prediction accuracy in Bangladesh. Chau 
and Cheng [3] describe the sensitivity of various network characteristics for real-time 
prediction of water stage with the ANN approach in a river in Hong Kong. Although 
the back propagation (BP) algorithm is commonly used in recent years to perform the 
training task, some drawbacks are often encountered in the use of this gradient-based 
method. They include: the training convergence speed is very slow; it is easily to get 
stuck in a local minimum. Different algorithms have been proposed in order to 
resolve these drawbacks, yet the results are still not fully satisfactory [4].  

Particle swarm optimization (PSO) is a method for optimizing hard numerical 
functions based on metaphor of human social interaction [5-6]. Although it is initially 
developed as a tool for modeling social behavior, the PSO algorithm has been 
recognized as a computational intelligence technique intimately related to 
evolutionary algorithms [7-8]. In this paper, a PSO-based neural network approach for 
river stage prediction is developed by adopting PSO to train multi-layer perceptrons. 
It is then used to predict real-time water levels in Shing Mun River of Hong Kong 
with different lead times on the basis of the upstream gauging stations or stage/time 
history at the specific station.  

2 Multi-layer  Feed-forward Perceptron 

A multi-layer feed-forward perceptron represents a nonlinear mapping between input 
vector and output vector through a system of simple interconnected neurons. It is fully 
connected to every node in the next and previous layer. The output of a neuron is 
scaled by the connecting weight and fed forward to become an input through a 
nonlinear activation function to the neurons in the next layer of network. In the course 
of training, the perceptron is repeatedly presented with the training data. The weights 
in the network are then adjusted until the errors between the target and the predicted 
outputs are small enough, or a pre-determined number of epochs is passed. The 
perceptron is then validated by presenting with an input vector not belonging to the 
training pairs. The training processes of ANN are usually complex and high 
dimensional problems. The commonly used gradient-based BP algorithm is a local 
search method, which easily falls into local optimum point during training.  

3 Par ticle Swarm Optimization (PSO) 

Particle swarm optimization (PSO) is an optimization paradigm that mimics the 
ability of human societies to process knowledge. It has roots in two main component 
methodologies: artificial life (such as bird flocking, fish schooling and swarming); 
and, evolutionary computation. The key concept of PSO is that potential solutions are 



flown through hyperspace and are accelerated towards better or more optimum 
solutions. 

3.1 PSO Algor ithm 

PSO is a populated search method for optimization of continuous nonlinear functions 
resembling the movement of organisms in a bird flock or fish school. Its paradigm can 
be implemented in a few lines of computer code and is computationally inexpensive 
in terms of both memory requirements and speed. It lies somewhere between 
evolutionary programming and genetic algorithms. As in evolutionary computation 
paradigms, the concept of fitness is employed and candidate solutions to the problem 
are termed particles or sometimes individuals. A similarity between PSO and a 
genetic algorithm is the initialization of the system with a population of random 
solutions. Instead of employing genetic operators, the evolution of generations of a 
population of these individuals in such a system is by cooperation and competition 
among the individuals themselves. Moreover, a randomized velocity is assigned to 
each potential solution or particle so that it is flown through hyperspace. The 
adjustment by the particle swarm optimizer is ideally similar to the crossover 
operation in genetic algorithms whilst the stochastic processes are close to 
evolutionary programming. The stochastic factors allow thorough search of spaces 
between regions that are spotted to be relatively good whilst the momentum effect of 
modifications of the existing velocities leads to exploration of potential regions of the 
problem domain. 

There are five basic principles of swarm intelligence: (1) proximity; (2) quality; (3) 
diverse response; (4) stability; and, (5) adaptability. The n-dimensional space 
calculations of the PSO concept are performed over a series of time steps. The 
population is responding to the quality factors of the previous best individual values 
and the previous best group values. The allocation of responses between the 
individual and group values ensures a diversity of response. The principle of stability 
is adhered to since the population changes its state if and only if the best group value 
changes. It is adaptive corresponding to the change of the best group value. 

In essence, each particle adjusts its flying based on the flying experiences of both 
itself and its companions. It keeps track of its coordinates in hyperspace which are 
associated with its previous best fitness solution, and also of its counterpart 
corresponding to the overall best value acquired thus far by any other particle in the 
population. Vectors are taken as presentation of particles since most optimization 
problems are convenient for such variable presentations. The stochastic PSO 
algorithm has been found to be able to find the global optimum with a large 
probability and high convergence rate. Hence, it is adopted to train the multi-layer 
perceptrons, within which matrices learning problems are dealt with. 

3.2 Adaptation to Network Training 

A three-layered preceptron is chosen for this application case. Here, W[1] and W[2] 
represent the connection weight matrix between the input layer and the hidden layer, 



and that between the hidden layer and the output layer, respectively. When a PSO is 
employed to train the multi-layer preceptrons, the i-th particle is denoted by 
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The position representing the previous best fitness value of any particle is recorded 
and denoted by 
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If, among all the particles in the population, the index of the best particle is 
represented by the symbol b, then the best matrix is denoted by 
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The velocity of particle i is denoted by  
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If m and n represent the index of matrix row and column, respectively, the 
manipulation of the particles are as follows  
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 are the row and column sizes 
of the matrices W, P, and V; r and s are positive constants; α and β are random 
numbers in the range from 0 to 1. Equation (5) is employed to compute the new 
velocity of the particle based on its previous velocity and the distances of its current 
position from the best experiences both in its own and as a group. In the context of 
social behavior, the cognition part  represents the 
private thinking of the particle itself whilst the social part 
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group. Equation (6) then determines the new position according to the new velocity. 
The fitness of the i-th particle is expressed in term of an output mean squared error 

of the neural networks as follows 
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where f is the fitness value, tkl is the target output; pkl is the predicted output based on 
Wi; S is the number of training set samples; and, O is the number of output neurons. 



4 The Study Area 

The system is applied to study the tidal dynamics and potential flood hazards in the 
Shing Mun River network, Hong Kong. Details regarding the location of the Shing 
Mun River and its tributary nullahs can be found in [9-17]. The existing Shing Mun 
River has been trained for a length of about 2840m, from the bell-mouth outlet of 
Lower Shing Mun Dam to Sha Tin Tsuen. The three minor streams, i.e. the Tin Sam, 
Fo Tan and Siu Lek Yuen nullahs, form tributaries of the extended river. Surface 
water from an extensive catchment with an area of approximately 5200 ha flows into 
Sha Tin Hoi via the Shing Mun River. The maximum flow at the river for a 200-year 
storm is about 1500 m3

In this study, water levels at Fo Tan is forecasted with a lead time of 1 and 2 days 
based on the measured daily levels there and at Tin Sam. The data available at these 
locations pertain to continuous stages from 1999 to 2002, in the form of daily water 
levels. In total, 1095 pairs of daily levels were available, of which 730 were used for 
training and 365 were used to validate the network results with the observations. It is 
ensured that the data series chosen for training and validation comprised both high 
and low discharge periods of the year and also rapid changes in water stages.  

/s. 

The perceptron has an input layer with one neuron, a hidden layer with three 
neurons, and output layer with two neurons. The input neuron represents the water 
stage at the current day whilst the output nodes include the water stages after 1 day 
and 2 days, respectively. All source data are normalized into the range between 0 and 
1, by using the maximum and minimum values of the variable over the whole data 
sets. In the PSO-based perceptron, the number of population is set to be 40 whilst the 
maximum and minimum velocity values are 0.25 and -0.25 respectively. 
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Fig. 1. Relationships between the normalized mean square error and fitness evaluation time 
during training for PSO-based and BP-based perceptrons  



5 Results and Discussions 

The PSO-based multi-layer ANN is evaluated along with a commonly used standard 
BP-based network. In order to furnish a comparable initial state, the training process 
of the BP-based perceptron commences from the best initial population of the 
corresponding PSO-based perceptron. Figure 1 shows the relationships between the 
normalized mean square error and fitness evaluation time during training for PSO-
based and BP-based perceptrons whilst Figure 2 shows the 2 day lead time 
normalized water level prediction by both perceptrons in the validation process. Table 
1 and Table 2 show comparisons of the results of network for the two different 
perceptrons based on data at the same station and at different station, respectively. 

The fitness evaluation time here for the PSO-based perceptron is equal to the 
product of the population with the number of generations. It can be observed that the 
PSO-based perceptron exhibits much better and faster convergence performance in 
the training process as well as better prediction ability in the validation process than 
those by the BP-based perceptron. It can be concluded that the PSO-based perceptron 
performs better than the BP-based perceptron. Moreover, forecasting at Fo Tan made 
by using the data collected at the upstream station (Tin Sam) is generally better 
compared to the data collected at the same location. 

Table 1. Results for forecasting at Fo Tan based on data at the same station 

 
Algorithm 

Coefficient of correlation 
Training Validation 

1 day ahead 2 days ahead 1 day ahead 2 days ahead 
BP-based 0.945 0.913 0.934 0.889 
PSO-based 0.974 0.965 0.956 0.944 

Table 2. Results for forecasting at Fo Tan based on data at Tin Sam 

 
Algorithm 

Coefficient of correlation 
Training Validation 

1 day ahead 2 days ahead 1 day ahead 2 days ahead 
BP-based 0.967 0.934 0.954 0.894 
PSO-based 0.989 0.982 0.983 0.974 

6 Conclusions 

This paper presents a PSO-based perceptron approach for real-time prediction of 
water stage in a river with different lead times on the basis of the upstream gauging 
stations or stage/time history at the specific station. It is demonstrated that the novel 
optimization algorithm, which is able to provide model-free estimates in deducing the 
output from the input, is an appropriate forewarning tool. It is shown from the training 
and verification simulation that the water stage prediction results are more accurate 
and are obtained in relatively short computational time, when compared with the 



commonly used BP-based perceptron. Both the above two factors are important in 
real-time water resources management. It can be concluded that the PSO-based 
perceptron performs better than the BP-based perceptron. Moreover, forecasting at Fo 
Tan made by using the data collected at the upstream station is generally better 
compared to the data collected at the same location. Future research can be directed 
towards forecasting river stages by using the more empirical hydrological and rainfall 
data at the upstream catchment area in order to further extend the lead time of 
forewarning. 
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Fig. 2. 2 day lead time water level prediction by both perceptrons in the validation process 
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