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Abstract: A graph G is 3-domination-critical (3-critical, for short), if its
domination number v is 3 and the addition of any edge decreases v by 1. In
this paper, we show that every 3-critical graph with independence number
4 and minimum degree 3 is Hamilton-connected. Combining the result with
those in [2], [4] and [5], we solve the following conjecture: a connected 3-
critical graph G is Hamilton-connected if and only if 7(G) > 1, where 7(G)
is the toughness of G.
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1. Introduction

Let G = (V(G), E(G)) be a graph. For the notations that are not defined here, we
follow [2]. A graph G is said to be t-tough if for every cutset S C V(G), |S| > tw(G—-25),
where w(G —S) is the number of components of G —S. The toughness of G, denoted by
7(G), is defined to be min{|S|/w(G — S) | S is a cutset of G}. Let u,v € V(G) be any
two distinct vertices. We denote by p(u, v) the length of a longest path connecting v and
v. The codiameter of G, denoted by d*(G), is defined to be min{p(u,v) | u,v € V(G)}.
A graph G of order n is said to be Hamilton-connected if d*(G) = n — 1, i.e., every two
distinct vertices are joined by a hamiltonian path. A graph G is called k-domination
critical, abbreviated as k-critical, if v(G) = k and v(G + e) = k — 1 holds for any

e € E(G), where G is the complement of G. The concept of domination critical
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graphs was introduced by Sumner [7]. Given three vertices u,v and x such that {u,z}
dominates V(G) — {v} but not v, we will write [u,z] — v. It was observed in [7] that if
u, v are any two nonadjacent vertices of a 3-critical graph G, then since v(G + uv) = 2,
there exists a vertex x such that either [u,z] — v or [v,2] — u. In [2], Chen et al.

posed the following.

Conjecture 1 (Chen et al. [2]). A connected 3-critical graph G is Hamilton-connected
if and only if 7(G) > 1.

In the same paper, they proved that the conjecture is true when o(G) < §(G).

Theorem 1 (Chen et al. [2]). Let G be a connected 3-critical graph with o(G) < 0(G).
Then G is Hamilton-connected if and only if 7(G) > 1.

Let G is a 3-connected 3-critical graph. It is shown in [3] that 7(G) > 1 and
7(G) = 1 if and only if G belongs to a special infinite family G described in [3]. Since
a(G) = §(G) = 3 for each G € G, we have 7(G) > 1 if a(G) > §(G) + 1.

In [4], Chen et al. showed that the conjecture holds when «(G) = §(G) + 2.

Theorem 2 (Chen et al. [4]). Let G be a 3-connected 3-critical graph with a(G) =
d(G) + 2. Then G is Hamilton-connected.

By aresult of Favaron et al. [6] which states that a(G) < §(G)+2 for any connected
3-critical graph G, we see that the conjecture has only one case a(G) = §(G) + 1

unsolved.
Recently, Chen et al. [5] showed that the conjecture is true for a(G) = §(G)+1 > 5.

Theorem 3 (Chen et al. [5]). Let G be a 3-connected 3-critical graph with «(G) =
d(G)+1 > 5. Then G is Hamilton-connected.

Since 7(G) > 1 implies 6(G) > 3, the case a(G) = §(G) + 1 = 4 remains open. In
this paper, we will show that the conjecture is true when a(G) = §(G) + 1 = 4. The

main result of this paper is the following.

Theorem 4. Let G be a 3-connected 3-critical graph with a(G) = 6(G)+1 = 4. Then

G is Hamilton-connected.
Combining Theorems 1, 2, 3 and 4, we have the following.

Theorem 5. A connected 3-critical graph G is Hamilton-connected if and only if
7(G) > 1.



By the main result of [3], we have the following.

Theorem 6. Let G be a 3-connected 3-critical graph. Then G is Hamilton-connected
if and only if G' does not belong to a special infinite family G described in [3].

Now, we restate a result due to Chen et al. for later use.

Theorem 7 (Chen et al. [1]). Let G be a 3-connected 3-critical graph of order n.
Then d*(G) > n — 2.

2. Some Lemmas

Let G be a graph of order n, and x,y vertices of G such that a longest (x,y)-path
is of length n — 2. Let P = Py, be an (x,y)-path of length n —2. We denote by zp the
only vertex not in P and let d(xp) = k with

N(zp) =X ={z1,29,..., 2}, indices following the orientation of P;
A=XT={ay,as,...,as}, where a; = 7, 2 € Pand s > k — 1;
B=X"={b,biy1,...,bx}, where b; =z, , z; € P and t < 2; and
B:aiﬁbi+1, where 1 <<k —1.

Furthermore, we let Py = 2 Pb if z ¢ X and P, = ak?y if y ¢ X. The length of the
path z1 Py, is denoted by s(P).

Definition. A vertex v € P; (1 <i < k) is called an A-vertex if G[P;U{z;4+1}] contains
a hamiltonian (v,z;41)-path and v € P; (0 < i < k — 1) a B-vertex if G[P; U {z;}]

contains a hamiltonian (x;,v)-path, where x4 =y and z¢ = x.

From the definition, we can see that each a; is an A-vertex and each b; is a B-vertex.
Furthermore, if v € P; (i # 0) and vTa; € E(G), then v is an A-vertex and if v € P;
(i # k) and v~ b;y; € E(G), then v is a B-vertex.

Lemma 1 (Chen et al. [5]). If u; € P; and u; € P; are two A-vertices (B-vertices,
respectively) with i # j, then zpu; ¢ E(G) and wu; ¢ E(G). In particular, both
AU{xp} and BU {zp} are independent sets.

Lemma 2 (Chen et al. [5]). Let u; € P;, uj € Pj be A-vertices with i < j, Q; and Q;
are hamiltonian (u;, z;41)-path and (uj, zj41)-path in G[P;U{z;41}] and G[P;U{z;41}],
respectively, Q = uZ'@xiHﬁxj and R = UjQ—;‘fL'j_i_lﬁy. If v € Ng(u;), thenv™ & N(u; )
and if v € N(u;) N (2 Pa;UR), then v+ ¢ N(u;). In particular, let a;,a; € A with ¢ < j
and v € N(a;), then v~ ¢ N(a;) if v € ai?xj and v ¢ N(a;) ifv e 2 Pa; U ajf’)y.

By the symmetry of A and B, Lemma 2 still holds if we exchange A and B.



Lemma 3 (Chen et al. [5]). Let u,v € ail_j)bj with 7 >4+ 1 and G[ai?bj] contain
a hamiltonian (u,v)-path. Suppose that w € aPa; U ijD)y and vw € E(G). Then
w v ¢ B(G) if w € ¢Px; Uz; Py and who ¢ E(G) if wt € 2 Px; Uz Py. In
particular, let a; € A and b; € B with j > i + 1. Suppose that v € m?xl u :Ej?y
and a;v € E(G). Then, v=b; ¢ E(G) if v~ € xPx; Uz, Py, and vtb; ¢ E(G) if
vt € 2Pz U xj?y.

Lemma 4 (Chen et al. [5]). Let u,u™ € P;. If uta; € E(G) for some [ > i + 1, then
bju ¢ E(G) for all j <.

Lemma 5 (Chen et al. [2]). Let |P;| > 2, u,v ¢ P; and {u,v} = P;. If ua;,vbit1 €
E(G), then there exists some vertex w € P; such that vw,vw™ € E(G).

Lemma 6 (Chen et al. [5]). Let ¢ > 2, z € P; and [a;,2] — zp. If |[A] > 3 and
j#i—1,then AU{z",zp} is an independent set if z* € P and BU {2z, zp} is an
independent set if 2~ € P.

Lemma 7. Let |A| = |B| =3, z € Pj and [zp,2] — a;. If 2~ € P, then BU {zp,27}

is an independent set.

Proof. Suppose to the contrary there is some b; such that bz~ € E(G). If | = j + 1,
then z is a B-vertex, which contradicts Lemma 1 since |B| = 3 and B—{a;} C N(z). If
[ < j+1, then j = 2 or 3 for otherwise we have ag, a3 ¢ N(z) by Lemma 4. If j = 2 and
[ =1, then by Lemmas 2 and 4, we have by, a3 ¢ N(z), and if j = 2 and [ = 2, then by
Lemmas 3 and 4, aq, a3 ¢ N(z), a contradiction. Thus, we may assume j = 3. If [ = 3,
then by Lemma 3, aj,as ¢ N(z); if | = 2, then by Lemmas 2 and 3, b3,a1 ¢ N(2);
and if [ = 1, then by Lemma 2, bg,b3 ¢ N(z), a contradiction. If [ > j + 1, then
since b1z € E(G), by Lemma 2 we have j = 0. If [ = 2, then by Lemma 2 and 3,
bs,a1 ¢ N(z) and if [ = 3, then by Lemma 3, aj,a2 ¢ N(z), a contradiction. Since
|A] =3 and A—{a;} C N(z), by Lemma 1 we have z ¢ A, which implies z"zp ¢ E(G).
Thus, BU {zp, 2~} is an independent set. |

Now, let G be a 3-critical graph, a(G) = §(G) + 1 and vy € V(G) with d(vg) =
d(G) = 3. Suppose N(vg) = {v1,v2,v3} and I = {vg, w1, w2, w3} is an independent set.
The following lemma restates a lemma due to Sumner and Blitch [7], which has become
of considerable utility in dealing with 3-critical graphs. In [7] they considered the case
[ > 4, which guarantees P(W)NW = (). For the cases | = 2 and | = 3, Lemma 8 can

be easily verified since G is a 3-critical graph.

Lemma 8. Let G be a connected 3-critical graph and U an independent set of [ > 2



vertices. Then there exists an ordering uq, uo, - - -, u; of the vertices of U and a sequence

P(U) = (y1,y2, -+, yi—1) of =1 distinct vertices such that [u;,y;] — wiy1, 1 <@ <I1—1.
The next lemma is a useful consequence of Lemma 8.

Lemma 9 (Favaron et al. [6]). Let U be an independent set of [ > 3 vertices of a
3-critical graph G such that U U{v} is independent for some v ¢ U. Then the sequence
P(U) defined in Lemma 8 is contained in N (v).

Since I is an independent set of order 4, by Lemmas 8 and 9, we may assume

without loss of generality that [w;, v;] — w41 for i =1,2.

Lemma 10 (Chen et al. [5]). If [vg, 2] — w; for i # 3, then we have z ¢ N(vg) and if
[vo, v;] — w3, then [ = 2.

Lemma 11 (Chen et al. [5]). If [vg,v2] — w3, then we have vy, v, w3 ¢ N(v3) and
w1, W2 € N(’Ug).

Lemma 12. Let G be 3-critical, X = {x1,22,23} = {2;,2;, 2} and {zp,a;,u,v} a
maximum independent set. If [xp, x;] — a;, then we have xjz; € E(G), x4, 21 ¢ N(z;)
and {x;,z;} € N(u) N N(v).

Proof. Let U = {aj,u,v} = {u1,us,us3}. By Lemmas 8 and 9, we may assume that
[Um, Tg,] = Um1 for m =1,2. Let X — {xy,,24,} = {24, }. If [zp, 2] — a4, then by
Lemma 10, we have a; = u3 and z; = x4,. Since [u1, zq,] — u2, we have z4,a; € E(G).
By Lemma 11, zg,a; ¢ E(G). Thus, since z; € X and z;a; € E(G), we have x4, = ;
and x4, = x;, that is, [u1, x;] — uo and [ug, ;] — a;. In this case, we have z;2; € E(G)
and by Lemma 11, we have z;, z; ¢ N(z;) and {z;,2;} € N(u) N N(v). 1

The following two lemmas can be extracted from [2].

Lemma 13 (Chen et al. [2]). Suppose that P is a longest (x,y)-path such that
|X N{z,y}| is as small as possible and that for this path, d(zp) = k > 4. If G is

3-critical, then there exists an independent set I such that either {zp} UA C I or
{zp}UBCTIand |I| > k+ 1.

Lemma 14 (Chen et al. [2]). Let G be a 3-connected 3-critical graph of order n,
z,y € V(G) and p(z,y) = n — 2. Suppose that P is a longest (z,y)-path such that
d(xp) is as large as possible and subject to this, |X N {x,y}| is as small as possible.
If d(xp) = 3, {z,y} € X and P; is a clique for i = 1,2, then a1b3 ¢ E(G), and if
asbs € E(G), then n =8 and «o(G) = 3.



3. Proof of Theorem 4

Let G be a 3-connected 3-critical graph with a(G) = §(G) + 1 = 4. We still use
the notations given in Section 3. Suppose to the contrary that G is not Hamilton-
connected. By Theorem 7, there are two vertices x, y such that p(z,y) = n—2. Among

all the longest (z,y)-paths, we choose P such that

(a) d(zp) is as large as possible;
(b) subject to (a), |[{z,y} N N(zp)| is as small as possible;
(c) subject to (a) and (b), s(P) is as small as possible.

Choose an orientation such that |A| > |B|. Assume without loss of generality that the
orientation is from z to y. Since a(G) = §(G) + 1 = 4, by the choice of P and Lemma
13, we have d(xp) = 3.

We consider the following two cases separately.
Case 1. |[A| =3

Let U = N[zp]U A. If |A| = 3, then by Lemmas 8 and 9, we may assume that

lai,, xj,] — a;,, for I =1,2. Thus, noting that |A| = 3, we have
dy(zi) > 0 =3 for any x; € X. (1)

If [a3, bs] — xp, then boas, a1bs € E(G) by Lemma 1. In this case, we have |Py| > 2
and hence d(z3) > 4 by (1). Thus, Q = 2 Pay1xprs Pbsa; Pbyas Py is an (z,y)-path
of length n — 2 with xg = x3, which contradicts the choice of P and hence

[as, bs] — xp is impossible. (2)

Claim 1. Let z € Pj and [xp,z] — a;. If 27 € P, then AU {xp, 2"} is an independent

set.

Proof. If |B| = 3, then since B — {a;} C N(z), by Lemma 1 we have z ¢ B. If |B| =2
and z = by, then we must have ag = bg = a;. Since P3 C N(z), by Lemmas 1 and 2 we
have N(a;) NP3 = (). Thus, by the choice of P, we have N(a;) = X, which contradicts
7(G) > 1 since w(G — X) > 3. If |[B| = 2 and z = b3, then a1 = by = a;. Since
P3; C N(z), by Lemmas 1 and 3 we have N(a;) NP3 = (). If a;,x3 € E(G), then by the
choice of P, we have N(a;) = X, which contradicts 7(G) > 1. If z3a; ¢ E(G), then
P = a:acpmgﬁy is an (z,y)-path of length n—2 such that s(P’) < s(P), a contradiction.
Therefore, we have z ¢ B and hence ztzp ¢ F(G). Thus, by Lemma 1, we need only
to show AU {27} is an independent set.



Suppose to the contrary there is some a; such that a;z+ € E(G). If | = j, then z is
an A-vertex, which contradicts Lemma 1 since |A| =3 and A — {a;} C N(z). If | < 7,
then by Lemmas 2 and 3, we have a;j11,b; ¢ N(z), which implies j = 3. If [ = 1, then
by Lemma 3, we have b2,b3 ¢ N(z) and if [ = 2, then by Lemmas 2 and 3 we have
ai,bs ¢ N(z), a contradiction. Thus we have [ > j.

If |[B| = 3, then since bjz € E(G), by Lemma 4 we have j = 0. Thus, if | = 1,
then by Lemma 3 we have bo,b3 ¢ N(z); if | = 2, then by Lemmas 2 and 3, we have
a1,bs ¢ N(z); and if [ = 3, then by Lemma 2, we have a1,as ¢ N(z), a contradiction.
Thus, we have |B| = 2.

If j =2, then [ = 3. By Lemma 4 we have byz ¢ E(G), which implies a; = b = a;.
Let Q = xacp:vgﬁy. Obviously, |Q| = n — 1 and zg = ai. By the choice of P,
we have d(a1) = 3. If N(a1) NP3 # (), say v € N(aj) N P3, then the (z,y)-path
mxpx3<]32+a3?v_z(]3a1v?y is hamiltonian, and hence N (a;)NPs = 0. If a;x3 € E(G),
then since d(a1) = 3, we have N(a;) = X, which contradicts 7(G) > 1. Thus, Q is
an (x,y)-path of length n — 2 with s(Q) < s(P), which contradicts the choice of P. If
j=1and ! =2, then by Lemma 3 we have b3z ¢ E(G), which implies as = b3 = q;.
This contradicts Lemma 1 since zby € E(G), which implies 2 is a B-vertex. If j = 1
and [ = 3, then by Lemma 2 we have zas ¢ E(G), which implies ay = a;. If N(a2) N
P; # 0, say v € N(ag) N P, then the (z,y)-path P20~ Paszt Prsxpas Pasv Py
is hamiltonian, and hence N(ag) NP3 = (). If ag = b3, then we have d(az) = 3 and
zay € FE(G) for otherwise we can choose R = xl_jxgxpxgﬁy replacing P. In this case,
we have N(az) = X, which contradicts 7(G) > 1. Thus we may assume ay # bs.
Let S = wﬁza??mx;:m?z*%ﬁy. Then S is an (z,y)-path of length n — 2 with
xs = ag. Noting that N(az) N P3 = 0, by the choice of P, we have d(az) = 3 and
ray € E(G). In this case, N(a2) = {x1,72,a] }. Since as # b3, we have aj # z3 and
hence s(S) < s(P), a contradiction. Thus, we have a;z% ¢ E(G) for any q; € A, and
hence AU {xp, 2"} is an independent set. 1

Claim 2. Let v € P;, where 1 <i < 3. If ;o™ € E(G), then a;v € E(G).

Proof. Since vta; € E(G), v is an A-vertex. If a;v ¢ E(G), then by Lemma 1,

AU{zp,v} is an independent set of order 5, a contradiction. 1
Claim 3. If z € Py and [ag, 2] — zp, then BU {zp, 2"} is an independent set.

Proof. If z7by € E(G), then z is a B-vertex. By Lemma 1, zb3 ¢ E(G), which implies
asbs € E(G). By Claim 2, P» C Nlag]. If ajze € E(G), then z is an A-vertex,
which contradicts Lemma 1 since zasz € E(G). If ajz3 € E(G), then the (z,y)-path
$?$1l‘p$2?$3a1?2_b2?2a3?y is hamiltonian. Thus, we have x9,x3 ¢ N(a;). Since



xzpaz ¢ E(G), there is some vertex w such that [zp,w] — a3 or [ag,w] — zp. If
[a3,w] — xp, then by Lemma 6 we have w € P» or w = y. Since Py C Naz], we
see that each vertex of Py — {b3} is an A-vertex. Thus, if w € P, then we have
w = bz, which contradicts (2), and hence we have w = y. If [zp, w] — a3, then since
x2,73 ¢ N(a1), we have w ¢ X by Lemma 12. Thus, by Claim 1, we have w = y. In
both cases, y # a3z and a1y € E(G). By Lemma 4, zy~ ¢ E(G) and hence agy~ € E(G).
Thus, R = xﬁxlxpx;;?agy*(ﬁagzﬁbgz*Faly is an (z,y)-path of length n — 2 with
xr = 2. Since z € Py and |A| = 3, we have |P1| > 2. By (1), d(zg) = d(z2) > 4,
which contradicts the choice of P. Therefore, 27bs ¢ E(G).

If 27b3 € E(G), then by Lemma 1 we have asxs ¢ E(G) since a1z € E(G), which
implies 2z~ is an A-vertex. If aszy € E(G), then xﬁxlagﬁbgz*?alzﬁxgxpxgﬁy is a
hamiltonian (z,y)-path. Thus, we have x1, 23 ¢ N(az2). Since 27 by ¢ E(G), we have
z # by. If a1be € E(G), then by Claim 2, z is an A-vertex, which contradicts Lemma
1 since zag € E(G), and hence a1be ¢ E(G). Thus, there is some vertex w such that
[a1,w] — by or [ba,w] — ai. It is easy to see w # xp. Thus, in order to dominate
xp, we have w € X. If [a1,w] — be, then w # x9. Noting that z1,z3 ¢ N(ag),
we can see that w # x1,x3. Thus, we have [by,w] — a;. Obviously, w # z;. If
w = x9, then x9bs € E(G). By Lemma 3, agby ¢ E(G). Since agxs ¢ E(G), we
have zxs € E(G). If byas € E(G), then the (x,y)-path P2 b3 Pasrprsz Pbyas Py is
hamiltonian, and hence boag ¢ E(G). Thus, AU{b2, zp} is an independent set of order
5, a contradiction. Hence, w # z2, which implies w = x3, that is, [be,z3] — a1. In
this case, ag2bs € E(G) since agzrs ¢ E(G). By Lemma 5, there is some vertex u € P,
such that bou, utzs € E(G). Thus, the (z,y)-path z P2~ bs Put 232 prs Pubs Pzas Py
is hamiltonian, a contradiction. Hence, 27b3 ¢ E(G).

Since zas € E(G), we have bjz~ ¢ E(G) by Lemma 4 if |B| = 3 and z ¢ A by
Lemma 1, which implies z~zp ¢ E(G). Thus BU {zp,z~} is an independent set. 1

Claim 4. If z € Py and [as, 2] — zp, then BU{zp, 2"} is an independent set.

Proof. Since za; € E(G), we have bez~ ¢ E(G) by Lemma 3. Since z € P» and
za; € E(G), by Lemma 1, |P2| > 2. By (1), d(xz3) > 4 and d(x;) > 4 if |B] = 3.
If 27b; € E(G) or z7bs € E(G), then by Lemma 2, we have zby ¢ E(G), and hence
boas € E(G). Thus, Q = :E?blz_?:vgxp:vg(ﬁzalﬁbwgﬁy is an (x,y)-path of length
n—2 with g = 21 if 270y € E(G) and R = xﬁxlxpxgﬁz_b;g(]?zalﬁbgagl_jy is an
(x,y)-path of length n — 2 with zr = z3 if 27bs € E(G), which contradicts the choice
of P. Hence, we have z7b1,27 b3 ¢ E(G). Since za; € E(G), by Lemma 1 we have
z ¢ A, and hence z~xp ¢ E(G). Thus, BU{xp,z"} is an independent set. 1



Since |A| = 3, by Lemma 10, there are some vertices a; with ¢ > 2 and z ¢ X
such that [xp,z] — a; or [a;,z] — xp. If |B| = 3, then by Lemma 7 and Claim 1, we
have [a;, 2] — xp. By Lemma 6, we have z € P;_;. Thus, by Claims 3 and 4, we see

BU{zp,z"} is an independent set of order 5, a contradiction. Hence we have |B| = 2.

Claim 5. If [xp,y] — a;, then BU{xp,y~} is an independent set.

Proof. Since |A| =3 and A —{a;} C N(y), by Lemma 1 we have y # a3, which implies
y zp ¢ E(G). If a; # a1, then by Lemma 3, we have bg,b3 ¢ N(y~). If a; = ay,
then we have bs,as € N(y). By Lemmas 2 and 3, we have by,b3 ¢ N(y~). Thus,
BU{zp,y”} is an independent set. 1

Claim 6. If [ag, z] — xp, then z = y.

Proof. By Lemma 6, we have z € Py or z = y. If z # y, then z € P;. Since
xpaz ¢ E(G), there is some vertex w such that [zp, w] — a3 or [ag,w] — zp. If w =y,
then by Lemma 6 or Claim 5, BU{xp,y™ } is an independent set. If 27y~ € E(G), then
the (x,y)-path a12paa Pzay Pz~y~ Payy is hamiltonian, and hence z~y~ ¢ E(G).
Thus, by Claim 3, we can see that B U {xp,y~, 2~} is an independent set of order 5,
and hence w # y. If [xp, w] — ag, then by Claim 1, we have w € {z1,22}. By Lemma
12, we have ajz2 € E(G). By Claim 2, z is an A-vertex, which contradicts Lemma 1
since zaz € E(G). Thus, we have [a3, w] — xp. By Lemma 6, we have w € P,. By
Claim 4, BU{xzp,w™} is an independent set. Noting that z~ and w™ are A-vertices, we
have z~w™ ¢ E(G) by Lemma 1. Thus, by Claim 3, BU{zp,w™, 2~ } is an independent

set of order 5, a contradiction. 1
Claim 7. If [ag,y] — xp or [xp,y] — az, then asy, aibe, asbs € E(G).

Proof. By Lemma 1, agy € E(G). Thus, y~ is an A-vertex. By Lemma 6 or Claim
5, BU{xp,y” } is an independent set. If ajby ¢ E(G) or azbs ¢ E(G), then agby €
E(QG) for otherwise {zp, a1, b2, as,y~}, or {xp,bs,ba, az,y~ } is an independent set and
a1bs € E(G) for otherwise {zp,ay,ba, b3,y }, or {xp,bs,a1,a2,y~ } is an independent
set, which contradicts «(G) = 4. Thus, by Lemmas 1 and 3, we have

ay,bs ¢ N(xg) and as, by ¢ N(.%‘l) U N(wg) (3)

If a1by ¢ E(G), then there is some vertex w such that [a1,w] — by or [be,w] — aj.
Obviously, w # xp. Thus, in order to dominate zp, we have w € X. By (3), we have
[b2, T3] — a1. By Lemma 5, there is some vertex v € P, such that byv, 30" € E(QG),
which implies the (z,y)-path $1£Cp$2?1}b2(]_3a1b3?’0+$3ﬁy is hamiltonian, and hence
arby € E(G). If agbs ¢ E(G), then there is some vertex u such that [ag,u] — b3 or



[b3,u] — az. Clearly, u # zp, and hence u € X. By (3), we have [a2,z1] — b3. By
Lemma 5, there is some vertex v € P; such that zjv,asv™ € E(G), which implies the
(z,y)-path xlv?albgﬁaw*ﬁxﬂpm?y is hamiltonian, and hence asbs € F(G). 1

Claim 8. If [xp,z] — ag and z € {x1,x3}, then a1by, asbs € E(G).

Proof. By Lemma 12, we have ajxz € E(G). By Lemma 3, we have b, b3 ¢ N(a3).
If a1by ¢ E(G) or agbs ¢ E(G), then a1bs € E(G) for otherwise {zp,ay, b, b3, as},
or AU {xp,bs} is an independent set of order 5. Thus by Lemmas 2 and 3, we have
by ¢ N(x1) U N(x3), which contradicts z € {z1,z3}. 1

Claim 9. If [xp, z] — ag and z € {x1,x3}, then agy € E(G).

Proof. Since xpas ¢ E(G), there is some vertex w such that [zp,w] — a3 or [as, w] —
xp. If [zp,w] — as, then since z € X, by Lemma 10 we have w ¢ X. By Claim 1,
w =y. If [ag,w] — xp, then by Lemma 6, w € P, or w = y. If w € P, then by Claims
2 and 8, we have w = b3, which contradicts (2). Thus, we have w = y in both cases.
By Lemma 6 or Claim 5, BU{zp,y~} is an independent set. If asy ¢ E(G), then since
z € X, by Lemma 10, there is some vertex u € V(G) — N[z p]| such that [zp,u] — a1 or
[a1,u] — zp. Since azy ¢ E(G), by Claim 1, we can see that [xp,u] — a1 is impossible.
Thus, we have [a1,u] — zp. If w € B, say u = b;, then since bjas, a1y~ € E(G),
by Lemma 5 there is some vertex v € P3 — {y} such that bv,a1vt € E(G), which
contradicts Lemma 3. Thus, in order to dominate a3, we have u € P3—{y} by Claims 2
and 8. Since agu € F(G), by Lemma 2, asu™ ¢ E(G). If ajut € E(G) or aqu™ € E(G),
then by Lemma 3, bsu ¢ E(G), which implies a1b3 € E(G). Thus, by Lemmas 2 and 3,
we have by ¢ N(z1) U N(x3), which contradicts z € {x1,z3}. Hence, ai,as ¢ N(u™),
which implies AU {zp,u"} is an independent set of order 5, a contradiction. Thus, we

have agy € E(G). 1

Since zpag ¢ E(G), there is some vertex z such that [xp,z] — a2 or [ag, 2] — zp.
If [ag, z] — xp, then z = y by Claim 6. By Claim 7, we have a3y, ai1bs, asbs € E(G). If
[xp,z] — a2, then by Claim 1, we have z € {z1,z3,y}. Thus, by Claims 7, 8 and 9, we
have a3y, a1bg, asbs € E(G). Hence, by Claim 2, we have

P, C Nlag] for i =1,2,3. (4)

If z = y, then by Lemma 1 and (4), we have P3 C NJy|. If z # y, then by Claims
1 and 6, we have [xp,z] — a2 and z € {z1,23}. Since xpag ¢ E(G), there is some
vertex u such that [xp,u] — ag or [ag,u] — xp. If u # y, then Lemma 10 and Claim

1, we have [a3,u] — xp. By Lemma 6, we have u € P». By (4), we have u = b3, which
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contradicts (2). If u = y, then by Lemma 6, B U {y~} is an independent set. Since
aixzp ¢ E(G), there is some vertex w such that [a;,w] — zp or [zp,w] — a;. Since
z € X, by Lemma 10, w ¢ X. If w = y, then by Lemma 1 and (4), P;3 C Ny]. If
w # y, then by Claim 1, we have [a;,w] — zp. In order to dominate ag,as, we have

w € B, which is impossible since {a1,w} ¥ y~. Therefore, we have
P3 C Nyl. (5)

Let w be a vertex such that [xp, w] — a3 or [a3,w] — xp. If z € X, then by Lemma
10, Claim 1 and (4), we have [a3,w] — xp. By Lemma 6, we have w € P; or w = y.
By (2) and (4), we have w = y. If z ¢ X, then by Claims 1 and 6, we have z = y.

Thus, we have
either w =y or z = y. (6)

By (6), we have y # a3, which implies y"2p ¢ E(G). Let v be a vertex such
that [zp,v] — y~ or [y~,v] — xp. By Lemma 6, Claim 5 and (6), BU {zp,y~ } is
an independent set. By (4), y~ is an A-vertex. Thus, by Lemma 1 and (4), we have
Ny )Nk, =0 fori=1,2. If [y",v] — xp, then we must have v = y, which implies
{zp,y} = V(G) by (5), a contradiction. Thus, we have [xp,v] — y~. By (4), we have
v e X. If y= = ag, then by Lemma 12, we have N(ag) N {x1,z2} = 0, which implies
d(ag) = 2, a contradiction. Thus, we have y~ # as. In this case, y~ ¢ A. By Lemmas
8 and 9, we may assume [a;, zj] — a;,, for [ =1,2 and X — {w;,,zj,} = {x;;}. This
implies v = z;,. Since y~ is an A-vertex, we have y~a;;, ¢ E(G) or y~—a;, ¢ E(G),
which implies either y~x;, € E(G) or y~z;, € E(G). Thus, since z; zj, € E(G), we
can see that either {x; ,x;,} > V(G) or {z},,z;} > V(G), a contradiction.

Case 2. |A| =2

In this case, our main idea is to prove that P; is a clique for ¢ = 1,2. In order to do
this, we first show that either a1by € E(G) or asbs € E(G) and then a1by, azbs € E(G).

If |P;| =1 for some i € {1,2}, then by the choice of P, we have N(a;) = X, which
contradicts 7(G) > 1. Thus, we have |P;| > 2 for i = 1,2, which implies b, ,a5 ¢ X.
Noting that ag, by € N(z2), by the choice of P, we see that

there is no (z,y)-path @ such that g = ay or bs. (7)

Claim 10. If a € Py is an A-vertex, then aay ¢ E(G), and if b € P» is a B-vertex, then
bb, ¢ E(G).

Proof. Let @ be a hamiltonian (a,z2)-path in G[P; U {x2}]. If aaj € E(G), then
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R= xlxpxgaaajl_j)xg is an (x, y)-path of length n—2 with 2 = ag, which contradicts
(7). As for the latter part, the proof is similar. 1

Claim 11. If a € P, is an A-vertex and aa] € E(G), then N(a;) = {x1,z3,a]}.
Similarly, if b € P; is a B-vertex and bb; € E(G), then N(b3) = {z1,23,b3 }.

Proof. Let Q be a hamiltonian (a,z3)-path in G[P, U {x3}]. If aa € E(G), then
R = mlxpmgﬁafaéxg is an (z,y)-path of length n — 2 with xr = a;. By the choice
of P, we have d(a;) = 3 and z1,23 € N(ay), which implies N(a;) = {z1,73,a]}. As

for the latter part, the proof is similar. 1

Let a € P, — {b2} and b € P, — {as}. Suppose P’ is an (a, by )-path with V(P’) =
— {ba} and P" an (aj,b)-path with V(P") = P, — {as}. We have the following two

Clalms.
Claim 12. If (N(x1) U N(z3)) N {by,ad } # 0, then ab ¢ E(G).

Proof. By symmetry, we may assume N (z1) N {by, a3} # 0. If ab € E(G), then Q =
xlbgl?'ab?aQ ag.’L'gl‘P.’L'g is an (z,y)-path of length n —2 with xg = by if 21b; € E(G),

and R = xia5 P"baP by baxowprs is an (z,y)-path of length n — 2 with zp = ag if
r1a5 € E(G), which contradicts (7). 1

Claim 13. If v € Py and av € E(G), then v, v~ ¢ N(by) and if u € P; and bu € E(G),
then v, u~ ¢ N(aj).

Proof. If vtb; € E(G), then Q = Sﬂll‘p[EQ?’UCLP by vF Pas is an (x,y)-path of length
n — 2 with zg = by and if v7b; € E(G), then R = a:latpxgﬁv bQPavT’)mg is an
(x,y)-path of length n — 2 with xr = be, which contradicts (7). As for the latter part,

the proof is similar. |

Claim 14. If agbs € E(G) and [ay, z2] — b3, then Py — {b3} C N(z2) and N(b3) =
{xla x3, b?:}

Proof. If v € P, and ajv € E(G), then by Lemma 5, there is some vertex u € as Pv
such that uzs,uta; € E(G). Thus, :vlznp:vgu(pagb;]?czlu*‘ﬁxg is a hamiltonian (x,y)-
path, and hence N(a1) N Py = (), which implies P, — {b3} C N(z2). On the other hand,
since ) = wlﬁbgagﬁnggfbpxg is an (x,y)-path of length n — 2 with zg = b3, by the
choice of P, we have d(bs) = 3 and x1 € N(bs), which implies N (b3) = {x1,23,b5 }. |

Claim 15. If a1be, asbs ¢ E(G), then either a1b3 € E(G) or agby € E(G).

Proof. Otherwise, {zp,ay,as, b, b3} is an independent set of order 5 by Lemma 1, a
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contradiction. |

Assume a1bg, agbs ¢ E(G). Let z be a vertex such that [a1, 2] — be or [be, 2] — a;.
Obviously, z # xp. In order to dominate zp, we have z € X. It is easy to check that
there are four cases: [a1, 1] — b2, [a1,x3] — ba, [be, z2] — ay or [be,x3] — a1, and at
least one of the four cases occurs.

If [a1,z1] — b2, then by Lemma 1, z1a2 € E(G). By Lemma 3, a1b3 ¢ E(G). By
Claim 15, agby € E(G). By Lemma 3, aj,b3 ¢ N(z2). Consider agbs ¢ E(G), we
can easily get that [bg,z3] — ag. Thus, consider a1b3 ¢ E(G), we have [a1,x2] — b3
or [bg,z2] — aj. Since [a1,x1] — by and [b3, x3] — a2, by symmetry, we may assume
that [a1,z2] — b3. By Claim 14, P, — {b3} C N(x2) and N(b3) = {x1,x3,b5 }. Thus,
we have P, C N(x3) since [bs,z3] — ag. Since [a1,z1] — by and a1 ¢ N(x2), we
have x1z9 € E(G). Therefore, we have {z2,23} > V(G), a contradiction. Hence,
[a1, z1] — by is impossible. By symmetry, [b3, x3] — a9 is impossible.

If [a1,x3] — b2, then asxs € E(G), which implies b3 is an A-vertex. By Lemma
1, a1bs ¢ E(G). By Claim 15, agby € E(G). By Lemma 3, a1,b3 ¢ N(x2). Con-
sider agbs ¢ E(G), we have [ag,x1] — b or [b3,x1] — ag. If [ag,x1] — b3, then
x1bs ¢ E(G). In this case, consider ajas ¢ E(G), we have [ag,x3] — a;. Thus, by
Claim 11, af az,a] b3 ¢ E(G). Now, consider aj az ¢ E(G). It is not difficult to check
that there is no vertex w such that [af,w] — ag or [ag, w] — af, a contradiction. If
[bs, 1] — a9, then consider a1bs ¢ E(G), we have [aq, z2] — b3 or [bs, x2] — a1. Since
[a1, 23] — bg and [b3, x1] — a2, by symmetry, we may assume that [a1,x2] — b3. By
Claim 14, P, — {b3} € N(z2) and N(b3) = {x1,z3,b5 }. Since [b3, z1] — a2, we have
Py C N(x1). Since [a1,z3] — be and a1z2 ¢ E(G), we have zoxs € E(G). Thus, we
have {x1,x2} = V(G), a contradiction. Hence, [a1,z3] — by is impossible. By symme-
try, [bs, x1] — ag is impossible.

If [by, x2] — a1, then z9b3 € E(G). By Lemma 3, asbs ¢ E(G). By Claim 15,
a1bs € E(G). By Lemmas 2 and 3, a2,bs ¢ N(z1) U N(z3). In this case, it is not
difficult to see that there is no vertex w such that [as, w] — b3 or [b3, w] — a2, a con-
tradiction. Thus, [be, z2] — a1 is impossible. By symmetry, [ag, z2] — b3 is impossible.

If [b2, z3] — a1, then by Lemma 5, there is some vertex u € P, such that ubs, utzs €
E(G). If a1b3 € E(G), then xlxpxgﬁubgﬁalbgﬁwxg is a hamiltonian (x,y)-path,
and hence a1b3 ¢ E(G). By Claim 15, agby € E(G). By Lemma 3, a1,b3 ¢ N(z2).
Consider asbs ¢ F(G). Since [bs,x3] — ag, [bs,z1] — a2 and [ag, 2] — b3 are im-
possible, we have [ag, 1] — bs. If afa; € E(G), then Q = wlxpwgagbﬂjafagl_:’)xg,
is an (z,y)-path of length n — 2 with g = a1, which contradicts the choice of P
since a1z3 ¢ E(G). By Claim 11, afaz ¢ E(G). Consider afaz ¢ E(G), we have
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[a],z1] — ag or [a] ,x3] — ag. If [a],x1] — ag, then a] b3, z1a5 € E(G), which implies
R = xla;ﬁbgafﬁbgagxgxpxg is an (z,y)-path of length n —2 with xp = a;, a contra-
diction. Hence, we have [a],z3] — a2. Since [b2, 73] — a1 and [a2,71] — b3, by sym-
metry, we have [by, z1] — ba. Thus, z1b2,a223 ¢ E(G). Now, consider a1bs ¢ E(G),
we have [a1, x3] — b3 or [b3, z2] — a1. By symmetry, we may assume that [a;, x2] — bs.
By Claim 14, x1b3 € E(G), which contradicts [ag, 1] — bs. Therefore, [by, 23] — a1 is
impossible.
It follows from the argument above that either a1by € E(G) or agbs € E(G).

Since a1b2 € E(G) or agbs € E(G), by symmetry, we may assume aijby € E(G).
If asbs ¢ E(G), then there is some vertex z such that [ag,z] — b3 or [b3,z] — as.
Obviously, z # zp and hence z € X. It is not difficult to see that there are four cases:
[ag, 1] — b3, [ag, 2] — bs, [bs,x1] — ag or [bs,x3] — a2, and at least one of the four

cases occurs.
In order to prove agbs € E(G), we need the following four claims.
Claim 16. If agbs ¢ E(G), then Py C Na;] and N(bs) N P, = 0.

Proof. If [ag, x1] — b3 or [b3,x1] — ag, then since a1b2 € E(G), we have by x1 € E(G)
by Lemma 1 and Claim 10. By Claim 12, a1b3 ¢ E(G). By Claim 10, b; b3 ¢ E(G).
If a1b; ¢ E(G), then {ai,b,,a2,b3,zp} is an independent set of order 5, and hence
aiby; € E(G). If Pi ¢ Nla1], then since a1be € E(G), there is some vertex v €
Py — {b;,ba} such that a1v ¢ E(G) and a1v™ € E(G). Clearly, v is an A-vertex. By
Claim 12, vbs ¢ E(G). Thus, {a1,v,az2,b3,xp} is an independent set of order 5, and
hence Py C Nlaq]. Thus, by Lemma 1 and Claim 12, we have N (b3) N P, = 0.

If [bs,x3] — ag, then since bexsz € E(G), we have a;bs ¢ E(G) by Lemma 3. If
Py € Naq], we let v € P; — {by} such that ajv ¢ E(G) and a1vt € E(G). Clearly, v is
an A-vertex. By Lemma 3, vbs ¢ E(G). Thus, {a1,v,a2,b3, zp} is an independent set
of order 5, and hence P, C N[ai]. By Lemmas 1 and 3, we have N(b3) N P; = 0.

If [ag,x2] — b3, then zoa; € E(G), and hence by is an A-vertex. By Lemma 1,
beas ¢ E(G). If N(az) N Py # 0, then since ajas ¢ E(G), there is some vertex u € Py
such that u~ay ¢ E(G) and uas € E(G). Obviously, u~zy € F(G). This contradicts
Lemma 3, since ajbs € E(G) implies there is a (u,u™)-path P’ with V/(P") = V(Py).
Thus, N(az) N Py = 0, and hence P; C N(x2). If Py € Nlbs], then since a1bs € F(G),
there is some vertex u € P; such that u=by € E(G) and uby ¢ E(G). Obviously, u is
a B-vertex. Thus, {u, by, as,bs,xp} is an independent set of order 5, a contradiction.
Hence, P, C N[by]. By Lemma 1, N(bs) Naj Pby = 0. If ajbs € E(G), then by
Claims 10 and 13, we have byaj ¢ E(G) and a3 ,b; ¢ N(z1) U N(z3). Thus, consider
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asby ¢ E(G), we cannot find a vertex w such that [as, w] — b2 or [by,w] — a2, and
hence a1b3 ¢ E(G), which implies N(b3) N Py = (. If v € P; and ajv ¢ E(G), then
noting that N(az) N P = 0, {a1,v,a2,b3,zp} is an independent set of order 5, and
hence P; C Nlay]. 1

Claim 17. Let z € Py, Q1 = agl_jz* and Qo = Z+ﬁb3. If asbs ¢ E(G) and aq,b; , b3 €
N(z), then Q; is a clique for i = 1,2 and E(Q1,Q2) = 0.

Proof. By Lemma 1 and Claim 10, z is neither an A-vertex nor a B-vertex. Thus,
z € Py —{ag,b3}. By Claim 13, aj,b; ¢ N(zT)UN(27). If Q2 € NJbs], then since
zbs € E(G), there is some vertex v € ()2 such that vbs ¢ E(G) and v™b3 € E(G).
Obviously, v is a B-vertex. If z7v € E(G) or bsz~ € E(G), then z is a B-vertex,
and hence v,b3 ¢ N(z7). Thus, by Claim 10, we can see that {b;,27,v,b3,xp} is an
independent set of order 5, and hence Q2 C N [bs]. In this case, we have N(z7)NQ2 = 0
for otherwise z is a B-vertex. If there are two vertices u,v € Q2 such that uv ¢ E(G),
then since u and v are B-vertices, by Claim 10 we can see that {b;,z",u,v,zp} is
an independent set of order 5, and hence Q3 is a clique. If N(az) N Q2 # (), then
since @2 is a clique, it is easy to see that z is an A-vertex. Thus, N(ag) N Q2 = 0.
If a2z~ ¢ E(G), then {aj,as,27,2",zp} is an independent set of order 5, and hence
azz” € E(G). If Q1 € Nlag], then since az~ € E(G), there is some vertex v € @1 such
that vas ¢ E(G) and asvt € E(G). Clearly, v is an A-vertex. If vzt € E(G), then z
is an A-vertex, a contradiction. Thus, {a1,as,v, 2z, xp} is an independent set of order
5, and hence Q1 C Nlag]. In this case, N(21) N Q1 = 0 for otherwise z is an A-vertex.
If u,v € Q1 and wv ¢ E(G), then {a1,u,v,z",zp} is an independent set of order 5,
and hence @ is a clique. If v; € Q; for i = 1,2 and vjvy € E(G), then vq # ag, 27,
and hence S[?QCLQ?U;Z_{F’Ul’UQ?bg’U;(FZ is a hamiltonian (z29, z)-path in G[Py U {z2}],

which implies z is a B-vertex, a contradiction. Thus, we have F(Q1,Q2) = (. |

Claim 18. If asbs ¢ E(G), then for any z € P, both [zp, 2] — a2 and [ag, 2] — xp are

impossible.

Proof. Suppose to the contrary that there is some vertex z € P such that [xp, z] — a2
or [ag, z] — xp. If [xp, 2] — ag, then z # bs. If [ag,bs] — xp, then by Lemmas 1 and
5, there is some vertex u € P; such that ubs,u"as € E(G), which contradicts Lemma
3. Thus, we have z # bsg in both cases. Let P’ = agﬁz_ and P = z+?b3. Since
aiba € E(G), by Lemma 1, we have by as ¢ E(G). Thus, ai,b,,b3 € N(z). Since
za; € E(G), by Lemma 3 and Claim 13, we have by,b, ¢ N(z7). By Lemma 1 and
Claim 16, we have alﬁbg_ C N(z). By Claim 17, P” C N(z). Since {b;,a2,b3,zp}

is a maximum independent set, by Lemma 10, there is some vertex u € {b5,b3} and
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a vertex w € V(G) — Nzp] such that [u,w] — zp or [zp,w] — u. If [xp,w] — wu,
then w # z. If w = by, then since wbz € E(G), by Claims 16 and 17, we have
w € P” which is impossible since way ¢ E(G). If u = bs, then w ¢ P” by Claim
17. Since byz~ ¢ E(G), we have w # bg,z~. Thus, by Lemma 1 and Claims 16
and 17, we see that w ¢ P, U P, a contradiction. Hence, we have [u,w| — xp. If
u = by, then in order to dominate ap and b3, we have w = z by Lemma 1 and Claims
16 and 17. If u = b3, then in order to dominate P, and P’, it is easy to see that
w = z by Lemma 1 and Claims 16 and 17. In both cases, we have P’ C N(z) by
Lemma 1 and Claim 17. Thus, we have [ag, 2] — zp. If baz € E(G), then we have
{zp,z} = V(G). If baz ¢ E(G), then asby € E(G). By Lemma 3, by ,b3 ¢ N(z2).
If 2729 € E(G), then xlxpxgz*?agbzﬁalzl_jxg is a hamiltonian (z,y)-path. Thus,
by ,z7,bs ¢ N(z2). Noting that {b;,z,b3,zp} is an independent set, by Lemmas 8
and 9, we have x1,x3 € N(x2), which implies {z2, z} > V(G), a contradiction. 1

Claim 19. If asbs ¢ E(G) and w1, x3,bs ¢ N(az), then [zp,a3] — a; is impossible.

Proof. If [xp,af] — a1, then ajbs € E(G). If a;?bg Z N|[bs], then there is some
vertex v € a%?bg such that v~b3 € E(G) and vbs ¢ E(G). Clearly, v is a B-vertex.
By Claim 10, v,b3 ¢ N(b; ). By Lemma 1 and Claim 16, ag ¢ N(by). If asv € E(G),
then it is easy to see that a; is a B-vertex, which contradicts Lemma 1 since bga; €
E(G). Thus, {b;,a2,v,bs,xp} is an independent set of order 5, a contradiction. Hence,
we have a;ﬁbg C NJbs], which implies N(a2) N a;?b;; = {a3}. Thus, noting that
x1,73,b2 ¢ N(az), by Lemma 1 and Claim 16, we have d(a2) = 2, a contradiction.

Hence, [vp,aj] — a1 is impossible. 1
We now begin to prove asbs € E(G). Suppose to the contrary that asbs ¢ E(G).

Since zpay ¢ E(G), there is some vertex z such that [zp,z] — ag or [ag, 2] — xp.
By Claim 16, we have z ¢ P;. By Claim 18, we have z ¢ P,. Thus, we have z € X. In
this case, we have [zp,z1] — a2 or [zp,x3] — as.

If [ag, 1] — b3, then [xp,x1] — ag is impossible. If [xp, z3] — a9, then by Lemma
12, we have x1x3 ¢ E(G), which is impossible since agzs ¢ E(G) and [ag2,z1] — bs.
Thus, [ag, z1] — bs is impossible. If [ag, x2] — b3, we let {i,j} = {1,3}. If [zp, z;] — a2,
then by Lemma 12, we have zox; € E(G). Since [a2, x2] — b3, we have zoz; € E(G)
or apx; € E(G), which implies {x;, 22} > V(G) or {x;,a2} = V(G), a contradiction.
Thus, [ag, 23] — bs is impossible. Therefore, we have [bs,z1] — ag or [bs, 23] — as.

By Claim 16, {zp,a;,as,b3} is a maximum independent set. Since [zp,z1] — a2
or [zp,x3] — a2, by Lemma 12, we have z1,23 € N(a1) N N(b3) and z1,x3 ¢ N(az).
If [xp,bo] — bs, then since [bs,z1] — ag or [bs, z3] — a2, we have {by,x3} > V(G) or
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{b2,z1} > V(G) by Lemma 1, a contradiction. Obviously, [xp, b3] — by is impossible.
Thus, there is some vertex v € X such that [by, u] — b3 or [bs, u] — be. Since {bs, z;} #
as for i = 1,3 and x1, 23 € N(bs), we have [ba, x2] — bs.

Since [zp,x1] — ag or [xp,x3] — a2, by Lemma 12, we have zoxs ¢ E(G) or
x1x2 ¢ E(G). Noting that [bg,x2] — b3, by Lemma 1, we have boxs € E(G) or
bax1 € E(G). Thus, if agby € E(G), then we have {bg,z1} = V(G) or {ba, z3} = V(G),
and hence agbs ¢ E(G). Thus, we have x1,z3,b2 ¢ N(a2).

By Claim 10, ajag ¢ E(G). Since z1,73,b2 ¢ N(az), by Claim 19, [zp,as] — a1 is

impossible. Obviously, [zp,a1] — aj is impossible. Thus, there is some vertex w € X

such that [a;,w] — af or [ag,w] — a1. Since [ba, x2] — b3, we have z2b3 ¢ E(G).
Thus, noting that {a1,z;} ¥ ag for i = 1,3, {a1,x2} ¥ bs and x1,23 € N(a1), we
have [a],22] — a1. If [xp,21] — ag, then by Lemma 12, we have 129 € F(G) and
ror3 ¢ E(G). In this case, we have ajz3 € E(G), which implies {z1,a] } = V(G),
a contradiction. If [zp,2z3] — ag, then by Lemma 12, we have xox3 € FE(G) and
r172 ¢ E(G). In this case, we have ajz1 € E(G), which implies {z3,af } = V(G),
again a contradiction. Thus, we have asbs € E(G).

Up to now, we have shown that a;be, asbs € E(G). In the following, we will show
that P; is a clique for ¢ = 1,2. If P; € NJa;], then since a;b;11 € E(G), there is some
vertex u € P; such that a;u ¢ F(G) and a;u™ € E(G). We let u; € P; be such a vertex
if P;  Nla;], where i = 1,2.

If P, € NJai], then {ai,u1,a2,zp} is an independent set. By Lemma 9, we have
[a1, 1] — ag, [a1,x3] — ag, [az, x2] — a1 or [ag, z3] — aj.

If Py  Nlag], then {aj,u1,a2,us,zp} is an independent set of order 5, a contradic-
tion. By Lemma 1, we have N(a1) N (P, — {bs}) = 0 and N(u1) N (P, —{bs}) = 0. We
now show aj,u; ¢ N(b3). By Claim 10, we have b, b3 ¢ E(G), and hence we may as-
sume uy # by . If [a1, 1] — ag or [a1, 23] — ag, we have x1af € E(G) or x3af € E(G).
By Claim 13, we have ay,u; ¢ N(bs). If [ag, 3] — a1, then by x5 € E(G). By Claim
13, aj,u1 ¢ N(b3). If [ag,z2] — a1, then since x2b;,a1bs € E(G), by is an A-vertex.
By Lemma 1, agby ¢ E(G). Since {b2,as,bs3,xp} is an independent set, by Lemma
9, we have [ag,z1] — be, [a2,x3] — b2, [ba,x1] — ag or [be,z3] — ag. This implies
(N(x1) U N(x3))N{by,a3} # 0. By Claim 13, aj,u; ¢ N(b3). Thus, we have

N(a1) NPy =0 and N(u1) N P2 = 0. (8)

Let a € {aj,u1} and w € V(G) — N[zp|. If [xp,w] — a or [a,w] — xp, then by (8),
we have w € Py and P, C N(w). Thus, by Lemma 1, w is neither an A-vertex nor a
B-vertex. Obviously, |Pi| > 3. Since a1b2 € E(G), it is easy to see that
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G[P)] contains a hamiltonian (w,w™)-path. 9)

If [a1, 1] — ag or a1, x3] — ag, then since w is not an A-vertex, we have ayw™ ¢ E(G),
and hence z;w" € E(G) or 3w’ € F(G). If ;ywt € E(G), then since a1by € E(G),
we see that w is a B-vertex, a contradiction. If zzw™ € E(G), then by (9) and
Lemma 3, we have wbs ¢ E(G), which contradicts P, C N(w). If [ag,z2] — a1,
then since asw, byzo € E(G), by Lemma 5, there is some vertex v € w?bz such that
vag, vtz € E(G), which contradicts Lemma 3 since ajbe € F(G), which implies G[P]
contains a hamiltonian (v,v")-path. Since as,bs € N(w), by (9) and Lemma 3, we
have wtzs,wtas ¢ E(G), which implies [a2,z3] — a1 is impossible. Thus, for any
a € {ai,u1} and w € V(G) — N[zp], both [zp,w] — a and [a,w] — zp are impossible,
which contradicts Lemma 10 since {a1, u1, a2, zp} is an independent set. Therefore, we
have P; C Nlaq].

If Py,  NJas], then since P C N[a1], by symmetry, we have P, C N[bs]. Thus, usg
is both an A-vertex and a B-vertex. By Lemma 1, Py N (uz) = ). Since zpas ¢ E(G),
there is some vertex w such that [zp, w] — ag or [ag,w] — xp. If [ag, w] — zp, then
w ¢ P for otherwise {az,w} ¥ wuy. Thus, we have w € P,. Since P» C NJbs], by
Lemma 1, we have agby, wb, € E(G), which contradicts Lemma 3. Thus, we have
[xp,w] — az. If w € Pp, then wuy ¢ E(G) and if w € Py, then wby ¢ E(G). Thus,
we have w € {x1,z3}. If [xp, 1] — a9, then z129 € F(G) by Lemma 12. In this case,
we have {z1,b3} > V(G). If [zp,x3] — aa, then by Lemma 12, we have xaz3 € E(G)
and r172 ¢ E(G). Thus, we have xg,a2,a3 ¢ N(x1) for otherwise v(G) = 2. Since
boua ¢ E(G), there is some vertex v such that [be,v] — ug or [ua, v] — ba. Obviously,
v # zp, and hence v € X. Since [xp,x3] — ag implies by, b3 € N(x3), we have v # x3.
Since {ugz,71} ¥ az and {by, 71} ¥ aj, we have v # x1, and hence v = z2, which
implies [b2, x2] — wg. Since x1x2 ¢ E(G), we have x1by € E(G). If agbs € E(G),
then {z3,b2} > V(G), and hence asby ¢ E(G). Now, consider zpus ¢ E(G). Since
{a1,az2,us} is an independent set and [xp, x3] — a2, by Lemma 10, there is some vertex
u € V(G) — N[zp] such that [zp,u] — ug or [ug,u] — zp. Since N(az) NP = 0 and
N(ug) N Py = (), we have u € P, in both cases. This is impossible since {ug,u} ¥# bo.
Thus, we have Py C Nag].

By symmetry, we have P, C N(a;) N N(b11) for i = 1,2. If P; is not a clique, then
there are two vertices u,v € Py — {a1, b2} such that uv ¢ E(G). Obviously, u and v are
both A-vertices and B-vertices. Thus, (N(u) U N(v)) N P, = (). Since {u,v,az,zp} is
an independent set, by Lemma 10, there is some w € V(G) — N[zp| and a vertex in
{u,v}, say u, such that [u,w] — zp or [xp,w] — u. It is easy to see that such a vertex

w does not exist, and hence P; is a clique. By symmetry, P is a clique.
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Since P; is a clique for i = 1,2, by Lemmas 1 and 14, we have E(Py, Py) C {agbs}. If
azbs ¢ E(G), then X is a 3-cutset such that w(G—X) = 3, which contradicts 7(G) > 1.
If agby € E(G), then by Lemma 14, we have a(G) = 3, again a contradiction.

The proof of Theorem 4 is complete. 1
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