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Abstract. In this paper, genetic algorithm (GA) is applied to the optimum 
design of reinforced concrete liquid retaining structures, which comprise three 
discrete design variables, including slab thickness, reinforcement diameter and 
reinforcement spacing. GA, being a search technique based on the mechanics of 
natural genetics, couples a Darwinian survival-of-the-fittest principle with a 
random yet structured information exchange amongst a population of artificial 
chromosomes. As a first step, a penalty-based strategy is entailed to transform 
the constrained design problem into an unconstrained problem, which is 
appropriate for GA application. A numerical example is then used to 
demonstrate strength and capability of the GA in this domain problem. It is 
shown that, only after the exploration of a minute portion of the search space, 
near-optimal solutions are obtained at an extremely converging speed. The 
method can be extended to application of even more complex optimization 
problems in other domains. 

1 Introduction 

In solving practical problems of design optimization, owing to the availability of 
standard practical sizes and their restrictions for construction and manufacturing 
purposes, the design variables are always discrete. In fact, it is more rational to use 
discrete variables during the evaluation process of optimization since every candidate 
design is a practically feasible solution. This may not be the case when the design 
variables are continuous, since some of the designs evaluated in the optimization 
procedures are solely mathematically feasible yet not practically feasible. However, 
most of the programming algorithms developed for the optimum design of structural 
systems during the last few decades assume continuous design variables and simple 
constraints, which are not always correct. Only very few algorithms have dealt with 
the optimization of structures under the actual design constraints of code 
specifications. Many of them require the approximation of derivative information and 
yet may only attain local optima. 

Recently, there has been a widespread interest in the use of genetic algorithms 
(GAs), which are applications of biological principles into computational algorithm, 
to accomplish the optimum design solutions [1]. They are specifically appropriate to 
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solve discrete optimum design problems and apply the principle of survival of the 
fittest into the optimization of structures. Although GAs require only objective 
function value to direct the search and do not need any derivatives of functions often 
necessary in other optimization programming methods, they are able to search 
through large spaces in a short duration. In particular, GAs have a much more global 
perspective than many other methods. Yet, literature review shows that only steel 
structures are often considered in structural optimization field [2-5]. 

This paper delineates a genetic algorithm (GA) for the optimum design of 
reinforced concrete liquid retaining structures using discrete design variables. 
Whereas either minimum weight or minimum cost can represent the objective 
function equally in the optimization of steel structures, their counterparts of 
reinforced concrete structures must be minimum material cost. Reinforced concrete 
structures involve more design variables as it involves both concrete and steel 
reinforcement, which have rather different unit costs. 

2 Genetic Algor ithms 

GAs, being search techniques based on the mechanism of natural genetics and natural 
selections [6], can be employed as an optimization method so as to minimize or 
maximize an objective function. They apply the concept on the artificial survival of 
the fittest coupled with a structured information exchange using randomized genetic 
operators taken from the nature to compose an efficient search mechanism. GAs work 
in an iterative fashion successively to generate and test a population of strings. This 
process mimics a natural population of biological creatures where successive 
generations of creatures are conceived, born, and raised until they are ready to 
reproduce.  

2.1 Compar isons with Conventional Algor ithms 

GAs differ from traditional optimization algorithms in many aspects. The following 
are four distinct properties of GAs, namely, population processing, working on coded 
design variables, separation of domain knowledge from search, and randomized 
operators. Whilst most common engineering search schemes are deterministic in 
nature, GAs use probabilistic operators to guide their search. Whereas other 
optimization methods often need derivative information or even complete knowledge 
of the structure and parameters, GAs solely entail objective function value 
information for each potential solution they generate and test. The population-by-
population approach of GA search climbs many peaks in parallel simultaneously 
whilst the more common point-by-point engineering optimization search techniques 
often locates false local peaks especially in multi-modal search spaces. 



2.2 Features of GAs 

GAs are not limited by assumptions about search space, such as continuity or 
existence of derivatives. Through a variety of operations to generate an enhanced 
population of strings from an old population, GAs exploit useful information 
subsumed in a population of solutions. Various genetic operators that have been 
identified and used in GAs include, namely, crossover, deletion, dominance, intra-
chromosomal duplication, inversion, migration, mutation, selection, segregation, 
sharing, and translocation. 

2.3 Coding Representation 

A design variable has a sequence number in a given discrete set of variables in GAs, 
which require that alternative solutions be coded as strings. Successive design entity 
values can be concatenated to form the length of strings. Different coding schemes 
have been used successfully in various types of problems. If binary codes are used for 
these numbers, individuals in a population are finite length strings formed from either 
1 or 0 characters. Individuals and the characters are termed chromosomes and 
artificial genes, respectively. A string may comprise some substrings so that each 
substring represents a design variable. 

2.4 Selection Operator  

The purpose of selection operator is to apply the principle of survival of the fittest in 
the population. An old string is copied into the new population according to the 
fitness of that string, which is defined as the non-negative objective function value 
that is being maximized. As such, under the selection operator, strings with better 
objective function values, representing more highly fit, receive more offspring in the 
mating pool. There exist a variety of ways to implement the selection operator and 
any one that biases selection toward fitness can be applicable. 

2.5 Crossover  Operator  

The crossover operator leads to the recombination of individual genetic information 
from the mating pool and the generation of new solutions to the problem. Several 
crossover operators exist in the literature, namely, uniform, single point, two points 
and arithmetic crossover. 

2.6 Mutation Operator  

The mutation operator aims to preserve the diversification among the population in 
the search. A mutation operation is applied so as to avoid being trapped in local 
optima. This operator is applied to each offspring in the population with a 
predetermined probability. This probability, termed the mutation probability, controls 



the rate of mutation in the process of selection. Common mutation operation is simple, 
uniform, boundary, non-uniform and Gaussian mutation. 

3 Problem Formulation 

The following depicts the optimization design of a reinforced concrete liquid retaining 
structure, subjected to the actual crack width and stress constraints in conformance to 
the British Standard on design of concrete structures for retaining aqueous liquid, BS 
8007 [7]. The set of design variables is determined so that the total material cost of 
the structure comprising n groups of member, 
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is minimized subject to the constraints. In eq. (1), Ui and Vi represent the unit cost 
and the concrete volume of member i respectively. Ri and Wi

The serviceability limit state or crack width constraint is 

 are the unit cost and the 
weight of steel reinforcement of member i respectively.  

0max ≤−WWa  (2) 

where Wa is the actual crack width and Wmax is the prescribed maximum crack width, 
which will be 0.1mm or 0.2 mm depending on the exposure environment. Wa
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determined using the following formula:- 
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where acr is the distance from the point considered to the surface of the nearest 
longitudinal bar, εm 

The stress constraints, representing the ultimate limit states of flexure and shear 
resistance, are expressed in terms of the following equations for members subject to 
bending and shear force [8]: 

is the average strain for calculation of crack width allowing for 
concrete stiffening effect, c is the minimum cover to the tension reinforcement, h is 
the overall depth of the member and x is the depth of the neutral axis. 

0≤− ultau MM  (4) 
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where Mau is the actual ultimate bending moment, Mult is the nominal ultimate 
moment capacity of the reinforced concrete section, Va is the actual ultimate shear 
force and Vult is the nominal ultimate shear capacity of the section. The ultimate 
moment capacity is determined by the following equations, depending on whether 
concrete or steel stresses is more critical. 
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where Fy is the yield strength of reinforcement, As is area of tension steel, Z is the 
lever arm, Fcu is the characteristic concrete strength, b is the width of section and d is 
the effective depth of section. Ultimate shear capacity of the section (Vult = vcbvd) is 
represented by shear strengths vc for sections without shear reinforcement, which 
depend upon the percentage of longitudinal tension reinforcement [100As/(bv

mvsc ddbAv γ/)/400()]/(100[79.0 4/13/1=

d)] and 
the concrete grade:- 

 (7) 

where bv is breadth of section, γm is a safety factor equal to 1.25, with limitations that 
[100As/(bvd)] should not be greater than three and that (400/d) should not be less than 
one. For characteristic concrete strengths greater than 25 N/mm2, the values given by 
the above expression is multiplied by (Fcu/25)1/3

Prior to applying GA, a transformation on the basis of the violations of normalized 
constraints [9] is employed to change the constrained problem to become 
unconstrained. The normalized form of constraints is expressed as: 
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The unconstrained objective function ϕ(x) is then written as 
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where K is a penalty constant and 
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The penalty parameter largely depends upon the degree of constraint violation, 
which is found to be amenable to a parallel search employing GAs. Values of 10 and 
100 have been attempted here and it is found that the results are not quite sensitive. 

In order to ensure that the best individual has the maximum fitness and that all the 
fitness values are non-negative, the objective function is subtracted from a large 
constant for minimization problems. The expression for fitness here is 
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where Fj is the fitness of the j-th individual in the population, ϕ(x)max and ϕ(x)min are 
the maximum and minimum values of ϕ(x) among the current population respectively 
and ϕ j

 

(x) is the objective function value computed for the j-th individual. The 
calculation of the fitness of an individual entails the values of crack width and stresses, 
which are obtained from the finite element structural analysis. 

 

Fig. 1. Flow chart of the GA for design of liquid retaining structures 

 



4 GA Optimization Procedure 

In this study, the GA has been implemented under Microsoft Visual Basic 
programming environment. Figure 1 shows the flow chart of the GA for design of 
liquid retaining structures. The initial population containing binary digits is first 
randomly generated. The binary codes for the design variables of each individual are 
decoded and their sequence numbers are determined. The finite element analysis of 
the structure is performed and the unconstrained function ϕ(x) for each individual is 
computed. From the maximum and minimum values of this function in the population, 
the fitness value for each individual is then found. 

The population for the next generation is then reproduced by applying the selection 
operator. On the basis of their fitness, that is, the best strings make more copies for 
mating than the worst, the individuals are copied into the mating pool. In order to 
emulate the survival of the fittest mechanism, a rank-based scheme is employed to 
facilitate the mating process [10]. The chromosomes are ranked in descending order 
of their fitness and those with higher fitness values have a higher probability of being 
selected in the mating process. As the number of individuals in the next generation 
remains the same, the individuals with small fitness die off. Besides, the concept of 
elitism is also incorporated into the selection process [11]. This strategy keeps the 
chromosome with the highest fitness value for comparison against the fitness values 
of chromosomes computed from the next generation. If the ensuing generation fails to 
enhance the fitness value, the elite is reinserted again into the population. 

A two-site crossover is employed to couple individuals together to generate 
offspring. It involves the random generation of a set of crossover parameters, 
comprising a match and two cross sites. A match is first allocated for each individual. 
A fixed crossover probability (pcrossover

1110987654321 ,,,,,,,,,, xxxxxxxxxxxX =

) is established beforehand so that the genetic 
operation of crossover is performed on each mated pair with this probability. It is 
necessary to find the crossover sites and to perform the crossover in the following 
manner. Suppose that two strings X and Y of length 11 are the mating pair with the 
following genes 

 (16) 

1110987654321 ,,,,,,,,,, yyyyyyyyyyyY =  (17) 

For each mated pairs subjected to crossover operation, two cross sites cs1 and cs2 
are randomly generated. Two new strings are created by swapping all characters 
between positions cs1 and cs2

1110987654321 ,,,|,,,,,|,,' xxxxyyyyyxxX =

 inclusively from one individual in the pair to the other. 
The cross sites for the matching pairs have to be the same. For instance, if the cross 
sites generated are 2 and 7, the resulting crossover yields two new strings X’ and Y’ 
following the partial exchange. 

 (18) 

1110987654321 ,,,|,,,,,|,,' yyyyxxxxxyyY =  (19) 



The genetic operation of mutation is performed on the chromosomes with a preset 
mutation probability. It is applied to each offspring in the newly generated population. 
It operates by flipping the gene of an offspring from 1 to 0 or vice versa at random 
position. After the operation, the initial population is replaced by the new population. 

An iteration cycle with the above steps is then continued until the termination 
criterion is reached. It may occur when the distance between the maximum and the 
average fitness values of the current population becomes less than a certain threshold, 
or a preset maximum number of generation is attained. At that moment, the optimum 
design solution is represented by the individual with the maximum fitness value in the 
current population. 

Table 1. Composition of the individual string 

Variable number Design variable Substring length 
1 Slab thickness 4 
2 Reinforcement diameter 3 
3 Reinforcement spacing 4 

5 Numerical Example 

The test case is concerned with the optimum design of an underground circular 
shaped liquid retaining structure. The volume and height are 100 m3 and 5 m, 
respectively. The exposure condition is very severe so that the designed crack width 
equals to 0.1 mm. The grades of concrete and reinforcement are 40 and high yield 
deformed bar respectively. The concrete cover is 40 mm and the aggregate type is 
granite or basalt with a temperature variation of 65 °C in determining the coefficient 
of expansion for shrinkage crack computation. The unit costs of concrete and 
reinforcement are $500 per m3 and $3000 per tonne, respectively. A surcharge load of 
10 kN/m2 is specified. The level of liquid inside the tank, the ground level and the 
level of water table above the bottom of the tank are 5 m, 5 m and 4 m, respectively. 
The specific weight of soil is 20 kN/m2

As a demonstration, the wall and slab sections are classified under the same 
member group. The practically available values of the design variables are given in 
the lists T, D and S, representing slab thickness, bar diameter and bar spacing 
respectively. 

 with active soil pressure coefficient of 0.3. 
Since it is an underground structure and the wind load is not applicable. Load 
combinations for both serviceability and ultimate limit states are in compliance with 
BS 8110. 

 

T = (200, 225, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000) (20) 

D = (10, 12, 16, 20, 25, 32, 40). (21) 

S = (100, 125, 150, 175, 200, 225, 250, 275, 300) (22) 



Since GAs work on coded design variables, now it is necessary to code the design 
variables into a string. Owing to the simplicity of manipulation, a binary coding is 
adopted here. Table 1 shows the composition of an individual string with a total 
length of eleven. The population size (Psize

Figure 2 shows the relationship between the minimum cost versus the number of 
generations for both this GA (modified GA) and the original GA used in [1] (simple 
GA), representing an average of 20 runs of the algorithms. It can be seen that this 
modified GA is slightly better than the simple GA for this numerical example. The 
minimum cost of $37522, representing a reinforced concrete section of member 
thickness 250 mm with reinforcement diameter 25 mm at spacing 200 mm, is found 
after 6 generations. As the generations progress, the population gets filled by more fit 
individuals, with only slight deviation from the fitness of the best individual so far 
found, and the average fitness comes very close to the fitness of the best individual. It 
is recalled that each generation represents the creation of P

), the crossover probability and the 
mutation probability are selected as 10, 0.95 and 0.01, respectively. The population 
size is chosen to provide sufficient sampling of the decision space yet to limit the 
computational burden simultaneously. It is found that GAs are not highly sensitive to 
these parameters. These values are also consistent with other empirical studies. 

size = 10 strings where 
Psize* pcrossover

 

 = 10*0.95 = 9.5 of them are new. It is noted that only a simple 
demonstration is shown here with the solution of this problem in just 6 generations. 
However, if the wall and slab sections are classified under different member groups, 
the application will become much more complicated. 

 

Fig. 2. Minimum cost versus number of generation for different GAs 
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6 Conclusions 

In this paper, a GA has been successfully implemented for the optimum design of 
reinforced concrete liquid retaining structures involving discrete design variables. 
Only after examining a minute portion of the design alternatives, it is able to locate 
the optimal solution quickly. GAs acquire real discrete sections in a given set of 
standard sections. It should be noted that design variables are discrete in nature for 
most practical structural design problems. In most other mathematical programming 
techniques and in the optimality criteria approach, an approximation is often made by 
assigning the acquired optimum continuous design variables to the nearest standard 
sections. Approximate relationships may also be used between the cross-sectional 
properties of real standard sections in these usual methods. However, in this 
application, GAs remove these approximations and do not depend upon underlying 
continuity of the search space.  
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