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ABSTRACT 

Tourism forecasting plays an important role in tourism planning and management. Various forecasting 

techniques have been developed and applied to the tourism context, amongst which econometric 

forecasting has been winning an increasing popularity in tourism research. This paper therefore aims to 

introduce the latest developments of econometric forecasting approaches and their applications to 

tourism demand analysis. Particular emphases are placed on the time varying parameter (TVP) 

forecasting technique and its application to the almost ideal demand system (AIDS). The discussions 

in this paper fall into two main parts, in line with the two broad categories of econometric forecasting 

approaches: the first part refers to the single-equation forecasting techniques, focusing particularly on 

both long-run and short-term TVP models. The second part introduces the system-of-equations 

forecasting models, represented by the AIDS and its dynamic versions including the combination with 

the TVP technique, will be discussed one by one following the order of methodological developments. 

  

KEYWORDS: Forecasting Models, Time Varying Parameter (TVP), Almost Ideal Demand System 

(AIDS) 

INTRODUCTION 

Considering the data availability, tourism forecasting techniques fall into two major categories: 

quantitative and qualitative forecasting. If little or no quantitative information is available, but 

sufficient qualitative knowledge exists, qualitative forecasting approaches are appropriate. When 

sufficient quantifiable information about the past is available and the objective numerical 

measurements are consistent over the historical period, quantitative forecasting should be adopted. 

Considering the number of published studies, quantitative forecasting dominates the tourism literature. 
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Quantitative forecasting methods can be further divided into two subcategories: causal and non-causal 

methods, depending on if there are any explanatory variables included or not in the models. Causal 

methods, principally the econometric models, can not only predict the trends of future tourism 

demand, but also interpret the causes of variations in tourism demand. Hence, causal forecasting 

methods can provide useful information for both policy evaluation in the public sector and strategy 

formulation in various tourism businesses. This paper focuses on the latest developments of 

econometric forecasting methods and their applications in the tourism context. A particular emphasis 

will be given to the TVP estimation approach applied to both single-equation and system-of-equation 

models.   

TVP SINGLE-EQUATION MODELS 

One of the assumptions behind conventional fixed-parameter econometric techniques is that the 

coefficients of the models are constant over the whole sample period. This implies that the economic 

structure generating the data does not change over time (Judge et al, 1985). However, the changing 

economic environment may induce people to react differently at various points in time, both 

quantitatively and qualitatively to given stimulations. To overcome the limitations of the traditional 

fixed-parameter models, a more advanced and flexible econometric method: the TVP model, has been 

developed, which allows one to understand and forecast consumer behaviour more accurately. The 

TVP model relaxes the restriction on the parameter constancy and takes account of the possibility of 

parameter changes over time. The TVP technique was initially developed in the engineering science 

and was recently applied to socioeconomic studies, mostly adopted in the single-equation modelling 

framework.  

TVP Long-Run Model (TVP-LRM) 

TVP models are normally specified in a state space (SS) form. SS modelling assumes that the dynamic 

features of the system under study are determined by the unobserved variables associated with a series 

of observations (Durbin and Koopman, 2001). The SS presentation allows unobserved variables to be 

included into, and estimated along with, the observable variables. By inferring the relevant properties 

of the unobserved series from the knowledge of the observations, the evolution of the system can be 

more precisely described and predicted. A linear SS model can be written as:  

 

,tttt Zy εα +′=  ),,0(~ tHNε  Tt ,...,1=    (1) 

,1 tttt T ηαα +=+  ),(~ 111 PaNα , ),,0(~ tt QNη    (2) 

 

where ty  is the dependent variable; tZ  is a vector of  independent variables; tα  is an unobserved 

vector called state vector; tε  refers to the temporary disturbance and tη  the permanent disturbance, 

tε  and tη  are Gaussian disturbances, which are serially independent and independent of each other at 

all time points; The matrices tT , tH  and tQ  are initially assumed to be known. Equation (1) is called 

the observation equation, and Equation (2) called the state equation. In most of the economic 

applications, the evolution of tα  is assumed to follow a multivariate random walk. i.e., 

ttt ηαα +=+1 . This assumption is also applied in the current study. The initial value of tα , i.e., 1α , 

can be estimated by maximum likelihood from the first few observations of ty  and tZ . 1P  is the 
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variance of 
1α  (Durbin and Koopman, 2001; Harvey, 1989). 

 

The rationale behind this model is that the evolution of the concerning system over time is determined 

by tα  according to the state equation. Meanwhile, since it is unobservable, the analysis must be based 

on the observations of ty , that is, tZ  and 1−tT  are dependent on 1y ,…, 1−ty . 

 

The definition of the state vector tα  for a particular model depends on its construction. Its elements 

have a substantive interpretation, e.g., as a trend or seasonality. From a technical point of view, the 

purpose of specifying a SS form is to “set up tα  in such a way that it contains all the relevant 

information on the system at time t and that it does so by having as small a number of elements as 

possible” (Harvey, 1989, p102). 

 

Once a TVP model has been specified in a SS form, the Kalman filter procedure (Kalman, 1960) can 

be employed to calculate the optimal (minimum mean square error, MMSE) estimator of the state 

vector at time t, given the information available up to time t-1. Since the Kalman filter yields 

TTTT
Ta α

1|1 ++
=  and the MMSE estimator of 

1+T
α  given all the observations, the one-step-ahead 

forecast can be directly produced by:  

TT
aZy TTT |11|1

~~
+++ ′=      (3) 

where 
1

~
+TtZ  is the vector of one-step-ahead forecasts of explanatory variables such as the disposable 

income or the consumer price index. The forecasts of these macroeconomic indicators are normally 

available from the national statistics office, or projected using the appropriate non-causal time-series 

forecasting approach. 

 

Correspondingly, the multi-step forecasts can also be recursively generated. Full illustration of the 

Kalman filter technique is available from Harvey (1989).  

 

Since the observation equation (1) is based on the classical econometric model—the static or long-run 

cointegration (CI) model, the TVP specification of Equation (1) is known as TVP-LRM.  

TVP Error Correction Model (TVP-ECM) 

Equation (1) suggests that the TVP-LRM emphases the evolution of explanatory variables and its 

effect on the dependent variable. Although it is useful to examine the annual demand for tourism over 

a long period, the dynamic changes of tourism demand in the short term are also concerned by tourism 

businesses. To serve this purpose, an error correction model (ECM) could be considered. Engle and 

Granger (1987) showed that in a system of two variables, if a long-run equilibrium relationship exists, 

the short-term disequilibrium relationship between the two variables can be represented by an ECM. 

The ECM reflects the mechanism of the short-run adjustment towards the long-run equilibrium in the 

system. If there are more than two variables in the system, it is possible that there will be more than one 

CI relationships, and correspondingly the ECM becomes a vector ECM.  

 

The conventional fixed-parameter ECM assumes that the speed of short-run adjustment is constant 

over time. In the changing environment such an assumption seems to be too strict and arbitrary. In fact, 

“even assuming the existence of a stable long-run combination, one may find signs of instability in the 
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short-run adjustment mechanism” (Ramajo, 2001). Therefore, it is more realistic to specify the TVP 

short-run dynamics within the long-run equilibrium framework. Such a specification is termed 

TVP-ECM. Compared to the classical long-run TVP model, the TVP-ECM adds one more 

restriction—existence of the CI relationship, and focuses on the short-term adjustment, the speeds of 

which vary over time.  

 

After confirming the acceptance of a CI relationship, a TVP-ECM can be estimated. Similar to the 

TVP-LRM, the TVP-ECM can also be specified in a SS form.  

 

In the case where the lag length of the differenced variables is zero, which has been proved to be 

appropriate in most tourism studies using annual data, the observation equation of the TVP-ECM can 

be written as: 

tttttt veZy ++′∆=∆ −1ˆλβ      (4) 

 

where α̂ˆ
111 −−− ′−= ttt Zye are the OLS residuals from the CI function ,ttt eZy +′= α  where 

α (without a subscript) is a fixed parameter vector. 1
ˆ −te  represents the error correction mechanism. tβ  

and tλ are the TVP vectors, and tv  is the temporary disturbance term. The state equation still takes the 

same form as Equation (2), and ),( ′= ttt λβα . The estimation method is the same as that of the 

TVP-LRM. 

 

It should be noted that dummy variables can be readily incorporated into both the TVP-LRM and the 

TVP-ECM, in order to capture the effects of one-off events such as the Iraqi War and 9.11 terrorist 

attack. Since these one-off events are regarded as exogenous factors for tourism demand, it is not 

necessary to estimate the parameters using the TVP technique and the fixed parameters are appropriate 

for dummy variables in a TVP model. 

Applications of TVP Models in Tourism 

TVP models in both long-run and dynamic forms have been successfully applied in economic studies 

such as modelling and forecasting rational expectation formations, inflation, and demand for money 

and other products (e.g., Bohara and Sauer, 1992; Swamy et al, 1990; and Hackl and Westlund, 1996). 

However, applications of TVP models to tourism forecasting are still rare, with the following notable 

exceptions. Riddington (1999) utilised the TVP-LRM to analyse and forecast ski demand in Scotland. 

Song and Witt (2000) used the TVP-LRM to examine the demand elasticity changes over time 

regarding the demand for Korean tourism by UK and USA residents. Li et al (2005a) and Song et al 

(2003b) showed the superiority of the TVP-LRM to its fixed-parameter counterparts in terms of 

forecasting accuracy in their studies on tourism demand in Denmark and Thailand, respectively. Li et 

al (2006) examined the forecasting performance of both TVP-LRM and TVP-ECM relative to a 

number of fixed-parameter econometric and time series models in an empirical study of UK tourism 

demand in some key Western European destinations. Table 1 shows that the overall performance of the 

TVP-LRM in terms of demand level forecasting is the best amongst all the models in the comparison. 

The TVP-ECM always performs above average. As far as demand growth is concerned, the TVP-LRM 

and TVP-ECM outperform all of their competitors. In particular, the TVP-ECM generates the most 

accurate one-year-ahead and two-years-ahead forecasts. The consistently superior performance of the 

TVP-LRM and TVP-ECM suggests that the TVP technique is an effective tool for tourism demand 
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forecasting. 
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Table 1 Forecasting Accuracy over Different Forecasting Horizons 

Horizon Measure Naive ARIMA Static ADLM VAR WB-ECM JML-ECM EG-ECM TVP-LRM TVP-ECM 

1-year-ahead MAPE 0.767  (8) 0.796  (9) 1.405  (10) 0.480  (1) 0.591  (5) 0.691  (6) 0.550  (4) 0.700 (7) 0.510  (3) 0.483  (2) 

2-years-ahead MAPE 1.101  (9) 1.089  (8) 1.778  (10) 0.660  (2) 0.786  (6) 1.066  (7) 0.723  (4) 0.734 (5) 0.586  (1) 0.680  (3) 

3-years-ahead MAPE 1.169 (10) 1.129  (9) 1.016   (8) 0.307  (2) 0.870  (7) 0.600  (6) 0.332  (3) 0.487 (4) 0.218  (1) 0.534  (5) 

4-years-ahead MAPE 1.293  (9) 1.374  (10) 1.269   (8) 0.416  (2) 1.208  (7) 0.948  (6) 0.506  (3) 0.709 (5) 0.202  (1) 0.700  (4) 

Overall MAPE 1.082  (8) 1.097  (9) 1.367  (10) 0.466  (2) 0.864  (7) 0.826  (6) 0.528  (3) 0.654 (5) 0.379  (1) 0.599  (4) 

1-year-ahead MAE 0.176  (7) 0.177  (8) 0.298  (10) 0.108  (2) 0.121  (5) 0.145  (6) 0.112  (4) 0.181 (9)  0.111  (3) 0.085  (1) 

2-years-ahead MAE 0.162  (10) 0.153  (9) 0.128  (8) 0.102  (3) 0.117  (6) 0.122  (7) 0.107  (5) 0.105 (4) 0.098  (2) 0.086  (1) 

3-years-ahead MAE 0.171  (9) 0.172  (10) 0.140  (7) 0.105  (4) 0.151  (8) 0.126  (6) 0.085  (2) 0.097 (3) 0.085  (1) 0.107  (5) 

4-years-ahead MAE 0.144  (6) 0.145  (7) 0.209  (10) 0.102  (2) 0.133  (5) 0.174  (9) 0.107  (3) 0.164 (8) 0.081  (1) 0.122  (4) 

Overall MAE 0.164  (9) 0.162  (8) 0.194  (10) 0.104  (4) 0.131  (5) 0.142  (7) 0.103  (3) 0.137 (6) 0.094  (1) 0.100  (2) 

Note: The upper half of the table refers to the forecasts of level variables, and the lower differenced variables. Figures in parentheses are rankings. Naive refers to the naive 

no-change model; ARIMA the autoregressive integrated moving average model; Static the static regression; ADLM autoregressive distributed lagged model; VAR 

the vector autoregressive model; WB-ECM the Wickens and Breusch  ECM; JML the Johansen maximum likelihood ECM; EG-ECM the Engle Granger ECM. 

MAPE stands for mean absolute percentage errors; MAE stands for mean absolute errors. 

Source: Li et al (2006b).  
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 AIDS MODELS 

As addressed earlier, causal forecasting methods have advantages over the non-causal approach in 

terms of their abilities to interpret the reasons of tourism demand variations. Eadington and Redman 

(1991) noted that the single-equation econometric forecasting approach is incapable of analysing the 

interdependence of budget allocations to different consumer goods/services. For example, the tourism 

decision-making involves a choice among a group of alternative destinations. A change of price in one 

destination may affect tourists’ decisions on travelling to a number of alternative destinations, and also 

influence their expenditures in those destinations. Clearly, the single-equation methodology cannot 

adequately model the influence of a change in tourism price in a particular destination on the demand 

for travelling to all other destinations. Meanwhile, the single-equation approach cannot be used to test 

the symmetry and adding-up hypotheses, which are associated with the existing demand theories.  

 

The system-of-equations approach initiated by Stone (1954) overcomes the above limitations. By 

including a group of equations (one for each consumer good) in the system and estimating them 

simultaneously, this approach permits the examination of how consumers choose bundles of goods in 

order to maximise their utility with budget constraints. Although there are a number of system 

approaches available, the almost ideal demand system (AIDS), introduced by Deaton and Muellbauer 

(1980), has been the most commonly used method for analysing consumer behaviour. As the authors 

described, the AIDS model possesses the following attractive features: 

 

· It gives an arbitrary first-order approximation to any demand system;  

· It satisfies the axioms of consumers without invoking parallel linear Engel curves; 

· It has a functional form which complies with known household-budget data;  

· It is easy to estimate and largely avoid the need for non-linear estimation;  

· The restrictions of homogeneity and symmetry can be tested though linear restrictions on fixed 

parameters in the model;  

· It has a flexible functional form and does not impose any a priori restrictions on the elasticities, 

which means any good in the system can be either inferior or normal, and either a substitute or a 

complement to the others (Fujii et al, 1985). 

 

Although the Rotterdam and translog models also hold some of these features, neither of them contains 

all these features simultaneously. Having explicit theoretical underpinnings, AIDS is more appropriate 

for tourism demand analysis. 

Static LAIDS 

The original AIDS initialised by Deaton and Muellbauer (1980) takes a static functional form and is 

specified as: 

 
i

j

ijijii Pxpw νβγα +++= ∑ )/log(log    (5) 

 

where wi is the budget share of the ith good, pi is the price of the ith good, x is total expenditure on all 

goods in the system, P is the aggregate price index for the system, vi is the disturbance term, 

),0(~
2

ii Nv σ ,  n is the number of the products in the system, iα , iβ  and ijγ  are the parameters to 
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be estimated. The aggregate price index P is defined as: 

∑ ∑∑++=
i i j

jiijii pppaP loglog
2

1
loglog 0 γα                      (6) 

 

where 0a is a parameter to be estimated. Replacing P with the Stone’s (1954) price index (P*) defined 

by Equation (7), the linearly approximated AIDS is derived and termed “LAIDS”.  

 

∑=
i

ii pwP log*log       (7) 

 

The LAIDS with dummy variables can then be written as: 

 

ik

k

ik

j

ijijii vdum
P

x
pw ++







++= ∑∑ ϕβγα
*

loglog   (k=1, 2, …, m)   (8) 

 

where kdum  is a dummy variable, which handles the intervention of the exogenous shock; m is the 

number of dummy variables included in the system; ikϕ  is a parameter to be estimated.  

 

Equation (8) can be re-written more compactly in the vector-matrix notation: 

 

tttt vdumzw ++Π= ϕ      (9) 

 

where tz  is a q-vector of intercept, log prices and log real total expenditure variables ( 2+= nq ); Π  

and ϕ  are )( qn×  and mn× parameter matrices, respectively; )...,( ,21
′′′′=Π nπππ , where iπ   is a 

q-vector. The LAIDS model is normally estimated by the iterated seemingly unrelated regression 

(SUR) logarithm (see Zellner, 1962 for details). 

 

To comply with the properties of demand theory, some restrictions are imposed on the parameters in 

Equation (8), such as Adding-up (∑ =
i

i 1α , ∑ =
i

ij 0γ , 0=∑
i

iβ  and 0=∑
i

ikϕ ), Homogeneity 

(∑ =
j

ij 0γ ) and Symmetry ( jiij γγ = ). Subject to the satisfaction of the above restrictions, the 

unrestricted LAIDS in Equation (8) can be further written as two restricted versions: the homogeneous 

LAIDS and the homogeneous and symmetric LAIDS. The latter is the most theoretically sound, and 

the further analysis and forecasting should be based on this version. However, the hypotheses of the 

above restrictions might be rejected by statistical tests in empirical studies. In this case, the 

unrestricted LAIDS or homogeneous LAIDS has to be considered.  

  

Within the LAIDS framework, the demand elasticities can be calculated as: the expenditure 

elasticity
iiix w/1 βε += , the uncompensated price elasticity ijiiijijij www // βγδε −+−=  and the 

compensated price elasticity jiijijij ww ++−= /* γδε  ( ijδ =1 for i=j; ijδ =0 for i≠j). The elasticities 

calculated from the LAIDS model have a stronger theoretical basis than the single-equation models. 

Therefore, the LAIDS model can provide more reliable information for tourism demand analysis.  
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Dynamic LAIDS 

In the static LAIDS, which is also known as the long-run LAIDS model, it is implicitly assumed that 

there is no difference between consumers’ short-run and long-run behaviour, i.e. the consumers’ 

behaviour is always in “equilibrium”. However, in reality, habit persistence, adjustment costs, 

imperfect information, incorrect expectations and misinterpreted real price changes often prevent 

consumers from adjusting their expenditure instantly to price and income changes (Anderson and 

Blundell, 1983). Therefore, until full adjustment takes place consumers are “out of equilibrium”. This 

is one of the reasons why most static LAIDS models cannot satisfy the theoretical restrictions (Duffy, 

2002). Moreover, the static LAIDS pays no attention to the statistical properties of the data and the 

dynamic specification arising from time series analysis. It is well known that most economic data are 

non-stationary, and the presence of unit roots may invalidate the asymptotic distribution of estimators. 

Therefore, traditional statistics such as t, F and R
2
 are unreliable, and the least squares estimation of the 

static LAIDS tends be spurious (Chambers, 1993; Granger and Newbold, 1974). Furthermore, the 

static LAIDS is unlikely to generate accurate short-run forecasts (Chambers and Nowman, 1997).  

However, the introduction of the CI/ECM into the LAIDS models can solve the above problems, as the 

error correction LAIDS—EC-LAIDS augments the long-run equilibrium relationship with a short-run 

adjustment mechanism.  

 

Before examining the CI relationship, all variables concerned need to be tested for unit roots (orders of 

integration). The Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) statistics can be employed 

for this purpose. Once the orders of integration of the variables have been identified, either the Engle 

and Granger (1987) two-stage approach or the Johansen (1988) maximum likelihood approach can be 

used to test for the CI relationship among the variables in the models (Song and Witt, 2000). 

 

Following Engle and Granger’s two-stage approach, the EC-LAIDS can be written in the following 

form (Edgerton et al, 1996; Chambers and Nowman, 1997; Duffy, 2002): 

  

ttttttt vdumzwdumLzLBwLA +−Π−Γ+∆+∆=∆ −−− )()()()( 111 ϕφ   (10) 

 

where ∑ =
+=

l

i

i

iLAILA
1

)( , ∑ =
=

h

i

i

iLBLB
0

)(  and ∑ =
=

s

i

i

iLL
0

)( φφ  are matrix polynomials in the 

lag operator L. l and h can be determined by using order selection techniques. 

)( 111 −−− −Π− ttt dumzw ϕ  is the error correction term. Given that annual data are used, most tourism 

demand studies employing ECMs have shown that setting the lag length of differenced variables equal 

to zero is appropriate. Thus, Equation (10) can be reduced to the following form (see Durbarry and 

Sinclair, 2003): 

 

ttttttt vdumzwdumzBw +−Π−Γ+∆+∆=∆ −−− )( 111 ϕφ    (11) 

 

where B is an )( qn×  matrix, and φ  is an )( mn×  matrix; Γ  is an )( nn× matrix. Considering the 

degrees of freedom and statistical significance of the estimates of the error correction terms, some 

empirical studies, such as Ray (1985), used a more restrictive formulation, involving only the 

disequilibrium in the own budget share in each equation. In other words, Γ  becomes diagonal, and 
the off-diagonal terms, the estimates of which are normally insignificant, are restricted to zero.  

The diagonal form of Γ  also implies that iiΓ  are equal, i.e., Γ  is a negative scalar.  
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Equation (11) reflects both long-run and short-run effects in the same model. In the short run, changes 

in expenditure shares depend on changes in prices, real expenditure, dummies, and the disequilibrium 

error in the previous period. In the long run, when all differenced terms become zero, Equation (11) is 

reduced to Equation (9), i.e., the system achieves its steady state.  

TVP-LAIDS 

As has been addressed above, TVP models have advantages over their fixed-parameter counterparts. 

In addition, various empirical studies have shown the superior forecasting performance of TVP models 

in comparison to other conventional econometric models. Meanwhile, the superiority of the AIDS 

model over the single-equation approach has also been evaluated. Hence, combination of the TVP 

technique and the AIDS/LAIDS model is likely to create both theoretically sound and more accurate 

forecasting methods. Consistent with the development of LAIDS specifications, the TVP-LAIDS 

family comprises both the long-run version—TVP-LR-LAIDS, and the short-run dynamic 

TVP-EC-LAIDS, depending on whether the error correction mechanism is incorporated into the 

LAIDS specification. 

TVP-LR-LAIDS 

Relaxing the fixed-parameter restriction, the unrestricted long-run LAIDS of Equation (8) can be 

re-written as a TVP system. It should be noted that once the estimates of the fixed-parameter LAIDS 

have shown the statistical significance of dummy variables, they should also be included into TVP 

formulations, but as exogenous variables they have fixed parameters (Ramajo, 2001). Therefore each 

equation of the TVP-LR-LAIDS can be written in the following one-dimension SS form:  

 

ittiittit udumzw ++′= ϑπ
 

),,0(~ tit HNu
 Tt ,...,1=   (12) 

ititit ξππ +=+1  ),(~ 111 PcNπ , 
),0(~ tit QNξ
  (13) 

 

where itw  and itu  are the ith elements of vectors tw  and tu  respectively; iϑ  is the ith row of ϑ ; itξ  

is a q-vector of disturbance terms. itπ  is an unobserved state vector, and follows a multivariate 

random walk. The matrices tH  and tQ are initially assumed to be known. 

 

Correspondingly, the whole system can be specified as: 

ttttt udumΠzw ++= ϑ**

      (14) 
***

1 ttt ξΠΠ +=+       (15) 

where ,*

tnt zIz ′⊗=  ),...,( 2,1

* ′=Π ntttt πππ  and .),...,,( 21

* ′= ntttt ξξξξ  

In homogeneity or symmetry restricted LAIDS, the restrictions (M), which are linear, can be written 

as:  
*

tGM Π=
        (16) 

where G is the coefficient matrix of the restriction. 

Combining the linear restriction of Equation (16) with Equation (14) gives a new augmented 

measurement equation in the form:  
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ttttt UDZW ++= **Π
      (17) 

where 







=

M

w
W

t

t ; 







=

G

z
Z t

t

*

*
; 








=

0

t

t

dum
D

ϑ
; 








=

0

t

t

u
U . 

 

TVP-EC-LAIDS 

In the pervious sections, the TVP-ECM and EC-LAIDS have been introduced. Both of these models 

have a particular emphasis on the short-term dynamics of the system concerned. A further combination 

between them generates the TVP-EC-LAIDS, which is so far the most advanced development of the 

LAIDS family. Specifically, the TVP-EC-LAIDS features the varying short-term adjustment towards 

the long-run steady state of demand. 

 

As with Equations (12) and (13), each equation of the unrestricted TVP-EC-LAIDS can be described 

as the following SS form: 

 
∆∆∆ ∆θπ∆ ittiittit udumzw ++′= )(       (18) 

∆∆∆ ξππ ititit +=+1       (19) 

 

where ),( 11
′Π−∆= −−

∆
tttt zwzz ; 

∆
itπ is the corresponding parameter vector; iθ  is the ith row of θ ; 

∆
itu  is the ith item of 

∆
tu , the disturbance vector of the measurement equation; and

∆
itξ  is  the 

disturbance vector of the state equation. 

 

Correspondingly, the state space form of the whole unrestricted TVP-EC-LAIDS is specified as: 
∆∆∆ ∆θΠ∆ ttttt udumzw ++′= )( *      (20) 

*

1

∆∆∆ ξΠΠ ttt +=+       (21) 

 

where )(1

* ′⊗= ∆
+

∆
tqt zIz ; ),...,,( 21

′= ∆∆∆∆ πππΠ ntttt ; .),...,,( 21

* ′= ∆∆∆∆
ntttt ξξξξ  

 

Once the unrestricted LAIDS passes the restriction tests, the homogeneity-restricted or both 

homogeneity and symmetry-restricted version of TVP-LR-LAIDS and TVP-EC-LAIDS can be 

estimated using the Kalman filter algorithm, and forecasts can be generated correspondingly. 

 

Estimations of the single-equation TVP models, the static and dynamic (fixed-parameter) LAIDS, as 

well as the single-equation estimation of TVP-LAIDS models (i.e., each equation of the system is 

estimated separately), can all be carried out using the computing program Eviews 5.0.The system 

estimation of the TVP-LR-LAIDS and TVP-EC-LAIDS can be performed by the SAS 8.02 matrix 

programming language IML. 

Applications of LAIDS to Tourism Forecasting 

Although the LAIDS models have been employed widely in food demand modelling, applications in 

the field of tourism demand are still limited. A detailed review of the LAIDS related to tourism can be 
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found in Li et al (2005b). All of these LAIDS applications analysed allocations of tourists’ expenditure 

in a group of destinations, with only one exception, Fujii et al (1985), who investigated tourists’ 

expenditure on different consumer goods in a particular destination. Most of the LAIDS studies in the 

tourism context adopted the original static version, while Durbarry and Sinclair (2003) and Li et al 

(2005a) specified the EC-LAIDS models to examine the dynamics of tourists’ consumption behaviour. 

The empirical study of Li et al (2005a) examined UK outbound tourism demand in Western Europe. 

The five major destinations in this area, Spain, France, Greece, Italy and Portugal, are the focuses of 

this study, with the other seventeen countries aggregated into a single group. Each of the six 

destination countries/group is regarded as an aggregated tourism product, purchased by UK visitors. 

The empirical results show that tourism demand by UK residents is most sensitive to price changes in 

Greece and least sensitive to price changes in Italy.  The cross-price elasticities indicate that France 

and Spain,  Italy and Portugal, and France and Greece are likely to be substitutes in the minds of UK 

tourists. With regard to forecasting performance, the EC-LAIDS always outperforms the static LAIDS, 

and in general the EC-LAIDS is over 40% more accurate than the static LAIDS.  

 

Li et al (2006a) further developed the TVP-LR-LAIDS and TVP-EC-LAIDS to analyse the evolutions 

of demand elasticities over time and to examine their forecasting performance. Figure 1 shows the 

estimates of compensated own-price elasticities in the unrestricted TVP-LR-LAIDS models. These 

graphs exhibit different evolution patterns of the price elasticity. Relatively large fluctuations which 

occurred in the early 1980s are associated with the global economic recession during this period. Since 

the mid 1980s, the sensitivity of tourism demand for France, Greece and Italy to their price changes has 

become relatively stable, while the opposite phenomena can be observed in the cases of demand for 

Portugal and Spain tourism, with the influence of the Gulf War in the early 1990s being evident. As far 

as the forecasting performance is concerned, the unrestricted TVP-LR-LAIDS and TVP-EC-LAIDS 

outperform all of the other fixed-parameter counterparts in the overall evaluation of demand level 

forecasts. It suggests that the more advanced forecasting techniques contribute to the improvements of 

forecasting accuracy, and therefore should be applied more broadly in future tourism studies.  
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Figure 1 Kalman Filter Estimates of Compensated Own-Price Elasticities (
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iiε ) in the Unrestricted 

TVP-LR-LAIDS (1980-2000) 
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SUMMARY 

This paper has introduced some of the latest developments of econometric approaches in tourism 

forecasting. The error correction mechanism and the TVP forecasting technique have been 

incorporated in both single-equation and system of equations (represented by LAIDS) frameworks. 

The empirical evidence shows that more advanced forecasting methods are likely to generate more 

accurate forecasts of tourism demand. Further developments and applications of econometric 

forecasting approaches should be therefore encouraged.  

 

It should be noted that the above models are suitable where the annual tourism demand is concerned. 

In other words, their model specifications accommodate annual data well, but do not consider the 

seasonal patterns of tourism demand. In practice, shorter-term forecasts, such as monthly or quarterly 

forecasts, are of more interests to tourism businesses in the private sector. It has been observed that the 

seasonality tended to be featured in short-term tourism demand in most destinations and tourism 

industries. To meet the need for seasonal tourism forecasting, further developments of econometric 

forecasting methods should pay more attention to the seasonal patterns of tourism demand, and 

incorporate seasonal components in the TVP single-equation or TVP-LAIDS specifications. 

Considering the merits of the TVP technique, the various seasonality-augmented TVP models are 

likely to generate accurate forecasts of short-term demand for tourism.  
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