Codiameters of 3-Domination Critical Graphs with Toughness More Than One

T.C. Edwin Cheng ${ }^{a}$, Yaojun Chen ${ }^{b, *}$, C.T. Ng^{a}
${ }^{a}$ Department of Logistics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P.R. CHINA
${ }^{b}$ Department of Mathematics, Nanjing University, Nanjing 210093, P.R. CHINA

Abstract

A graph G is 3-domination-critical (3-critical, for short), if its domination number γ is 3 and the addition of any edge decreases γ by 1 . In this paper, we show that every 3 -critical graph with independence number 4 and minimum degree 3 is Hamilton-connected. Combining the result with those in [2], [4] and [5], we solve the following conjecture: a connected 3critical graph G is Hamilton-connected if and only if $\tau(G)>1$, where $\tau(G)$ is the toughness of G.

Key words: Domination-critical graph, Hamilton-connectivity

1. Introduction

Let $G=(V(G), E(G))$ be a graph. For the notations that are not defined here, we follow [2]. A graph G is said to be t-tough if for every cutset $S \subseteq V(G),|S| \geq t \omega(G-S)$, where $\omega(G-S)$ is the number of components of $G-S$. The toughness of G, denoted by $\tau(G)$, is defined to be $\min \{|S| / \omega(G-S) \mid S$ is a cutset of $G\}$. Let $u, v \in V(G)$ be any two distinct vertices. We denote by $p(u, v)$ the length of a longest path connecting u and v. The codiameter of G, denoted by $d^{*}(G)$, is defined to be $\min \{p(u, v) \mid u, v \in V(G)\}$. A graph G of order n is said to be Hamilton-connected if $d^{*}(G)=n-1$, i.e., every two distinct vertices are joined by a hamiltonian path. A graph G is called k-domination critical, abbreviated as k-critical, if $\gamma(G)=k$ and $\gamma(G+e)=k-1$ holds for any $e \in E(\bar{G})$, where \bar{G} is the complement of G. The concept of domination critical

[^0]graphs was introduced by Sumner [7]. Given three vertices u, v and x such that $\{u, x\}$ dominates $V(G)-\{v\}$ but not v, we will write $[u, x] \rightarrow v$. It was observed in $[7]$ that if u, v are any two nonadjacent vertices of a 3 -critical graph G, then since $\gamma(G+u v)=2$, there exists a vertex x such that either $[u, x] \rightarrow v$ or $[v, x] \rightarrow u$. In [2], Chen et al. posed the following.

Conjecture 1 (Chen et al. [2]). A connected 3-critical graph G is Hamilton-connected if and only if $\tau(G)>1$.

In the same paper, they proved that the conjecture is true when $\alpha(G) \leq \delta(G)$.
Theorem 1 (Chen et al. [2]). Let G be a connected 3-critical graph with $\alpha(G) \leq \delta(G)$. Then G is Hamilton-connected if and only if $\tau(G)>1$.

Let G is a 3-connected 3 -critical graph. It is shown in [3] that $\tau(G) \geq 1$ and $\tau(G)=1$ if and only if G belongs to a special infinite family \mathcal{G} described in [3]. Since $\alpha(G)=\delta(G)=3$ for each $G \in \mathcal{G}$, we have $\tau(G)>1$ if $\alpha(G) \geq \delta(G)+1$.

In [4], Chen et al. showed that the conjecture holds when $\alpha(G)=\delta(G)+2$.
Theorem 2 (Chen et al. [4]). Let G be a 3-connected 3-critical graph with $\alpha(G)=$ $\delta(G)+2$. Then G is Hamilton-connected.

By a result of Favaron et al. [6] which states that $\alpha(G) \leq \delta(G)+2$ for any connected 3-critical graph G, we see that the conjecture has only one case $\alpha(G)=\delta(G)+1$ unsolved.

Recently, Chen et al. [5] showed that the conjecture is true for $\alpha(G)=\delta(G)+1 \geq 5$.
Theorem 3 (Chen et al. [5]). Let G be a 3 -connected 3-critical graph with $\alpha(G)=$ $\delta(G)+1 \geq 5$. Then G is Hamilton-connected.

Since $\tau(G)>1$ implies $\delta(G) \geq 3$, the case $\alpha(G)=\delta(G)+1=4$ remains open. In this paper, we will show that the conjecture is true when $\alpha(G)=\delta(G)+1=4$. The main result of this paper is the following.

Theorem 4. Let G be a 3 -connected 3 -critical graph with $\alpha(G)=\delta(G)+1=4$. Then G is Hamilton-connected.

Combining Theorems 1, 2, 3 and 4, we have the following.
Theorem 5. A connected 3-critical graph G is Hamilton-connected if and only if $\tau(G)>1$.

By the main result of [3], we have the following.
Theorem 6. Let G be a 3 -connected 3 -critical graph. Then G is Hamilton-connected if and only if G does not belong to a special infinite family \mathcal{G} described in [3].

Now, we restate a result due to Chen et al. for later use.
Theorem 7 (Chen et al. [1]). Let G be a 3-connected 3-critical graph of order n. Then $d^{*}(G) \geq n-2$.

2. Some Lemmas

Let G be a graph of order n, and x, y vertices of G such that a longest (x, y)-path is of length $n-2$. Let $P=P_{x y}$ be an (x, y)-path of length $n-2$. We denote by x_{P} the only vertex not in P and let $d\left(x_{P}\right)=k$ with

$$
\begin{array}{ll}
N\left(x_{P}\right)=X=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}, & \text { indices following the orientation of } P ; \\
A=X^{+}=\left\{a_{1}, a_{2}, \ldots, a_{s}\right\}, & \text { where } a_{i}=x_{i}^{+}, x_{i}^{+} \in P \text { and } s \geq k-1 ; \\
B=X^{-}=\left\{b_{t}, b_{t+1}, \ldots, b_{k}\right\}, & \text { where } b_{i}=x_{i}^{-}, x_{i}^{-} \in P \text { and } t \leq 2 ; \text { and } \\
P_{i}=a_{i} \vec{P} b_{i+1}, & \text { where } 1 \leq i \leq k-1
\end{array}
$$

Furthermore, we let $P_{0}=x \vec{P} b_{1}$ if $x \notin X$ and $P_{k}=a_{k} \vec{P} y$ if $y \notin X$. The length of the path $x_{1} \vec{P} x_{k}$ is denoted by $s(P)$.

Definition. A vertex $v \in P_{i}(1 \leq i \leq k)$ is called an A-vertex if $G\left[P_{i} \cup\left\{x_{i+1}\right\}\right]$ contains a hamiltonian $\left(v, x_{i+1}\right)$-path and $v \in P_{i}(0 \leq i \leq k-1)$ a B-vertex if $G\left[P_{i} \cup\left\{x_{i}\right\}\right]$ contains a hamiltonian $\left(x_{i}, v\right)$-path, where $x_{k+1}=y$ and $x_{0}=x$.

From the definition, we can see that each a_{i} is an A-vertex and each b_{i} is a B-vertex. Furthermore, if $v \in P_{i}(i \neq 0)$ and $v^{+} a_{i} \in E(G)$, then v is an A-vertex and if $v \in P_{i}$ $(i \neq k)$ and $v^{-} b_{i+1} \in E(G)$, then v is a B-vertex.

Lemma 1 (Chen et al. [5]). If $u_{i} \in P_{i}$ and $u_{j} \in P_{j}$ are two A-vertices $(B$-vertices, respectively) with $i \neq j$, then $x_{P} u_{i} \notin E(G)$ and $u_{i} u_{j} \notin E(G)$. In particular, both $A \cup\left\{x_{P}\right\}$ and $B \cup\left\{x_{P}\right\}$ are independent sets.

Lemma 2 (Chen et al. [5]). Let $u_{i} \in P_{i}, u_{j} \in P_{j}$ be A-vertices with $i<j, Q_{i}$ and Q_{j} are hamiltonian $\left(u_{i}, x_{i+1}\right)$-path and $\left(u_{j}, x_{j+1}\right)$-path in $G\left[P_{i} \cup\left\{x_{i+1}\right\}\right]$ and $G\left[P_{j} \cup\left\{x_{j+1}\right\}\right]$, respectively, $Q=u_{i} \overrightarrow{Q_{i}} x_{i+1} \vec{P} x_{j}$ and $R=u_{j} \overrightarrow{Q_{j}} x_{j+1} \vec{P} y$. If $v \in N_{Q}\left(u_{i}\right)$, then $v^{-} \notin N\left(u_{j}\right)$ and if $v \in N\left(u_{i}\right) \cap\left(x \vec{P} x_{i} \cup R\right)$, then $v^{+} \notin N\left(u_{j}\right)$. In particular, let $a_{i}, a_{j} \in A$ with $i<j$ and $v \in N\left(a_{i}\right)$, then $v^{-} \notin N\left(a_{j}\right)$ if $v \in a_{i} \vec{P} x_{j}$ and $v^{+} \notin N\left(a_{j}\right)$ if $v \in x \vec{P} x_{i} \cup a_{j} \vec{P} y$.

By the symmetry of A and B, Lemma 2 still holds if we exchange A and B.

Lemma 3 (Chen et al. [5]). Let $u, v \in a_{i} \vec{P} b_{j}$ with $j \geq i+1$ and $G\left[a_{i} \vec{P} b_{j}\right]$ contain a hamiltonian (u, v)-path. Suppose that $w \in x \vec{P} x_{i} \cup x_{j} \vec{P} y$ and $u w \in E(G)$. Then $w^{-} v \notin E(G)$ if $w^{-} \in x \vec{P} x_{i} \cup x_{j} \vec{P} y$ and $w^{+} v \notin E(G)$ if $w^{+} \in x \vec{P} x_{i} \cup x_{j} \vec{P} y$. In particular, let $a_{i} \in A$ and $b_{j} \in B$ with $j \geq i+1$. Suppose that $v \in x \vec{P} x_{i} \cup x_{j} \vec{P} y$ and $a_{i} v \in E(G)$. Then, $v^{-} b_{j} \notin E(G)$ if $v^{-} \in x \vec{P} x_{i} \cup x_{j} \vec{P} y$, and $v^{+} b_{j} \notin E(G)$ if $v^{+} \in x \vec{P} x_{i} \cup x_{j} \vec{P} y$.

Lemma 4 (Chen et al. [5]). Let $u, u^{+} \in P_{i}$. If $u^{+} a_{l} \in E(G)$ for some $l \geq i+1$, then $b_{j} u \notin E(G)$ for all $j \leq i$.

Lemma 5 (Chen et al. [2]). Let $\left|P_{i}\right| \geq 2, u, v \notin P_{i}$ and $\{u, v\} \succ P_{i}$. If $u a_{i}, v b_{i+1} \in$ $E(G)$, then there exists some vertex $w \in P_{i}$ such that $u w, v w^{+} \in E(G)$.

Lemma 6 (Chen et al. [5]). Let $i \geq 2, z \in P_{j}$ and $\left[a_{i}, z\right] \rightarrow x_{P}$. If $|A| \geq 3$ and $j \neq i-1$, then $A \cup\left\{z^{+}, x_{P}\right\}$ is an independent set if $z^{+} \in P$ and $B \cup\left\{z^{-}, x_{P}\right\}$ is an independent set if $z^{-} \in P$.

Lemma 7. Let $|A|=|B|=3, z \in P_{j}$ and $\left[x_{P}, z\right] \rightarrow a_{i}$. If $z^{-} \in P$, then $B \cup\left\{x_{P}, z^{-}\right\}$ is an independent set.

Proof. Suppose to the contrary there is some b_{l} such that $b_{l} z^{-} \in E(G)$. If $l=j+1$, then z is a B-vertex, which contradicts Lemma 1 since $|B|=3$ and $B-\left\{a_{i}\right\} \subseteq N(z)$. If $l<j+1$, then $j=2$ or 3 for otherwise we have $a_{2}, a_{3} \notin N(z)$ by Lemma 4 . If $j=2$ and $l=1$, then by Lemmas 2 and 4 , we have $b_{2}, a_{3} \notin N(z)$, and if $j=2$ and $l=2$, then by Lemmas 3 and $4, a_{1}, a_{3} \notin N(z)$, a contradiction. Thus, we may assume $j=3$. If $l=3$, then by Lemma $3, a_{1}, a_{2} \notin N(z)$; if $l=2$, then by Lemmas 2 and $3, b_{3}, a_{1} \notin N(z)$; and if $l=1$, then by Lemma $2, b_{2}, b_{3} \notin N(z)$, a contradiction. If $l>j+1$, then since $b_{1} z \in E(G)$, by Lemma 2 we have $j=0$. If $l=2$, then by Lemma 2 and 3 , $b_{3}, a_{1} \notin N(z)$ and if $l=3$, then by Lemma $3, a_{1}, a_{2} \notin N(z)$, a contradiction. Since $|A|=3$ and $A-\left\{a_{i}\right\} \subseteq N(z)$, by Lemma 1 we have $z \notin A$, which implies $z^{-} x_{P} \notin E(G)$. Thus, $B \cup\left\{x_{P}, z^{-}\right\}$is an independent set.

Now, let G be a 3 -critical graph, $\alpha(G)=\delta(G)+1$ and $v_{0} \in V(G)$ with $d\left(v_{0}\right)=$ $\delta(G)=3$. Suppose $N\left(v_{0}\right)=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $I=\left\{v_{0}, w_{1}, w_{2}, w_{3}\right\}$ is an independent set. The following lemma restates a lemma due to Sumner and Blitch [7], which has become of considerable utility in dealing with 3 -critical graphs. In [7] they considered the case $l \geq 4$, which guarantees $P(W) \cap W=\emptyset$. For the cases $l=2$ and $l=3$, Lemma 8 can be easily verified since G is a 3 -critical graph.

Lemma 8. Let G be a connected 3-critical graph and U an independent set of $l \geq 2$
vertices. Then there exists an ordering $u_{1}, u_{2}, \cdots, u_{l}$ of the vertices of U and a sequence $P(U)=\left(y_{1}, y_{2}, \cdots, y_{l-1}\right)$ of $l-1$ distinct vertices such that $\left[u_{i}, y_{i}\right] \rightarrow u_{i+1}, 1 \leq i \leq l-1$.

The next lemma is a useful consequence of Lemma 8 .
Lemma 9 (Favaron et al. [6]). Let U be an independent set of $l \geq 3$ vertices of a 3 -critical graph G such that $U \cup\{v\}$ is independent for some $v \notin U$. Then the sequence $P(U)$ defined in Lemma 8 is contained in $N(v)$.

Since I is an independent set of order 4, by Lemmas 8 and 9 , we may assume without loss of generality that $\left[w_{i}, v_{i}\right] \rightarrow w_{i+1}$ for $i=1,2$.

Lemma 10 (Chen et al. [5]). If $\left[v_{0}, z\right] \rightarrow w_{i}$ for $i \neq 3$, then we have $z \notin N\left(v_{0}\right)$ and if $\left[v_{0}, v_{l}\right] \rightarrow w_{3}$, then $l=2$.

Lemma 11 (Chen et al. [5]). If $\left[v_{0}, v_{2}\right] \rightarrow w_{3}$, then we have $v_{1}, v_{2}, w_{3} \notin N\left(v_{3}\right)$ and $w_{1}, w_{2} \in N\left(v_{3}\right)$.

Lemma 12. Let G be 3 -critical, $X=\left\{x_{1}, x_{2}, x_{3}\right\}=\left\{x_{i}, x_{j}, x_{l}\right\}$ and $\left\{x_{P}, a_{i}, u, v\right\}$ a maximum independent set. If $\left[x_{P}, x_{l}\right] \rightarrow a_{i}$, then we have $x_{l} x_{i} \in E(G), x_{i}, x_{l} \notin N\left(x_{j}\right)$ and $\left\{x_{l}, x_{j}\right\} \subseteq N(u) \cap N(v)$.

Proof. Let $U=\left\{a_{i}, u, v\right\}=\left\{u_{1}, u_{2}, u_{3}\right\}$. By Lemmas 8 and 9, we may assume that $\left[u_{m}, x_{q_{m}}\right] \rightarrow u_{m+1}$ for $m=1,2$. Let $X-\left\{x_{q_{1}}, x_{q_{2}}\right\}=\left\{x_{q_{3}}\right\}$. If $\left[x_{P}, x_{l}\right] \rightarrow a_{i}$, then by Lemma 10, we have $a_{i}=u_{3}$ and $x_{l}=x_{q_{2}}$. Since $\left[u_{1}, x_{q_{1}}\right] \rightarrow u_{2}$, we have $x_{q_{1}} a_{i} \in E(G)$. By Lemma 11, $x_{q_{3}} a_{i} \notin E(G)$. Thus, since $x_{i} \in X$ and $x_{i} a_{i} \in E(G)$, we have $x_{q_{1}}=x_{i}$ and $x_{q_{3}}=x_{j}$, that is, $\left[u_{1}, x_{i}\right] \rightarrow u_{2}$ and $\left[u_{2}, x_{l}\right] \rightarrow a_{i}$. In this case, we have $x_{i} x_{l} \in E(G)$ and by Lemma 11, we have $x_{i}, x_{l} \notin N\left(x_{j}\right)$ and $\left\{x_{l}, x_{j}\right\} \subseteq N(u) \cap N(v)$.

The following two lemmas can be extracted from [2].
Lemma 13 (Chen et al. [2]). Suppose that P is a longest (x, y)-path such that $|X \cap\{x, y\}|$ is as small as possible and that for this path, $d\left(x_{P}\right)=k \geq 4$. If G is 3-critical, then there exists an independent set I such that either $\left\{x_{P}\right\} \cup A \subseteq I$ or $\left\{x_{P}\right\} \cup B \subseteq I$ and $|I| \geq k+1$.

Lemma 14 (Chen et al. [2]). Let G be a 3 -connected 3 -critical graph of order n, $x, y \in V(G)$ and $p(x, y)=n-2$. Suppose that P is a longest (x, y)-path such that $d\left(x_{P}\right)$ is as large as possible and subject to this, $|X \cap\{x, y\}|$ is as small as possible. If $d\left(x_{P}\right)=3,\{x, y\} \subseteq X$ and P_{i} is a clique for $i=1,2$, then $a_{1} b_{3} \notin E(G)$, and if $a_{2} b_{2} \in E(G)$, then $n=8$ and $\alpha(G)=3$.

3. Proof of Theorem 4

Let G be a 3 -connected 3 -critical graph with $\alpha(G)=\delta(G)+1=4$. We still use the notations given in Section 3. Suppose to the contrary that G is not Hamiltonconnected. By Theorem 7, there are two vertices x, y such that $p(x, y)=n-2$. Among all the longest (x, y)-paths, we choose P such that
(a) $d\left(x_{P}\right)$ is as large as possible;
(b) subject to (a), $\left|\{x, y\} \cap N\left(x_{P}\right)\right|$ is as small as possible;
(c) subject to (a) and $(b), s(P)$ is as small as possible.

Choose an orientation such that $|A| \geq|B|$. Assume without loss of generality that the orientation is from x to y. Since $\alpha(G)=\delta(G)+1=4$, by the choice of P and Lemma 13 , we have $d\left(x_{P}\right)=3$.

We consider the following two cases separately.
Case 1. $|A|=3$
Let $U=N\left[x_{P}\right] \cup A$. If $|A|=3$, then by Lemmas 8 and 9 , we may assume that $\left[a_{i_{l}}, x_{j_{l}}\right] \rightarrow a_{i_{l+1}}$ for $l=1,2$. Thus, noting that $|A|=3$, we have
$d_{U}\left(x_{i}\right) \geq \delta=3$ for any $x_{i} \in X$.
If $\left[a_{3}, b_{3}\right] \rightarrow x_{P}$, then $b_{2} a_{3}, a_{1} b_{3} \in E(G)$ by Lemma 1 . In this case, we have $\left|P_{2}\right| \geq 2$ and hence $d\left(x_{3}\right) \geq 4$ by (1). Thus, $Q=x \vec{P} x_{1} x_{P} x_{2} \vec{P} b_{3} a_{1} \vec{P} b_{2} a_{3} \vec{P} y$ is an (x, y)-path of length $n-2$ with $x_{Q}=x_{3}$, which contradicts the choice of P and hence

$$
\begin{equation*}
\left[a_{3}, b_{3}\right] \rightarrow x_{P} \text { is impossible. } \tag{2}
\end{equation*}
$$

Claim 1. Let $z \in P_{j}$ and $\left[x_{P}, z\right] \rightarrow a_{i}$. If $z^{+} \in P$, then $A \cup\left\{x_{P}, z^{+}\right\}$is an independent set.

Proof. If $|B|=3$, then since $B-\left\{a_{i}\right\} \subseteq N(z)$, by Lemma 1 we have $z \notin B$. If $|B|=2$ and $z=b_{2}$, then we must have $a_{2}=b_{3}=a_{i}$. Since $P_{3} \subseteq N(z)$, by Lemmas 1 and 2 we have $N\left(a_{i}\right) \cap P_{3}=\emptyset$. Thus, by the choice of P, we have $N\left(a_{i}\right)=X$, which contradicts $\tau(G)>1$ since $\omega(G-X) \geq 3$. If $|B|=2$ and $z=b_{3}$, then $a_{1}=b_{2}=a_{i}$. Since $P_{3} \subseteq N(z)$, by Lemmas 1 and 3 we have $N\left(a_{i}\right) \cap P_{3}=\emptyset$. If $a_{i} x_{3} \in E(G)$, then by the choice of P, we have $N\left(a_{i}\right)=X$, which contradicts $\tau(G)>1$. If $x_{3} a_{i} \notin E(G)$, then $P^{\prime}=x x_{P} x_{2} \vec{P} y$ is an (x, y)-path of length $n-2$ such that $s\left(P^{\prime}\right)<s(P)$, a contradiction. Therefore, we have $z \notin B$ and hence $z^{+} x_{P} \notin E(G)$. Thus, by Lemma 1 , we need only to show $A \cup\left\{z^{+}\right\}$is an independent set.

Suppose to the contrary there is some a_{l} such that $a_{l} z^{+} \in E(G)$. If $l=j$, then z is an A-vertex, which contradicts Lemma 1 since $|A|=3$ and $A-\left\{a_{i}\right\} \subseteq N(z)$. If $l<j$, then by Lemmas 2 and 3 , we have $a_{j+1}, b_{j} \notin N(z)$, which implies $j=3$. If $l=1$, then by Lemma 3, we have $b_{2}, b_{3} \notin N(z)$ and if $l=2$, then by Lemmas 2 and 3 we have $a_{1}, b_{3} \notin N(z)$, a contradiction. Thus we have $l>j$.

If $|B|=3$, then since $b_{1} z \in E(G)$, by Lemma 4 we have $j=0$. Thus, if $l=1$, then by Lemma 3 we have $b_{2}, b_{3} \notin N(z)$; if $l=2$, then by Lemmas 2 and 3 , we have $a_{1}, b_{3} \notin N(z)$; and if $l=3$, then by Lemma 2 , we have $a_{1}, a_{2} \notin N(z)$, a contradiction. Thus, we have $|B|=2$.

If $j=2$, then $l=3$. By Lemma 4 we have $b_{2} z \notin E(G)$, which implies $a_{1}=b_{2}=a_{i}$. Let $Q=x x_{P} x_{2} \vec{P} y$. Obviously, $|Q|=n-1$ and $x_{Q}=a_{1}$. By the choice of P, we have $d\left(a_{1}\right)=3$. If $N\left(a_{1}\right) \cap P_{3} \neq \emptyset$, say $v \in N\left(a_{1}\right) \cap P_{3}$, then the (x, y)-path $x x_{P} x_{3} \overleftarrow{P} z^{+} a_{3} \vec{P} v^{-} z \overleftarrow{P} a_{1} v \vec{P} y$ is hamiltonian, and hence $N\left(a_{1}\right) \cap P_{3}=\emptyset$. If $a_{1} x_{3} \in E(G)$ then since $d\left(a_{1}\right)=3$, we have $N\left(a_{1}\right)=X$, which contradicts $\tau(G)>1$. Thus, Q is an (x, y)-path of length $n-2$ with $s(Q)<s(P)$, which contradicts the choice of P. If $j=1$ and $l=2$, then by Lemma 3 we have $b_{3} z \notin E(G)$, which implies $a_{2}=b_{3}=a_{i}$. This contradicts Lemma 1 since $z b_{2} \in E(G)$, which implies z^{+}is a B-vertex. If $j=1$ and $l=3$, then by Lemma 2 we have $z a_{2} \notin E(G)$, which implies $a_{2}=a_{i}$. If $N\left(a_{2}\right) \cap$ $P_{3} \neq \emptyset$, say $v \in N\left(a_{2}\right) \cap P_{3}$, then the (x, y)-path $x \vec{P} z v^{-} \overleftarrow{P} a_{3} z^{+} \vec{P} x_{2} x_{P} x_{3} \overleftarrow{P} a_{2} v \vec{P} y$ is hamiltonian, and hence $N\left(a_{2}\right) \cap P_{3}=\emptyset$. If $a_{2}=b_{3}$, then we have $d\left(a_{2}\right)=3$ and $x a_{2} \in E(G)$ for otherwise we can choose $R=x \vec{P} x_{2} x_{P} x_{3} \vec{P} y$ replacing P. In this case, we have $N\left(a_{2}\right)=X$, which contradicts $\tau(G)>1$. Thus we may assume $a_{2} \neq b_{3}$. Let $S=x \vec{P} z a_{2}^{+} \vec{P} x_{3} x_{P} x_{2} \overleftarrow{P} z^{+} a_{3} \vec{P} y$. Then S is an (x, y)-path of length $n-2$ with $x_{S}=a_{2}$. Noting that $N\left(a_{2}\right) \cap P_{3}=\emptyset$, by the choice of P, we have $d\left(a_{2}\right)=3$ and $x a_{2} \in E(G)$. In this case, $N\left(a_{2}\right)=\left\{x_{1}, x_{2}, a_{2}^{+}\right\}$. Since $a_{2} \neq b_{3}$, we have $a_{2}^{+} \neq x_{3}$ and hence $s(S)<s(P)$, a contradiction. Thus, we have $a_{l} z^{+} \notin E(G)$ for any $a_{l} \in A$, and hence $A \cup\left\{x_{P}, z^{+}\right\}$is an independent set.

Claim 2. Let $v \in P_{i}$, where $1 \leq i \leq 3$. If $a_{i} v^{+} \in E(G)$, then $a_{i} v \in E(G)$.
Proof. Since $v^{+} a_{i} \in E(G), v$ is an A-vertex. If $a_{i} v \notin E(G)$, then by Lemma 1, $A \cup\left\{x_{P}, v\right\}$ is an independent set of order 5 , a contradiction.

Claim 3. If $z \in P_{1}$ and $\left[a_{2}, z\right] \rightarrow x_{P}$, then $B \cup\left\{x_{P}, z^{-}\right\}$is an independent set.
Proof. If $z^{-} b_{2} \in E(G)$, then z is a B-vertex. By Lemma $1, z b_{3} \notin E(G)$, which implies $a_{2} b_{3} \in E(G)$. By Claim 2, $P_{2} \subseteq N\left[a_{2}\right]$. If $a_{1} x_{2} \in E(G)$, then z is an A-vertex, which contradicts Lemma 1 since $z a_{3} \in E(G)$. If $a_{1} x_{3} \in E(G)$, then the (x, y)-path $x \vec{P} x_{1} x_{P} x_{2} \vec{P} x_{3} a_{1} \vec{P} z^{-} b_{2} \overleftarrow{P} z a_{3} \vec{P} y$ is hamiltonian. Thus, we have $x_{2}, x_{3} \notin N\left(a_{1}\right)$. Since
$x_{P} a_{3} \notin E(G)$, there is some vertex w such that $\left[x_{P}, w\right] \rightarrow a_{3}$ or $\left[a_{3}, w\right] \rightarrow x_{P}$. If $\left[a_{3}, w\right] \rightarrow x_{P}$, then by Lemma 6 we have $w \in P_{2}$ or $w=y$. Since $P_{2} \subseteq N\left[a_{2}\right]$, we see that each vertex of $P_{2}-\left\{b_{3}\right\}$ is an A-vertex. Thus, if $w \in P_{2}$, then we have $w=b_{3}$, which contradicts (2), and hence we have $w=y$. If $\left[x_{P}, w\right] \rightarrow a_{3}$, then since $x_{2}, x_{3} \notin N\left(a_{1}\right)$, we have $w \notin X$ by Lemma 12. Thus, by Claim 1, we have $w=y$. In both cases, $y \neq a_{3}$ and $a_{1} y \in E(G)$. By Lemma $4, z y^{-} \notin E(G)$ and hence $a_{2} y^{-} \in E(G)$. Thus, $R=x \vec{P} x_{1} x_{P} x_{3} \overleftarrow{P} a_{2} y^{-} \overleftarrow{P} a_{3} z \vec{P} b_{2} z^{-} \overleftarrow{P} a_{1} y$ is an (x, y)-path of length $n-2$ with $x_{R}=x_{2}$. Since $z \in P_{1}$ and $|A|=3$, we have $\left|P_{1}\right| \geq 2$. By (1), $d\left(x_{R}\right)=d\left(x_{2}\right) \geq 4$, which contradicts the choice of P. Therefore, $z^{-} b_{2} \notin E(G)$.

If $z^{-} b_{3} \in E(G)$, then by Lemma 1 we have $a_{2} x_{3} \notin E(G)$ since $a_{1} z \in E(G)$, which implies z^{-}is an A-vertex. If $a_{2} x_{1} \in E(G)$, then $x \vec{P} x_{1} a_{2} \vec{P} b_{3} z^{-} \overleftarrow{P} a_{1} z \vec{P} x_{2} x_{P} x_{3} \vec{P} y$ is a hamiltonian (x, y)-path. Thus, we have $x_{1}, x_{3} \notin N\left(a_{2}\right)$. Since $z^{-} b_{2} \notin E(G)$, we have $z \neq b_{2}$. If $a_{1} b_{2} \in E(G)$, then by Claim 2, z is an A-vertex, which contradicts Lemma 1 since $z a_{3} \in E(G)$, and hence $a_{1} b_{2} \notin E(G)$. Thus, there is some vertex w such that $\left[a_{1}, w\right] \rightarrow b_{2}$ or $\left[b_{2}, w\right] \rightarrow a_{1}$. It is easy to see $w \neq x_{P}$. Thus, in order to dominate x_{P}, we have $w \in X$. If $\left[a_{1}, w\right] \rightarrow b_{2}$, then $w \neq x_{2}$. Noting that $x_{1}, x_{3} \notin N\left(a_{2}\right)$, we can see that $w \neq x_{1}, x_{3}$. Thus, we have $\left[b_{2}, w\right] \rightarrow a_{1}$. Obviously, $w \neq x_{1}$. If $w=x_{2}$, then $x_{2} b_{3} \in E(G)$. By Lemma 3, $a_{2} b_{2} \notin E(G)$. Since $a_{2} x_{3} \notin E(G)$, we have $z x_{3} \in E(G)$. If $b_{2} a_{3} \in E(G)$, then the (x, y)-path $x \vec{P} z^{-} b_{3} \overleftarrow{P} x_{2} x_{P} x_{3} z \vec{P} b_{2} a_{3} \vec{P} y$ is hamiltonian, and hence $b_{2} a_{3} \notin E(G)$. Thus, $A \cup\left\{b_{2}, x_{P}\right\}$ is an independent set of order 5 , a contradiction. Hence, $w \neq x_{2}$, which implies $w=x_{3}$, that is, $\left[b_{2}, x_{3}\right] \rightarrow a_{1}$. In this case, $a_{2} b_{2} \in E(G)$ since $a_{2} x_{3} \notin E(G)$. By Lemma 5 , there is some vertex $u \in P_{2}$ such that $b_{2} u, u^{+} x_{3} \in E(G)$. Thus, the (x, y)-path $x \vec{P} z^{-} b_{3} \overleftarrow{P} u^{+} x_{3} x_{P} x_{2} \vec{P} u b_{2} \overleftarrow{P} z a_{3} \vec{P} y$ is hamiltonian, a contradiction. Hence, $z^{-} b_{3} \notin E(G)$.

Since $z a_{3} \in E(G)$, we have $b_{1} z^{-} \notin E(G)$ by Lemma 4 if $|B|=3$ and $z \notin A$ by Lemma 1, which implies $z^{-} x_{P} \notin E(G)$. Thus $B \cup\left\{x_{P}, z^{-}\right\}$is an independent set.

Claim 4. If $z \in P_{2}$ and $\left[a_{3}, z\right] \rightarrow x_{P}$, then $B \cup\left\{x_{P}, z^{-}\right\}$is an independent set.
Proof. Since $z a_{1} \in E(G)$, we have $b_{2} z^{-} \notin E(G)$ by Lemma 3. Since $z \in P_{2}$ and $z a_{1} \in E(G)$, by Lemma $1,\left|P_{2}\right| \geq 2$. By (1), $d\left(x_{3}\right) \geq 4$ and $d\left(x_{1}\right) \geq 4$ if $|B|=3$. If $z^{-} b_{1} \in E(G)$ or $z^{-} b_{3} \in E(G)$, then by Lemma 2, we have $z b_{2} \notin E(G)$, and hence $b_{2} a_{3} \in E(G)$. Thus, $Q=x \vec{P} b_{1} z^{-} \overleftarrow{P} x_{2} x_{P} x_{3} \overleftarrow{P} z a_{1} \vec{P} b_{2} a_{3} \vec{P} y$ is an (x, y)-path of length $n-2$ with $x_{Q}=x_{1}$ if $z^{-} b_{1} \in E(G)$ and $R=x \vec{P} x_{1} x_{P} x_{2} \vec{P} z^{-} b_{3} \overleftarrow{P} z a_{1} \vec{P} b_{2} a_{3} \vec{P} y$ is an (x, y)-path of length $n-2$ with $x_{R}=x_{3}$ if $z^{-} b_{3} \in E(G)$, which contradicts the choice of P. Hence, we have $z^{-} b_{1}, z^{-} b_{3} \notin E(G)$. Since $z a_{1} \in E(G)$, by Lemma 1 we have $z \notin A$, and hence $z^{-} x_{P} \notin E(G)$. Thus, $B \cup\left\{x_{P}, z^{-}\right\}$is an independent set.

Since $|A|=3$, by Lemma 10 , there are some vertices a_{i} with $i \geq 2$ and $z \notin X$ such that $\left[x_{P}, z\right] \rightarrow a_{i}$ or $\left[a_{i}, z\right] \rightarrow x_{P}$. If $|B|=3$, then by Lemma 7 and Claim 1, we have $\left[a_{i}, z\right] \rightarrow x_{P}$. By Lemma 6 , we have $z \in P_{i-1}$. Thus, by Claims 3 and 4 , we see $B \cup\left\{x_{P}, z^{-}\right\}$is an independent set of order 5 , a contradiction. Hence we have $|B|=2$.

Claim 5. If $\left[x_{P}, y\right] \rightarrow a_{i}$, then $B \cup\left\{x_{P}, y^{-}\right\}$is an independent set.
Proof. Since $|A|=3$ and $A-\left\{a_{i}\right\} \subseteq N(y)$, by Lemma 1 we have $y \neq a_{3}$, which implies $y^{-} x_{P} \notin E(G)$. If $a_{i} \neq a_{1}$, then by Lemma 3, we have $b_{2}, b_{3} \notin N\left(y^{-}\right)$. If $a_{i}=a_{1}$, then we have $b_{3}, a_{2} \in N(y)$. By Lemmas 2 and 3 , we have $b_{2}, b_{3} \notin N\left(y^{-}\right)$. Thus, $B \cup\left\{x_{P}, y^{-}\right\}$is an independent set.

Claim 6. If $\left[a_{2}, z\right] \rightarrow x_{P}$, then $z=y$.
Proof. By Lemma 6, we have $z \in P_{1}$ or $z=y$. If $z \neq y$, then $z \in P_{1}$. Since $x_{P} a_{3} \notin E(G)$, there is some vertex w such that $\left[x_{P}, w\right] \rightarrow a_{3}$ or $\left[a_{3}, w\right] \rightarrow x_{P}$. If $w=y$, then by Lemma 6 or Claim $5, B \cup\left\{x_{P}, y^{-}\right\}$is an independent set. If $z^{-} y^{-} \in E(G)$, then the (x, y)-path $x_{1} x_{P} x_{2} \overleftarrow{P} z a_{1} \vec{P} z^{-} y^{-} \overleftarrow{P} a_{2} y$ is hamiltonian, and hence $z^{-} y^{-} \notin E(G)$. Thus, by Claim 3, we can see that $B \cup\left\{x_{P}, y^{-}, z^{-}\right\}$is an independent set of order 5 , and hence $w \neq y$. If $\left[x_{P}, w\right] \rightarrow a_{3}$, then by Claim 1, we have $w \in\left\{x_{1}, x_{2}\right\}$. By Lemma 12, we have $a_{1} x_{2} \in E(G)$. By Claim $2, z$ is an A-vertex, which contradicts Lemma 1 since $z a_{3} \in E(G)$. Thus, we have $\left[a_{3}, w\right] \rightarrow x_{P}$. By Lemma 6 , we have $w \in P_{2}$. By Claim 4, $B \cup\left\{x_{P}, w^{-}\right\}$is an independent set. Noting that z^{-}and w^{-}are A-vertices, we have $z^{-} w^{-} \notin E(G)$ by Lemma 1 . Thus, by Claim $3, B \cup\left\{x_{P}, w^{-}, z^{-}\right\}$is an independent set of order 5 , a contradiction.

Claim 7. If $\left[a_{2}, y\right] \rightarrow x_{P}$ or $\left[x_{P}, y\right] \rightarrow a_{2}$, then $a_{3} y, a_{1} b_{2}, a_{2} b_{3} \in E(G)$.
Proof. By Lemma 1, $a_{3} y \in E(G)$. Thus, y^{-}is an A-vertex. By Lemma 6 or Claim $5, B \cup\left\{x_{P}, y^{-}\right\}$is an independent set. If $a_{1} b_{2} \notin E(G)$ or $a_{2} b_{3} \notin E(G)$, then $a_{2} b_{2} \in$ $E(G)$ for otherwise $\left\{x_{P}, a_{1}, b_{2}, a_{2}, y^{-}\right\}$, or $\left\{x_{P}, b_{3}, b_{2}, a_{2}, y^{-}\right\}$is an independent set and $a_{1} b_{3} \in E(G)$ for otherwise $\left\{x_{P}, a_{1}, b_{2}, b_{3}, y^{-}\right\}$, or $\left\{x_{P}, b_{3}, a_{1}, a_{2}, y^{-}\right\}$is an independent set, which contradicts $\alpha(G)=4$. Thus, by Lemmas 1 and 3, we have

$$
\begin{equation*}
a_{1}, b_{3} \notin N\left(x_{2}\right) \text { and } a_{2}, b_{2} \notin N\left(x_{1}\right) \cup N\left(x_{3}\right) . \tag{3}
\end{equation*}
$$

If $a_{1} b_{2} \notin E(G)$, then there is some vertex w such that $\left[a_{1}, w\right] \rightarrow b_{2}$ or $\left[b_{2}, w\right] \rightarrow a_{1}$. Obviously, $w \neq x_{P}$. Thus, in order to dominate x_{P}, we have $w \in X$. By (3), we have $\left[b_{2}, x_{3}\right] \rightarrow a_{1}$. By Lemma 5 , there is some vertex $v \in P_{2}$ such that $b_{2} v, x_{3} v^{+} \in E(G)$, which implies the (x, y)-path $x_{1} x_{P} x_{2} \vec{P} v b_{2} \overleftarrow{P} a_{1} b_{3} \overleftarrow{P} v^{+} x_{3} \vec{P} y$ is hamiltonian, and hence $a_{1} b_{2} \in E(G)$. If $a_{2} b_{3} \notin E(G)$, then there is some vertex u such that $\left[a_{2}, u\right] \rightarrow b_{3}$ or
$\left[b_{3}, u\right] \rightarrow a_{2}$. Clearly, $u \neq x_{P}$, and hence $u \in X$. By (3), we have $\left[a_{2}, x_{1}\right] \rightarrow b_{3}$. By Lemma 5, there is some vertex $v \in P_{1}$ such that $x_{1} v, a_{2} v^{+} \in E(G)$, which implies the (x, y)-path $x_{1} v \overleftarrow{P} a_{1} b_{3} \overleftarrow{P} a_{2} v^{+} \vec{P} x_{2} x_{P} x_{3} \stackrel{\rightharpoonup}{P} y$ is hamiltonian, and hence $a_{2} b_{3} \in E(G)$

Claim 8. If $\left[x_{P}, z\right] \rightarrow a_{2}$ and $z \in\left\{x_{1}, x_{3}\right\}$, then $a_{1} b_{2}, a_{2} b_{3} \in E(G)$.
Proof. By Lemma 12, we have $a_{1} x_{3} \in E(G)$. By Lemma 3, we have $b_{2}, b_{3} \notin N\left(a_{3}\right)$. If $a_{1} b_{2} \notin E(G)$ or $a_{2} b_{3} \notin E(G)$, then $a_{1} b_{3} \in E(G)$ for otherwise $\left\{x_{P}, a_{1}, b_{2}, b_{3}, a_{3}\right\}$, or $A \cup\left\{x_{P}, b_{3}\right\}$ is an independent set of order 5 . Thus by Lemmas 2 and 3 , we have $b_{2} \notin N\left(x_{1}\right) \cup N\left(x_{3}\right)$, which contradicts $z \in\left\{x_{1}, x_{3}\right\}$.

Claim 9. If $\left[x_{P}, z\right] \rightarrow a_{2}$ and $z \in\left\{x_{1}, x_{3}\right\}$, then $a_{3} y \in E(G)$.
Proof. Since $x_{P} a_{3} \notin E(G)$, there is some vertex w such that $\left[x_{P}, w\right] \rightarrow a_{3}$ or $\left[a_{3}, w\right] \rightarrow$ x_{P}. If $\left[x_{P}, w\right] \rightarrow a_{3}$, then since $z \in X$, by Lemma 10 we have $w \notin X$. By Claim 1, $w=y$. If $\left[a_{3}, w\right] \rightarrow x_{P}$, then by Lemma $6, w \in P_{2}$ or $w=y$. If $w \in P_{2}$, then by Claims 2 and 8 , we have $w=b_{3}$, which contradicts (2). Thus, we have $w=y$ in both cases. By Lemma 6 or Claim $5, B \cup\left\{x_{P}, y^{-}\right\}$is an independent set. If $a_{3} y \notin E(G)$, then since $z \in X$, by Lemma 10, there is some vertex $u \in V(G)-N\left[x_{P}\right]$ such that $\left[x_{P}, u\right] \rightarrow a_{1}$ or $\left[a_{1}, u\right] \rightarrow x_{P}$. Since $a_{3} y \notin E(G)$, by Claim 1 , we can see that $\left[x_{P}, u\right] \rightarrow a_{1}$ is impossible. Thus, we have $\left[a_{1}, u\right] \rightarrow x_{P}$. If $u \in B$, say $u=b_{i}$, then since $b_{i} a_{3}, a_{1} y^{-} \in E(G)$, by Lemma 5 there is some vertex $v \in P_{3}-\{y\}$ such that $b_{i} v, a_{1} v^{+} \in E(G)$, which contradicts Lemma 3. Thus, in order to dominate a_{3}, we have $u \in P_{3}-\{y\}$ by Claims 2 and 8. Since $a_{2} u \in E(G)$, by Lemma $2, a_{3} u^{+} \notin E(G)$. If $a_{1} u^{+} \in E(G)$ or $a_{2} u^{+} \in E(G)$, then by Lemma $3, b_{3} u \notin E(G)$, which implies $a_{1} b_{3} \in E(G)$. Thus, by Lemmas 2 and 3 , we have $b_{2} \notin N\left(x_{1}\right) \cup N\left(x_{3}\right)$, which contradicts $z \in\left\{x_{1}, x_{3}\right\}$. Hence, $a_{1}, a_{2} \notin N\left(u^{+}\right)$, which implies $A \cup\left\{x_{P}, u^{+}\right\}$is an independent set of order 5 , a contradiction. Thus, we have $a_{3} y \in E(G)$.

Since $x_{P} a_{2} \notin E(G)$, there is some vertex z such that $\left[x_{P}, z\right] \rightarrow a_{2}$ or $\left[a_{2}, z\right] \rightarrow x_{P}$. If $\left[a_{2}, z\right] \rightarrow x_{P}$, then $z=y$ by Claim 6. By Claim 7, we have $a_{3} y, a_{1} b_{2}, a_{2} b_{3} \in E(G)$. If $\left[x_{P}, z\right] \rightarrow a_{2}$, then by Claim 1, we have $z \in\left\{x_{1}, x_{3}, y\right\}$. Thus, by Claims 7,8 and 9 , we have $a_{3} y, a_{1} b_{2}, a_{2} b_{3} \in E(G)$. Hence, by Claim 2, we have

$$
\begin{equation*}
P_{i} \subseteq N\left[a_{i}\right] \text { for } i=1,2,3 \tag{4}
\end{equation*}
$$

If $z=y$, then by Lemma 1 and (4), we have $P_{3} \subseteq N[y]$. If $z \neq y$, then by Claims 1 and 6 , we have $\left[x_{P}, z\right] \rightarrow a_{2}$ and $z \in\left\{x_{1}, x_{3}\right\}$. Since $x_{P} a_{3} \notin E(G)$, there is some vertex u such that $\left[x_{P}, u\right] \rightarrow a_{3}$ or $\left[a_{3}, u\right] \rightarrow x_{P}$. If $u \neq y$, then Lemma 10 and Claim 1 , we have $\left[a_{3}, u\right] \rightarrow x_{P}$. By Lemma 6 , we have $u \in P_{2}$. By (4), we have $u=b_{3}$, which
contradicts (2). If $u=y$, then by Lemma $6, B \cup\left\{y^{-}\right\}$is an independent set. Since $a_{1} x_{P} \notin E(G)$, there is some vertex w such that $\left[a_{1}, w\right] \rightarrow x_{P}$ or $\left[x_{P}, w\right] \rightarrow a_{1}$. Since $z \in X$, by Lemma $10, w \notin X$. If $w=y$, then by Lemma 1 and (4), $P_{3} \subseteq N[y]$. If $w \neq y$, then by Claim 1, we have $\left[a_{1}, w\right] \rightarrow x_{P}$. In order to dominate a_{2}, a_{3}, we have $w \in B$, which is impossible since $\left\{a_{1}, w\right\} \nsucc y^{-}$. Therefore, we have

$$
\begin{equation*}
P_{3} \subseteq N[y] . \tag{5}
\end{equation*}
$$

Let w be a vertex such that $\left[x_{P}, w\right] \rightarrow a_{3}$ or $\left[a_{3}, w\right] \rightarrow x_{P}$. If $z \in X$, then by Lemma 10, Claim 1 and (4), we have $\left[a_{3}, w\right] \rightarrow x_{P}$. By Lemma 6, we have $w \in P_{2}$ or $w=y$. By (2) and (4), we have $w=y$. If $z \notin X$, then by Claims 1 and 6 , we have $z=y$. Thus, we have

$$
\begin{equation*}
\text { either } w=y \text { or } z=y \text {. } \tag{6}
\end{equation*}
$$

By (6), we have $y \neq a_{3}$, which implies $y^{-} x_{P} \notin E(G)$. Let v be a vertex such that $\left[x_{P}, v\right] \rightarrow y^{-}$or $\left[y^{-}, v\right] \rightarrow x_{P}$. By Lemma 6, Claim 5 and (6), $B \cup\left\{x_{P}, y^{-}\right\}$is an independent set. By (4), y^{-}is an A-vertex. Thus, by Lemma 1 and (4), we have $N\left(y^{-}\right) \cap P_{i}=\emptyset$ for $i=1,2$. If $\left[y^{-}, v\right] \rightarrow x_{P}$, then we must have $v=y$, which implies $\left\{x_{P}, y\right\} \succ V(G)$ by (5), a contradiction. Thus, we have $\left[x_{P}, v\right] \rightarrow y^{-}$. By (4), we have $v \in X$. If $y^{-}=a_{3}$, then by Lemma 12, we have $N\left(a_{3}\right) \cap\left\{x_{1}, x_{2}\right\}=\emptyset$, which implies $d\left(a_{3}\right)=2$, a contradiction. Thus, we have $y^{-} \neq a_{3}$. In this case, $y^{-} \notin A$. By Lemmas 8 and 9 , we may assume $\left[a_{i_{l}}, x_{j_{l}}\right] \rightarrow a_{i_{l+1}}$ for $l=1,2$ and $X-\left\{x_{j_{1}}, x_{j_{2}}\right\}=\left\{x_{j_{3}}\right\}$. This implies $v=x_{j_{3}}$. Since y^{-}is an A-vertex, we have $y^{-} a_{i_{1}} \notin E(G)$ or $y^{-} a_{i_{2}} \notin E(G)$, which implies either $y^{-} x_{j_{1}} \in E(G)$ or $y^{-} x_{j_{2}} \in E(G)$. Thus, since $x_{j_{1}} x_{j_{2}} \in E(G)$, we can see that either $\left\{x_{j_{1}}, x_{j_{3}}\right\} \succ V(G)$ or $\left\{x_{j_{2}}, x_{j_{3}}\right\} \succ V(G)$, a contradiction.

Case 2. $|A|=2$
In this case, our main idea is to prove that P_{i} is a clique for $i=1,2$. In order to do this, we first show that either $a_{1} b_{2} \in E(G)$ or $a_{2} b_{3} \in E(G)$ and then $a_{1} b_{2}, a_{2} b_{3} \in E(G)$.

If $\left|P_{i}\right|=1$ for some $i \in\{1,2\}$, then by the choice of P, we have $N\left(a_{i}\right)=X$, which contradicts $\tau(G)>1$. Thus, we have $\left|P_{i}\right| \geq 2$ for $i=1,2$, which implies $b_{2}^{-}, a_{2}^{+} \notin X$. Noting that $a_{2}, b_{2} \in N\left(x_{2}\right)$, by the choice of P, we see that
there is no (x, y)-path Q such that $x_{Q}=a_{2}$ or b_{2}.
Claim 10. If $a \in P_{1}$ is an A-vertex, then $a a_{2}^{+} \notin E(G)$, and if $b \in P_{2}$ is a B-vertex, then $b b_{2}^{-} \notin E(G)$.

Proof. Let Q be a hamiltonian $\left(a, x_{2}\right)$-path in $G\left[P_{1} \cup\left\{x_{2}\right\}\right]$. If $a a_{2}^{+} \in E(G)$, then
$R=x_{1} x_{P} x_{2} \overleftarrow{Q} a a_{2}^{+} \vec{P} x_{3}$ is an (x, y)-path of length $n-2$ with $x_{R}=a_{2}$, which contradicts (7). As for the latter part, the proof is similar.

Claim 11. If $a \in P_{2}$ is an A-vertex and $a a_{1}^{+} \in E(G)$, then $N\left(a_{1}\right)=\left\{x_{1}, x_{3}, a_{1}^{+}\right\}$. Similarly, if $b \in P_{1}$ is a B-vertex and $b b_{3}^{-} \in E(G)$, then $N\left(b_{3}\right)=\left\{x_{1}, x_{3}, b_{3}^{-}\right\}$.

Proof. Let Q be a hamiltonian (a, x_{3})-path in $G\left[P_{2} \cup\left\{x_{3}\right\}\right]$. If $a a_{1}^{+} \in E(G)$, then $R=x_{1} x_{P} x_{2} \overleftarrow{P} a_{1}^{+} a \vec{Q} x_{3}$ is an (x, y)-path of length $n-2$ with $x_{R}=a_{1}$. By the choice of P, we have $d\left(a_{1}\right)=3$ and $x_{1}, x_{3} \in N\left(a_{1}\right)$, which implies $N\left(a_{1}\right)=\left\{x_{1}, x_{3}, a_{1}^{+}\right\}$. As for the latter part, the proof is similar.

Let $a \in P_{1}-\left\{b_{2}\right\}$ and $b \in P_{2}-\left\{a_{2}\right\}$. Suppose P^{\prime} is an $\left(a, b_{2}^{-}\right)$-path with $V\left(P^{\prime}\right)=$ $P_{1}-\left\{b_{2}\right\}$ and $P^{\prime \prime}$ an $\left(a_{2}^{+}, b\right)$-path with $V\left(P^{\prime \prime}\right)=P_{2}-\left\{a_{2}\right\}$. We have the following two claims.

Claim 12. If $\left(N\left(x_{1}\right) \cup N\left(x_{3}\right)\right) \cap\left\{b_{2}^{-}, a_{2}^{+}\right\} \neq \emptyset$, then $a b \notin E(G)$.
Proof. By symmetry, we may assume $N\left(x_{1}\right) \cap\left\{b_{2}^{-}, a_{2}^{+}\right\} \neq \emptyset$. If $a b \in E(G)$, then $Q=$ $x_{1} b_{2}^{-} \overleftarrow{P^{\prime}} a b \overleftarrow{P^{\prime \prime}} a_{2}^{+} a_{2} x_{2} x_{P} x_{3}$ is an (x, y)-path of length $n-2$ with $x_{Q}=b_{2}$ if $x_{1} b_{2}^{-} \in E(G)$ and $R=x_{1} a_{2}^{+} \overrightarrow{P^{\prime \prime}} b a \overrightarrow{P^{\prime}} b_{2}^{-} b_{2} x_{2} x_{P} x_{3}$ is an (x, y)-path of length $n-2$ with $x_{R}=a_{2}$ if $x_{1} a_{2}^{+} \in E(G)$, which contradicts (7).

Claim 13. If $v \in P_{2}$ and $a v \in E(G)$, then $v^{+}, v^{-} \notin N\left(b_{2}^{-}\right)$and if $u \in P_{1}$ and $b u \in E(G)$, then $u^{+}, u^{-} \notin N\left(a_{2}^{+}\right)$.

Proof. If $v^{+} b_{2}^{-} \in E(G)$, then $Q=x_{1} x_{P} x_{2} \vec{P} v a \overrightarrow{P^{\prime}} b_{2}^{-} v^{+} \vec{P} x_{3}$ is an (x, y)-path of length $n-2$ with $x_{Q}=b_{2}$ and if $v^{-} b_{2}^{-} \in E(G)$, then $R=x_{1} x_{P} x_{2} \vec{P} v^{-} b_{2}^{-} \overleftarrow{P^{\prime}} a v \vec{P} x_{3}$ is an (x, y)-path of length $n-2$ with $x_{R}=b_{2}$, which contradicts (7). As for the latter part, the proof is similar.

Claim 14. If $a_{2} b_{2} \in E(G)$ and $\left[a_{1}, x_{2}\right] \rightarrow b_{3}$, then $P_{2}-\left\{b_{3}\right\} \subseteq N\left(x_{2}\right)$ and $N\left(b_{3}\right)=$ $\left\{x_{1}, x_{3}, b_{3}^{-}\right\}$.

Proof. If $v \in P_{2}$ and $a_{1} v \in E(G)$, then by Lemma 5 , there is some vertex $u \in a_{2} \vec{P} v$ such that $u x_{2}, u^{+} a_{1} \in E(G)$. Thus, $x_{1} x_{P} x_{2} u \overleftarrow{P} a_{2} b_{2} \overleftarrow{P} a_{1} u^{+} \vec{P} x_{3}$ is a hamiltonian $(x, y)-$ path, and hence $N\left(a_{1}\right) \cap P_{2}=\emptyset$, which implies $P_{2}-\left\{b_{3}\right\} \subseteq N\left(x_{2}\right)$. On the other hand, since $Q=x_{1} \vec{P} b_{2} a_{2} \vec{P} b_{3}^{-} x_{2} x_{P} x_{3}$ is an (x, y)-path of length $n-2$ with $x_{Q}=b_{3}$, by the choice of P, we have $d\left(b_{3}\right)=3$ and $x_{1} \in N\left(b_{3}\right)$, which implies $N\left(b_{3}\right)=\left\{x_{1}, x_{3}, b_{3}^{-}\right\}$.

Claim 15. If $a_{1} b_{2}, a_{2} b_{3} \notin E(G)$, then either $a_{1} b_{3} \in E(G)$ or $a_{2} b_{2} \in E(G)$.
Proof. Otherwise, $\left\{x_{P}, a_{1}, a_{2}, b_{2}, b_{3}\right\}$ is an independent set of order 5 by Lemma 1 , a
contradiction.

Assume $a_{1} b_{2}, a_{2} b_{3} \notin E(G)$. Let z be a vertex such that $\left[a_{1}, z\right] \rightarrow b_{2}$ or $\left[b_{2}, z\right] \rightarrow a_{1}$. Obviously, $z \neq x_{P}$. In order to dominate x_{P}, we have $z \in X$. It is easy to check that there are four cases: $\left[a_{1}, x_{1}\right] \rightarrow b_{2},\left[a_{1}, x_{3}\right] \rightarrow b_{2},\left[b_{2}, x_{2}\right] \rightarrow a_{1}$ or $\left[b_{2}, x_{3}\right] \rightarrow a_{1}$, and at least one of the four cases occurs.

If $\left[a_{1}, x_{1}\right] \rightarrow b_{2}$, then by Lemma $1, x_{1} a_{2} \in E(G)$. By Lemma 3, $a_{1} b_{3} \notin E(G)$. By Claim 15, $a_{2} b_{2} \in E(G)$. By Lemma $3, a_{1}, b_{3} \notin N\left(x_{2}\right)$. Consider $a_{2} b_{3} \notin E(G)$, we can easily get that $\left[b_{3}, x_{3}\right] \rightarrow a_{2}$. Thus, consider $a_{1} b_{3} \notin E(G)$, we have $\left[a_{1}, x_{2}\right] \rightarrow b_{3}$ or $\left[b_{3}, x_{2}\right] \rightarrow a_{1}$. Since $\left[a_{1}, x_{1}\right] \rightarrow b_{2}$ and $\left[b_{3}, x_{3}\right] \rightarrow a_{2}$, by symmetry, we may assume that $\left[a_{1}, x_{2}\right] \rightarrow b_{3}$. By Claim 14, $P_{2}-\left\{b_{3}\right\} \subseteq N\left(x_{2}\right)$ and $N\left(b_{3}\right)=\left\{x_{1}, x_{3}, b_{3}^{-}\right\}$. Thus, we have $P_{1} \subseteq N\left(x_{3}\right)$ since $\left[b_{3}, x_{3}\right] \rightarrow a_{2}$. Since $\left[a_{1}, x_{1}\right] \rightarrow b_{2}$ and $a_{1} \notin N\left(x_{2}\right)$, we have $x_{1} x_{2} \in E(G)$. Therefore, we have $\left\{x_{2}, x_{3}\right\} \succ V(G)$, a contradiction. Hence, $\left[a_{1}, x_{1}\right] \rightarrow b_{2}$ is impossible. By symmetry, $\left[b_{3}, x_{3}\right] \rightarrow a_{2}$ is impossible.

If $\left[a_{1}, x_{3}\right] \rightarrow b_{2}$, then $a_{2} x_{3} \in E(G)$, which implies b_{3} is an A-vertex. By Lemma $1, a_{1} b_{3} \notin E(G)$. By Claim 15, $a_{2} b_{2} \in E(G)$. By Lemma 3, $a_{1}, b_{3} \notin N\left(x_{2}\right)$. Consider $a_{2} b_{3} \notin E(G)$, we have $\left[a_{2}, x_{1}\right] \rightarrow b_{3}$ or $\left[b_{3}, x_{1}\right] \rightarrow a_{2}$. If $\left[a_{2}, x_{1}\right] \rightarrow b_{3}$, then $x_{1} b_{3} \notin E(G)$. In this case, consider $a_{1} a_{2} \notin E(G)$, we have $\left[a_{2}, x_{3}\right] \rightarrow a_{1}$. Thus, by Claim 11, $a_{1}^{+} a_{2}, a_{1}^{+} b_{3} \notin E(G)$. Now, consider $a_{1}^{+} a_{2} \notin E(G)$. It is not difficult to check that there is no vertex w such that $\left[a_{1}^{+}, w\right] \rightarrow a_{2}$ or $\left[a_{2}, w\right] \rightarrow a_{1}^{+}$, a contradiction. If $\left[b_{3}, x_{1}\right] \rightarrow a_{2}$, then consider $a_{1} b_{3} \notin E(G)$, we have $\left[a_{1}, x_{2}\right] \rightarrow b_{3}$ or $\left[b_{3}, x_{2}\right] \rightarrow a_{1}$. Since $\left[a_{1}, x_{3}\right] \rightarrow b_{2}$ and $\left[b_{3}, x_{1}\right] \rightarrow a_{2}$, by symmetry, we may assume that $\left[a_{1}, x_{2}\right] \rightarrow b_{3}$. By Claim 14, $P_{2}-\left\{b_{3}\right\} \subseteq N\left(x_{2}\right)$ and $N\left(b_{3}\right)=\left\{x_{1}, x_{3}, b_{3}^{-}\right\}$. Since $\left[b_{3}, x_{1}\right] \rightarrow a_{2}$, we have $P_{1} \subseteq N\left(x_{1}\right)$. Since $\left[a_{1}, x_{3}\right] \rightarrow b_{2}$ and $a_{1} x_{2} \notin E(G)$, we have $x_{2} x_{3} \in E(G)$. Thus, we have $\left\{x_{1}, x_{2}\right\} \succ V(G)$, a contradiction. Hence, $\left[a_{1}, x_{3}\right] \rightarrow b_{2}$ is impossible. By symmetry, $\left[b_{3}, x_{1}\right] \rightarrow a_{2}$ is impossible.

If $\left[b_{2}, x_{2}\right] \rightarrow a_{1}$, then $x_{2} b_{3} \in E(G)$. By Lemma 3, $a_{2} b_{2} \notin E(G)$. By Claim 15, $a_{1} b_{3} \in E(G)$. By Lemmas 2 and $3, a_{2}, b_{2} \notin N\left(x_{1}\right) \cup N\left(x_{3}\right)$. In this case, it is not difficult to see that there is no vertex w such that $\left[a_{2}, w\right] \rightarrow b_{3}$ or $\left[b_{3}, w\right] \rightarrow a_{2}$, a contradiction. Thus, $\left[b_{2}, x_{2}\right] \rightarrow a_{1}$ is impossible. By symmetry, $\left[a_{2}, x_{2}\right] \rightarrow b_{3}$ is impossible.

If $\left[b_{2}, x_{3}\right] \rightarrow a_{1}$, then by Lemma 5 , there is some vertex $u \in P_{2}$ such that $u b_{2}, u^{+} x_{3} \in$ $E(G)$. If $a_{1} b_{3} \in E(G)$, then $x_{1} x_{P} x_{2} \vec{P} u b_{2} \overleftarrow{P} a_{1} b_{3} \overleftarrow{P} u^{+} x_{3}$ is a hamiltonian (x, y)-path, and hence $a_{1} b_{3} \notin E(G)$. By Claim 15, $a_{2} b_{2} \in E(G)$. By Lemma 3, $a_{1}, b_{3} \notin N\left(x_{2}\right)$. Consider $a_{2} b_{3} \notin E(G)$. Since $\left[b_{3}, x_{3}\right] \rightarrow a_{2},\left[b_{3}, x_{1}\right] \rightarrow a_{2}$ and $\left[a_{2}, x_{2}\right] \rightarrow b_{3}$ are impossible, we have $\left[a_{2}, x_{1}\right] \rightarrow b_{3}$. If $a_{1}^{+} a_{2}^{+} \in E(G)$, then $Q=x_{1} x_{P} x_{2} a_{2} b_{2} \overleftarrow{P} a_{1}^{+} a_{2}^{+} \vec{P} x_{3}$ is an (x, y)-path of length $n-2$ with $x_{Q}=a_{1}$, which contradicts the choice of P since $a_{1} x_{3} \notin E(G)$. By Claim 11, $a_{1}^{+} a_{2} \notin E(G)$. Consider $a_{1}^{+} a_{2} \notin E(G)$, we have
$\left[a_{1}^{+}, x_{1}\right] \rightarrow a_{2}$ or $\left[a_{1}^{+}, x_{3}\right] \rightarrow a_{2}$. If $\left[a_{1}^{+}, x_{1}\right] \rightarrow a_{2}$, then $a_{1}^{+} b_{3}, x_{1} a_{2}^{+} \in E(G)$, which implies $R=x_{1} a_{2}^{+} \vec{P} b_{3} a_{1}^{+} \vec{P} b_{2} a_{2} x_{2} x_{P} x_{3}$ is an (x, y)-path of length $n-2$ with $x_{R}=a_{1}$, a contradiction. Hence, we have $\left[a_{1}^{+}, x_{3}\right] \rightarrow a_{2}$. Since $\left[b_{2}, x_{3}\right] \rightarrow a_{1}$ and $\left[a_{2}, x_{1}\right] \rightarrow b_{3}$, by symmetry, we have $\left[b_{3}^{-}, x_{1}\right] \rightarrow b_{2}$. Thus, $x_{1} b_{2}, a_{2} x_{3} \notin E(G)$. Now, consider $a_{1} b_{3} \notin E(G)$, we have $\left[a_{1}, x_{2}\right] \rightarrow b_{3}$ or $\left[b_{3}, x_{2}\right] \rightarrow a_{1}$. By symmetry, we may assume that $\left[a_{1}, x_{2}\right] \rightarrow b_{3}$. By Claim 14, $x_{1} b_{3} \in E(G)$, which contradicts $\left[a_{2}, x_{1}\right] \rightarrow b_{3}$. Therefore, $\left[b_{2}, x_{3}\right] \rightarrow a_{1}$ is impossible.

It follows from the argument above that either $a_{1} b_{2} \in E(G)$ or $a_{2} b_{3} \in E(G)$.

Since $a_{1} b_{2} \in E(G)$ or $a_{2} b_{3} \in E(G)$, by symmetry, we may assume $a_{1} b_{2} \in E(G)$. If $a_{2} b_{3} \notin E(G)$, then there is some vertex z such that $\left[a_{2}, z\right] \rightarrow b_{3}$ or $\left[b_{3}, z\right] \rightarrow a_{2}$. Obviously, $z \neq x_{P}$ and hence $z \in X$. It is not difficult to see that there are four cases: $\left[a_{2}, x_{1}\right] \rightarrow b_{3},\left[a_{2}, x_{2}\right] \rightarrow b_{3},\left[b_{3}, x_{1}\right] \rightarrow a_{2}$ or $\left[b_{3}, x_{3}\right] \rightarrow a_{2}$, and at least one of the four cases occurs.

In order to prove $a_{2} b_{3} \in E(G)$, we need the following four claims.
Claim 16. If $a_{2} b_{3} \notin E(G)$, then $P_{1} \subseteq N\left[a_{1}\right]$ and $N\left(b_{3}\right) \cap P_{1}=\emptyset$.
Proof. If $\left[a_{2}, x_{1}\right] \rightarrow b_{3}$ or $\left[b_{3}, x_{1}\right] \rightarrow a_{2}$, then since $a_{1} b_{2} \in E(G)$, we have $b_{2}^{-} x_{1} \in E(G)$ by Lemma 1 and Claim 10. By Claim 12, $a_{1} b_{3} \notin E(G)$. By Claim 10, $b_{2}^{-} b_{3} \notin E(G)$. If $a_{1} b_{2}^{-} \notin E(G)$, then $\left\{a_{1}, b_{2}^{-}, a_{2}, b_{3}, x_{P}\right\}$ is an independent set of order 5 , and hence $a_{1} b_{2}^{-} \in E(G)$. If $P_{1} \nsubseteq N\left[a_{1}\right]$, then since $a_{1} b_{2} \in E(G)$, there is some vertex $v \in$ $P_{1}-\left\{b_{2}^{-}, b_{2}\right\}$ such that $a_{1} v \notin E(G)$ and $a_{1} v^{+} \in E(G)$. Clearly, v is an A-vertex. By Claim 12, vb $b_{3} \notin E(G)$. Thus, $\left\{a_{1}, v, a_{2}, b_{3}, x_{P}\right\}$ is an independent set of order 5 , and hence $P_{1} \subseteq N\left[a_{1}\right]$. Thus, by Lemma 1 and Claim 12, we have $N\left(b_{3}\right) \cap P_{1}=\emptyset$.

If $\left[b_{3}, x_{3}\right] \rightarrow a_{2}$, then since $b_{2} x_{3} \in E(G)$, we have $a_{1} b_{3} \notin E(G)$ by Lemma 3. If $P_{1} \nsubseteq N\left[a_{1}\right]$, we let $v \in P_{1}-\left\{b_{2}\right\}$ such that $a_{1} v \notin E(G)$ and $a_{1} v^{+} \in E(G)$. Clearly, v is an A-vertex. By Lemma $3, v b_{3} \notin E(G)$. Thus, $\left\{a_{1}, v, a_{2}, b_{3}, x_{P}\right\}$ is an independent set of order 5 , and hence $P_{1} \subseteq N\left[a_{1}\right]$. By Lemmas 1 and 3 , we have $N\left(b_{3}\right) \cap P_{1}=\emptyset$.

If $\left[a_{2}, x_{2}\right] \rightarrow b_{3}$, then $x_{2} a_{1} \in E(G)$, and hence b_{2} is an A-vertex. By Lemma 1, $b_{2} a_{2} \notin E(G)$. If $N\left(a_{2}\right) \cap P_{1} \neq \emptyset$, then since $a_{1} a_{2} \notin E(G)$, there is some vertex $u \in P_{1}$ such that $u^{-} a_{2} \notin E(G)$ and $u a_{2} \in E(G)$. Obviously, $u^{-} x_{2} \in E(G)$. This contradicts Lemma 3, since $a_{1} b_{2} \in E(G)$ implies there is a $\left(u, u^{-}\right)$-path P^{\prime} with $V\left(P^{\prime}\right)=V\left(P_{1}\right)$. Thus, $N\left(a_{2}\right) \cap P_{1}=\emptyset$, and hence $P_{1} \subseteq N\left(x_{2}\right)$. If $P_{1} \nsubseteq N\left[b_{2}\right]$, then since $a_{1} b_{2} \in E(G)$, there is some vertex $u \in P_{1}$ such that $u^{-} b_{2} \in E(G)$ and $u b_{2} \notin E(G)$. Obviously, u is a B-vertex. Thus, $\left\{u, b_{2}, a_{2}, b_{3}, x_{P}\right\}$ is an independent set of order 5 , a contradiction. Hence, $P_{1} \subseteq N\left[b_{2}\right]$. By Lemma $1, N\left(b_{3}\right) \cap a_{1}^{+} \vec{P} b_{2}=\emptyset$. If $a_{1} b_{3} \in E(G)$, then by Claims 10 and 13 , we have $b_{2} a_{2}^{+} \notin E(G)$ and $a_{2}^{+}, b_{2}^{-} \notin N\left(x_{1}\right) \cup N\left(x_{3}\right)$. Thus, consider
$a_{2} b_{2} \notin E(G)$, we cannot find a vertex w such that $\left[a_{2}, w\right] \rightarrow b_{2}$ or $\left[b_{2}, w\right] \rightarrow a_{2}$, and hence $a_{1} b_{3} \notin E(G)$, which implies $N\left(b_{3}\right) \cap P_{1}=\emptyset$. If $v \in P_{1}$ and $a_{1} v \notin E(G)$, then noting that $N\left(a_{2}\right) \cap P_{1}=\emptyset,\left\{a_{1}, v, a_{2}, b_{3}, x_{P}\right\}$ is an independent set of order 5 , and hence $P_{1} \subseteq N\left[a_{1}\right]$.

Claim 17. Let $z \in P_{2}, Q_{1}=a_{2} \vec{P} z^{-}$and $Q_{2}=z^{+} \vec{P} b_{3}$. If $a_{2} b_{3} \notin E(G)$ and $a_{1}, b_{2}^{-}, b_{3} \in$ $N(z)$, then Q_{i} is a clique for $i=1,2$ and $E\left(Q_{1}, Q_{2}\right)=\emptyset$.

Proof. By Lemma 1 and Claim 10, z is neither an A-vertex nor a B-vertex. Thus, $z \in P_{2}-\left\{a_{2}, b_{3}\right\}$. By Claim 13, $a_{1}, b_{2}^{-} \notin N\left(z^{+}\right) \cup N\left(z^{-}\right)$. If $Q_{2} \nsubseteq N\left[b_{3}\right]$, then since $z b_{3} \in E(G)$, there is some vertex $v \in Q_{2}$ such that $v b_{3} \notin E(G)$ and $v^{-} b_{3} \in E(G)$. Obviously, v is a B-vertex. If $z^{-} v \in E(G)$ or $b_{3} z^{-} \in E(G)$, then z is a B-vertex, and hence $v, b_{3} \notin N\left(z^{-}\right)$. Thus, by Claim 10, we can see that $\left\{b_{2}^{-}, z^{-}, v, b_{3}, x_{P}\right\}$ is an independent set of order 5 , and hence $Q_{2} \subseteq N\left[b_{3}\right]$. In this case, we have $N\left(z^{-}\right) \cap Q_{2}=\emptyset$ for otherwise z is a B-vertex. If there are two vertices $u, v \in Q_{2}$ such that $u v \notin E(G)$, then since u and v are B-vertices, by Claim 10 we can see that $\left\{b_{2}^{-}, z^{-}, u, v, x_{P}\right\}$ is an independent set of order 5 , and hence Q_{2} is a clique. If $N\left(a_{2}\right) \cap Q_{2} \neq \emptyset$, then since Q_{2} is a clique, it is easy to see that z is an A-vertex. Thus, $N\left(a_{2}\right) \cap Q_{2}=\emptyset$. If $a_{2} z^{-} \notin E(G)$, then $\left\{a_{1}, a_{2}, z^{-}, z^{+}, x_{P}\right\}$ is an independent set of order 5 , and hence $a_{2} z^{-} \in E(G)$. If $Q_{1} \nsubseteq N\left[a_{2}\right]$, then since $a_{2} z^{-} \in E(G)$, there is some vertex $v \in Q_{1}$ such that $v a_{2} \notin E(G)$ and $a_{2} v^{+} \in E(G)$. Clearly, v is an A-vertex. If $v z^{+} \in E(G)$, then z is an A-vertex, a contradiction. Thus, $\left\{a_{1}, a_{2}, v, z^{+}, x_{P}\right\}$ is an independent set of order 5 , and hence $Q_{1} \subseteq N\left[a_{2}\right]$. In this case, $N\left(z^{+}\right) \cap Q_{1}=\emptyset$ for otherwise z is an A-vertex. If $u, v \in Q_{1}$ and $u v \notin E(G)$, then $\left\{a_{1}, u, v, z^{+}, x_{P}\right\}$ is an independent set of order 5, and hence Q_{1} is a clique. If $v_{i} \in Q_{i}$ for $i=1,2$ and $v_{1} v_{2} \in E(G)$, then $v_{1} \neq a_{2}, z^{-}$, and hence $x_{2} a_{2} \vec{P} v_{1}^{-} z^{-} \overleftarrow{P} v_{1} v_{2} \vec{P} b_{3} v_{2}^{-} \overleftarrow{P} z$ is a hamiltonian $\left(x_{2}, z\right)$-path in $G\left[P_{2} \cup\left\{x_{2}\right\}\right]$ which implies z is a B-vertex, a contradiction. Thus, we have $E\left(Q_{1}, Q_{2}\right)=\emptyset$.
$C l a i m$ 18. If $a_{2} b_{3} \notin E(G)$, then for any $z \in P_{2}$, both $\left[x_{P}, z\right] \rightarrow a_{2}$ and $\left[a_{2}, z\right] \rightarrow x_{P}$ are impossible.

Proof. Suppose to the contrary that there is some vertex $z \in P_{2}$ such that $\left[x_{P}, z\right] \rightarrow a_{2}$ or $\left[a_{2}, z\right] \rightarrow x_{P}$. If $\left[x_{P}, z\right] \rightarrow a_{2}$, then $z \neq b_{3}$. If $\left[a_{2}, b_{3}\right] \rightarrow x_{P}$, then by Lemmas 1 and 5 , there is some vertex $u \in P_{1}$ such that $u b_{3}, u^{+} a_{2} \in E(G)$, which contradicts Lemma 3. Thus, we have $z \neq b_{3}$ in both cases. Let $P^{\prime}=a_{2} \vec{P} z^{-}$and $P^{\prime \prime}=z^{+} \vec{P} b_{3}$. Since $a_{1} b_{2} \in E(G)$, by Lemma 1 , we have $b_{2}^{-} a_{2} \notin E(G)$. Thus, $a_{1}, b_{2}^{-}, b_{3} \in N(z)$. Since $z a_{1} \in E(G)$, by Lemma 3 and Claim 13, we have $b_{2}, b_{2}^{-} \notin N\left(z^{-}\right)$. By Lemma 1 and Claim 16, we have $a_{1} \vec{P} b_{2}^{-} \subseteq N(z)$. By Claim $17, P^{\prime \prime} \subseteq N(z)$. Since $\left\{b_{2}^{-}, a_{2}, b_{3}, x_{P}\right\}$ is a maximum independent set, by Lemma 10 , there is some vertex $u \in\left\{b_{2}^{-}, b_{3}\right\}$ and
a vertex $w \in V(G)-N\left[x_{P}\right]$ such that $[u, w] \rightarrow x_{P}$ or $\left[x_{P}, w\right] \rightarrow u$. If $\left[x_{P}, w\right] \rightarrow u$, then $w \neq z$. If $u=b_{2}^{-}$, then since $w b_{3} \in E(G)$, by Claims 16 and 17 , we have $w \in P^{\prime \prime}$ which is impossible since $w a_{2} \notin E(G)$. If $u=b_{3}$, then $w \notin P^{\prime \prime}$ by Claim 17. Since $b_{2} z^{-} \notin E(G)$, we have $w \neq b_{2}, z^{-}$. Thus, by Lemma 1 and Claims 16 and 17 , we see that $w \notin P_{1} \cup P_{2}$, a contradiction. Hence, we have $[u, w] \rightarrow x_{P}$. If $u=b_{2}^{-}$, then in order to dominate a_{2} and b_{3}, we have $w=z$ by Lemma 1 and Claims 16 and 17. If $u=b_{3}$, then in order to dominate P_{1} and P^{\prime}, it is easy to see that $w=z$ by Lemma 1 and Claims 16 and 17. In both cases, we have $P^{\prime} \subseteq N(z)$ by Lemma 1 and Claim 17. Thus, we have $\left[a_{2}, z\right] \rightarrow x_{P}$. If $b_{2} z \in E(G)$, then we have $\left\{x_{P}, z\right\} \succ V(G)$. If $b_{2} z \notin E(G)$, then $a_{2} b_{2} \in E(G)$. By Lemma 3, $b_{2}^{-}, b_{3} \notin N\left(x_{2}\right)$. If $z^{-} x_{2} \in E(G)$, then $x_{1} x_{P} x_{2} z^{-} \overleftarrow{P} a_{2} b_{2} \overleftarrow{P} a_{1} z \vec{P} x_{3}$ is a hamiltonian (x, y)-path. Thus, $b_{2}^{-}, z^{-}, b_{3} \notin N\left(x_{2}\right)$. Noting that $\left\{b_{2}^{-}, z^{-}, b_{3}, x_{P}\right\}$ is an independent set, by Lemmas 8 and 9 , we have $x_{1}, x_{3} \in N\left(x_{2}\right)$, which implies $\left\{x_{2}, z\right\} \succ V(G)$, a contradiction.

Claim 19. If $a_{2} b_{3} \notin E(G)$ and $x_{1}, x_{3}, b_{2} \notin N\left(a_{2}\right)$, then $\left[x_{P}, a_{2}^{+}\right] \rightarrow a_{1}$ is impossible.
Proof. If $\left[x_{P}, a_{2}^{+}\right] \rightarrow a_{1}$, then $a_{2}^{+} b_{3} \in E(G)$. If $a_{2}^{+} \vec{P} b_{3} \nsubseteq N\left[b_{3}\right]$, then there is some vertex $v \in a_{2}^{+} \vec{P} b_{3}$ such that $v^{-} b_{3} \in E(G)$ and $v b_{3} \notin E(G)$. Clearly, v is a B-vertex. By Claim 10, $v, b_{3} \notin N\left(b_{2}^{-}\right)$. By Lemma 1 and Claim 16, $a_{2} \notin N\left(b_{2}^{-}\right)$. If $a_{2} v \in E(G)$, then it is easy to see that a_{2}^{+}is a B-vertex, which contradicts Lemma 1 since $b_{2} a_{2}^{+} \in$ $E(G)$. Thus, $\left\{b_{2}^{-}, a_{2}, v, b_{3}, x_{P}\right\}$ is an independent set of order 5 , a contradiction. Hence, we have $a_{2}^{+} \vec{P} b_{3} \subseteq N\left[b_{3}\right]$, which implies $N\left(a_{2}\right) \cap a_{2}^{+} \vec{P} b_{3}=\left\{a_{2}^{+}\right\}$. Thus, noting that $x_{1}, x_{3}, b_{2} \notin N\left(a_{2}\right)$, by Lemma 1 and Claim 16, we have $d\left(a_{2}\right)=2$, a contradiction. Hence, $\left[x_{P}, a_{2}^{+}\right] \rightarrow a_{1}$ is impossible.

We now begin to prove $a_{2} b_{3} \in E(G)$. Suppose to the contrary that $a_{2} b_{3} \notin E(G)$.
Since $x_{P} a_{2} \notin E(G)$, there is some vertex z such that $\left[x_{P}, z\right] \rightarrow a_{2}$ or $\left[a_{2}, z\right] \rightarrow x_{P}$. By Claim 16, we have $z \notin P_{1}$. By Claim 18, we have $z \notin P_{2}$. Thus, we have $z \in X$. In this case, we have $\left[x_{P}, x_{1}\right] \rightarrow a_{2}$ or $\left[x_{P}, x_{3}\right] \rightarrow a_{2}$.

If $\left[a_{2}, x_{1}\right] \rightarrow b_{3}$, then $\left[x_{P}, x_{1}\right] \rightarrow a_{2}$ is impossible. If $\left[x_{P}, x_{3}\right] \rightarrow a_{2}$, then by Lemma 12, we have $x_{1} x_{3} \notin E(G)$, which is impossible since $a_{2} x_{3} \notin E(G)$ and $\left[a_{2}, x_{1}\right] \rightarrow b_{3}$. Thus, $\left[a_{2}, x_{1}\right] \rightarrow b_{3}$ is impossible. If $\left[a_{2}, x_{2}\right] \rightarrow b_{3}$, we let $\{i, j\}=\{1,3\}$. If $\left[x_{P}, x_{i}\right] \rightarrow a_{2}$, then by Lemma 12, we have $x_{2} x_{i} \in E(G)$. Since $\left[a_{2}, x_{2}\right] \rightarrow b_{3}$, we have $x_{2} x_{j} \in E(G)$ or $a_{2} x_{j} \in E(G)$, which implies $\left\{x_{i}, x_{2}\right\} \succ V(G)$ or $\left\{x_{i}, a_{2}\right\} \succ V(G)$, a contradiction. Thus, $\left[a_{2}, x_{2}\right] \rightarrow b_{3}$ is impossible. Therefore, we have $\left[b_{3}, x_{1}\right] \rightarrow a_{2}$ or $\left[b_{3}, x_{3}\right] \rightarrow a_{2}$.

By Claim 16, $\left\{x_{P}, a_{1}, a_{2}, b_{3}\right\}$ is a maximum independent set. Since $\left[x_{P}, x_{1}\right] \rightarrow a_{2}$ or $\left[x_{P}, x_{3}\right] \rightarrow a_{2}$, by Lemma 12, we have $x_{1}, x_{3} \in N\left(a_{1}\right) \cap N\left(b_{3}\right)$ and $x_{1}, x_{3} \notin N\left(a_{2}\right)$. If $\left[x_{P}, b_{2}\right] \rightarrow b_{3}$, then since $\left[b_{3}, x_{1}\right] \rightarrow a_{2}$ or $\left[b_{3}, x_{3}\right] \rightarrow a_{2}$, we have $\left\{b_{2}, x_{3}\right\} \succ V(G)$ or
$\left\{b_{2}, x_{1}\right\} \succ V(G)$ by Lemma 1, a contradiction. Obviously, $\left[x_{P}, b_{3}\right] \rightarrow b_{2}$ is impossible. Thus, there is some vertex $u \in X$ such that $\left[b_{2}, u\right] \rightarrow b_{3}$ or $\left[b_{3}, u\right] \rightarrow b_{2}$. Since $\left\{b_{3}, x_{i}\right\} \nsucc$ a_{2} for $i=1,3$ and $x_{1}, x_{3} \in N\left(b_{3}\right)$, we have $\left[b_{2}, x_{2}\right] \rightarrow b_{3}$.

Since $\left[x_{P}, x_{1}\right] \rightarrow a_{2}$ or $\left[x_{P}, x_{3}\right] \rightarrow a_{2}$, by Lemma 12 , we have $x_{2} x_{3} \notin E(G)$ or $x_{1} x_{2} \notin E(G)$. Noting that $\left[b_{2}, x_{2}\right] \rightarrow b_{3}$, by Lemma 1, we have $b_{2} x_{3} \in E(G)$ or $b_{2} x_{1} \in E(G)$. Thus, if $a_{2} b_{2} \in E(G)$, then we have $\left\{b_{2}, x_{1}\right\} \succ V(G)$ or $\left\{b_{2}, x_{3}\right\} \succ V(G)$, and hence $a_{2} b_{2} \notin E(G)$. Thus, we have $x_{1}, x_{3}, b_{2} \notin N\left(a_{2}\right)$.

By Claim $10, a_{1} a_{2}^{+} \notin E(G)$. Since $x_{1}, x_{3}, b_{2} \notin N\left(a_{2}\right)$, by Claim $19,\left[x_{P}, a_{2}^{+}\right] \rightarrow a_{1}$ is impossible. Obviously, $\left[x_{P}, a_{1}\right] \rightarrow a_{2}^{+}$is impossible. Thus, there is some vertex $w \in X$ such that $\left[a_{1}, w\right] \rightarrow a_{2}^{+}$or $\left[a_{2}^{+}, w\right] \rightarrow a_{1}$. Since $\left[b_{2}, x_{2}\right] \rightarrow b_{3}$, we have $x_{2} b_{3} \notin E(G)$. Thus, noting that $\left\{a_{1}, x_{i}\right\} \nsucc a_{2}$ for $i=1,3,\left\{a_{1}, x_{2}\right\} \nsucc b_{3}$ and $x_{1}, x_{3} \in N\left(a_{1}\right)$, we have $\left[a_{2}^{+}, x_{2}\right] \rightarrow a_{1}$. If $\left[x_{P}, x_{1}\right] \rightarrow a_{2}$, then by Lemma 12 , we have $x_{1} x_{2} \in E(G)$ and $x_{2} x_{3} \notin E(G)$. In this case, we have $a_{2}^{+} x_{3} \in E(G)$, which implies $\left\{x_{1}, a_{2}^{+}\right\} \succ V(G)$, a contradiction. If $\left[x_{P}, x_{3}\right] \rightarrow a_{2}$, then by Lemma 12 , we have $x_{2} x_{3} \in E(G)$ and $x_{1} x_{2} \notin E(G)$. In this case, we have $a_{2}^{+} x_{1} \in E(G)$, which implies $\left\{x_{3}, a_{2}^{+}\right\} \succ V(G)$, again a contradiction. Thus, we have $a_{2} b_{3} \in E(G)$.

Up to now, we have shown that $a_{1} b_{2}, a_{2} b_{3} \in E(G)$. In the following, we will show that P_{i} is a clique for $i=1,2$. If $P_{i} \nsubseteq N\left[a_{i}\right]$, then since $a_{i} b_{i+1} \in E(G)$, there is some vertex $u \in P_{i}$ such that $a_{i} u \notin E(G)$ and $a_{i} u^{+} \in E(G)$. We let $u_{i} \in P_{i}$ be such a vertex if $P_{i} \nsubseteq N\left[a_{i}\right]$, where $i=1,2$.

If $P_{1} \nsubseteq N\left[a_{1}\right]$, then $\left\{a_{1}, u_{1}, a_{2}, x_{P}\right\}$ is an independent set. By Lemma 9 , we have $\left[a_{1}, x_{1}\right] \rightarrow a_{2},\left[a_{1}, x_{3}\right] \rightarrow a_{2},\left[a_{2}, x_{2}\right] \rightarrow a_{1}$ or $\left[a_{2}, x_{3}\right] \rightarrow a_{1}$.

If $P_{2} \nsubseteq N\left[a_{2}\right]$, then $\left\{a_{1}, u_{1}, a_{2}, u_{2}, x_{P}\right\}$ is an independent set of order 5 , a contradiction. By Lemma 1, we have $N\left(a_{1}\right) \cap\left(P_{2}-\left\{b_{3}\right\}\right)=\emptyset$ and $N\left(u_{1}\right) \cap\left(P_{2}-\left\{b_{3}\right\}\right)=\emptyset$. We now show $a_{1}, u_{1} \notin N\left(b_{3}\right)$. By Claim 10, we have $b_{2}^{-} b_{3} \notin E(G)$, and hence we may assume $u_{1} \neq b_{2}^{-}$. If $\left[a_{1}, x_{1}\right] \rightarrow a_{2}$ or $\left[a_{1}, x_{3}\right] \rightarrow a_{2}$, we have $x_{1} a_{2}^{+} \in E(G)$ or $x_{3} a_{2}^{+} \in E(G)$. By Claim 13, we have $a_{1}, u_{1} \notin N\left(b_{3}\right)$. If $\left[a_{2}, x_{3}\right] \rightarrow a_{1}$, then $b_{2}^{-} x_{3} \in E(G)$. By Claim $13, a_{1}, u_{1} \notin N\left(b_{3}\right)$. If $\left[a_{2}, x_{2}\right] \rightarrow a_{1}$, then since $x_{2} b_{2}^{-}, a_{1} b_{2} \in E(G), b_{2}$ is an A-vertex. By Lemma $1, a_{2} b_{2} \notin E(G)$. Since $\left\{b_{2}, a_{2}, b_{3}, x_{P}\right\}$ is an independent set, by Lemma 9 , we have $\left[a_{2}, x_{1}\right] \rightarrow b_{2},\left[a_{2}, x_{3}\right] \rightarrow b_{2},\left[b_{2}, x_{1}\right] \rightarrow a_{2}$ or $\left[b_{2}, x_{3}\right] \rightarrow a_{2}$. This implies $\left(N\left(x_{1}\right) \cup N\left(x_{3}\right)\right) \cap\left\{b_{2}^{-}, a_{2}^{+}\right\} \neq \emptyset$. By Claim $13, a_{1}, u_{1} \notin N\left(b_{3}\right)$. Thus, we have

$$
\begin{equation*}
N\left(a_{1}\right) \cap P_{2}=\emptyset \text { and } N\left(u_{1}\right) \cap P_{2}=\emptyset \tag{8}
\end{equation*}
$$

Let $a \in\left\{a_{1}, u_{1}\right\}$ and $w \in V(G)-N\left[x_{P}\right]$. If $\left[x_{P}, w\right] \rightarrow a$ or $[a, w] \rightarrow x_{P}$, then by (8), we have $w \in P_{1}$ and $P_{2} \subseteq N(w)$. Thus, by Lemma $1, w$ is neither an A-vertex nor a B-vertex. Obviously, $\left|P_{1}\right| \geq 3$. Since $a_{1} b_{2} \in E(G)$, it is easy to see that

$$
\begin{equation*}
G\left[P_{1}\right] \text { contains a hamiltonian }\left(w, w^{+}\right) \text {-path. } \tag{9}
\end{equation*}
$$

If $\left[a_{1}, x_{1}\right] \rightarrow a_{2}$ or $\left[a_{1}, x_{3}\right] \rightarrow a_{2}$, then since w is not an A-vertex, we have $a_{1} w^{+} \notin E(G)$, and hence $x_{1} w^{+} \in E(G)$ or $x_{3} w^{+} \in E(G)$. If $x_{1} w^{+} \in E(G)$, then since $a_{1} b_{2} \in E(G)$, we see that w is a B-vertex, a contradiction. If $x_{3} w^{+} \in E(G)$, then by (9) and Lemma 3, we have $w b_{3} \notin E(G)$, which contradicts $P_{2} \subseteq N(w)$. If $\left[a_{2}, x_{2}\right] \rightarrow a_{1}$, then since $a_{2} w, b_{2} x_{2} \in E(G)$, by Lemma 5 , there is some vertex $v \in w \vec{P} b_{2}$ such that $v a_{2}, v^{+} x_{2} \in E(G)$, which contradicts Lemma 3 since $a_{1} b_{2} \in E(G)$, which implies $G\left[P_{1}\right]$ contains a hamiltonian $\left(v, v^{+}\right)$-path. Since $a_{2}, b_{2} \in N(w)$, by (9) and Lemma 3, we have $w^{+} x_{3}, w^{+} a_{2} \notin E(G)$, which implies $\left[a_{2}, x_{3}\right] \rightarrow a_{1}$ is impossible. Thus, for any $a \in\left\{a_{1}, u_{1}\right\}$ and $w \in V(G)-N\left[x_{P}\right]$, both $\left[x_{P}, w\right] \rightarrow a$ and $[a, w] \rightarrow x_{P}$ are impossible, which contradicts Lemma 10 since $\left\{a_{1}, u_{1}, a_{2}, x_{P}\right\}$ is an independent set. Therefore, we have $P_{1} \subseteq N\left[a_{1}\right]$.

If $P_{2} \nsubseteq N\left[a_{2}\right]$, then since $P_{1} \subseteq N\left[a_{1}\right]$, by symmetry, we have $P_{2} \subseteq N\left[b_{3}\right]$. Thus, u_{2} is both an A-vertex and a B-vertex. By Lemma $1, P_{1} \cap N\left(u_{2}\right)=\emptyset$. Since $x_{P} a_{2} \notin E(G)$, there is some vertex w such that $\left[x_{P}, w\right] \rightarrow a_{2}$ or $\left[a_{2}, w\right] \rightarrow x_{P}$. If $\left[a_{2}, w\right] \rightarrow x_{P}$, then $w \notin P_{1}$ for otherwise $\left\{a_{2}, w\right\} \nsucc u_{2}$. Thus, we have $w \in P_{2}$. Since $P_{2} \subseteq N\left[b_{3}\right]$, by Lemma 1, we have $a_{2} b_{2}, w b_{2}^{-} \in E(G)$, which contradicts Lemma 3. Thus, we have $\left[x_{P}, w\right] \rightarrow a_{2}$. If $w \in P_{1}$, then $w u_{2} \notin E(G)$ and if $w \in P_{2}$, then $w b_{2} \notin E(G)$. Thus, we have $w \in\left\{x_{1}, x_{3}\right\}$. If $\left[x_{P}, x_{1}\right] \rightarrow a_{2}$, then $x_{1} x_{2} \in E(G)$ by Lemma 12. In this case, we have $\left\{x_{1}, b_{3}\right\} \succ V(G)$. If $\left[x_{P}, x_{3}\right] \rightarrow a_{2}$, then by Lemma 12 , we have $x_{2} x_{3} \in E(G)$ and $x_{1} x_{2} \notin E(G)$. Thus, we have $x_{2}, a_{2}, a_{2}^{+} \notin N\left(x_{1}\right)$ for otherwise $\gamma(G)=2$. Since $b_{2} u_{2} \notin E(G)$, there is some vertex v such that $\left[b_{2}, v\right] \rightarrow u_{2}$ or $\left[u_{2}, v\right] \rightarrow b_{2}$. Obviously, $v \neq x_{P}$, and hence $v \in X$. Since $\left[x_{P}, x_{3}\right] \rightarrow a_{2}$ implies $b_{2}, b_{3} \in N\left(x_{3}\right)$, we have $v \neq x_{3}$. Since $\left\{u_{2}, x_{1}\right\} \nsucc a_{2}$ and $\left\{b_{2}, x_{1}\right\} \nsucc a_{2}^{+}$, we have $v \neq x_{1}$, and hence $v=x_{2}$, which implies $\left[b_{2}, x_{2}\right] \rightarrow u_{2}$. Since $x_{1} x_{2} \notin E(G)$, we have $x_{1} b_{2} \in E(G)$. If $a_{2} b_{2} \in E(G)$, then $\left\{x_{3}, b_{2}\right\} \succ V(G)$, and hence $a_{2} b_{2} \notin E(G)$. Now, consider $x_{P} u_{2} \notin E(G)$. Since $\left\{a_{1}, a_{2}, u_{2}\right\}$ is an independent set and $\left[x_{P}, x_{3}\right] \rightarrow a_{2}$, by Lemma 10, there is some vertex $u \in V(G)-N\left[x_{P}\right]$ such that $\left[x_{P}, u\right] \rightarrow u_{2}$ or $\left[u_{2}, u\right] \rightarrow x_{P}$. Since $N\left(a_{2}\right) \cap P_{1}=\emptyset$ and $N\left(u_{2}\right) \cap P_{1}=\emptyset$, we have $u \in P_{2}$ in both cases. This is impossible since $\left\{u_{2}, u\right\} \nsucc b_{2}$. Thus, we have $P_{2} \subseteq N\left[a_{2}\right]$.

By symmetry, we have $P_{i} \subseteq N\left(a_{i}\right) \cap N\left(b_{i+1}\right)$ for $i=1,2$. If P_{1} is not a clique, then there are two vertices $u, v \in P_{1}-\left\{a_{1}, b_{2}\right\}$ such that $u v \notin E(G)$. Obviously, u and v are both A-vertices and B-vertices. Thus, $(N(u) \cup N(v)) \cap P_{2}=\emptyset$. Since $\left\{u, v, a_{2}, x_{P}\right\}$ is an independent set, by Lemma 10 , there is some $w \in V(G)-N\left[x_{P}\right]$ and a vertex in $\{u, v\}$, say u, such that $[u, w] \rightarrow x_{P}$ or $\left[x_{P}, w\right] \rightarrow u$. It is easy to see that such a vertex w does not exist, and hence P_{1} is a clique. By symmetry, P_{2} is a clique.

Since P_{i} is a clique for $i=1,2$, by Lemmas 1 and 14 , we have $E\left(P_{1}, P_{2}\right) \subseteq\left\{a_{2} b_{2}\right\}$. If $a_{2} b_{2} \notin E(G)$, then X is a 3 -cutset such that $\omega(G-X)=3$, which contradicts $\tau(G)>1$. If $a_{2} b_{2} \in E(G)$, then by Lemma 14 , we have $\alpha(G)=3$, again a contradiction.

The proof of Theorem 4 is complete.

Acknowledgements

This research was supported in part by The Hong Kong Polytechnic University under grant number G-YX04. The second author was also supported by the National Natural Science Foundation of China under grant number 10671090.

References

[1] Y.J. Chen, F. Tian and B. Wei, Codiameters of 3-connected 3-domination critical graphs, Journal of Graph Theory, 39(2002), 76-85.
[2] Y.J. Chen, F. Tian and B. Wei, Hamilton-connectivity of 3-domination critical graphs with $\alpha \leq \delta$, Discrete Mathematics, 271(2003), 1-12.
[3] Y.J. Chen, F. Tian and B. Wei, The 3-domination critical graphs with toughness one, Utilitas Mathematica, 61(2002), 239-253.
[4] Y.J. Chen, F. Tian and Y.Q. Zhang, Hamilton-connectivity of 3-domination critical graphs with $\alpha=\delta+2$, European Journal of Combinatorics, 23(2002), 777-784.
[5] Y.J. Chen, T.C.E. Cheng and C.T. Ng, Hamilton-connectivity of 3-domination critical graphs with $\alpha=\delta+1 \geq 5$, Discrete Mathematics, accepted.
[6] O. Favaron, F. Tian and L. Zhang, Independence and hamiltonicity in 3-domination-critical graphs, Journal of Graph Theory, 25(1997), 173-184.
[7] D.P. Sumner and P. Blitch, Domination critical graphs, Journal of Combinatorial Theory (B), 34(1983), 65-76.

[^0]: *corresponding author, Email: yaojunc@nju.edu.cn

