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Abstract: A graph G is 3-domination-critical (3-critical, for short), if its
domination number γ is 3 and the addition of any edge decreases γ by 1. In
this paper, we show that every 3-critical graph with independence number
4 and minimum degree 3 is Hamilton-connected. Combining the result with
those in [2], [4] and [5], we solve the following conjecture: a connected 3-
critical graph G is Hamilton-connected if and only if τ(G) > 1, where τ(G)
is the toughness of G.
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1. Introduction

Let G = (V (G), E(G)) be a graph. For the notations that are not defined here, we
follow [2]. A graph G is said to be t-tough if for every cutset S ⊆ V (G), |S| ≥ tω(G−S),
where ω(G−S) is the number of components of G−S. The toughness of G, denoted by
τ(G), is defined to be min{|S|/ω(G− S) | S is a cutset of G}. Let u, v ∈ V (G) be any
two distinct vertices. We denote by p(u, v) the length of a longest path connecting u and
v. The codiameter of G, denoted by d∗(G), is defined to be min{p(u, v) | u, v ∈ V (G)}.
A graph G of order n is said to be Hamilton-connected if d∗(G) = n− 1, i.e., every two
distinct vertices are joined by a hamiltonian path. A graph G is called k-domination
critical, abbreviated as k-critical, if γ(G) = k and γ(G + e) = k − 1 holds for any
e ∈ E(G), where G is the complement of G. The concept of domination critical
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graphs was introduced by Sumner [7]. Given three vertices u, v and x such that {u, x}
dominates V (G)−{v} but not v, we will write [u, x]→ v. It was observed in [7] that if
u, v are any two nonadjacent vertices of a 3-critical graph G, then since γ(G+uv) = 2,
there exists a vertex x such that either [u, x] → v or [v, x] → u. In [2], Chen et al.
posed the following.

Conjecture 1 (Chen et al. [2]). A connected 3-critical graph G is Hamilton-connected
if and only if τ(G) > 1.

In the same paper, they proved that the conjecture is true when α(G) ≤ δ(G).

Theorem 1 (Chen et al. [2]). Let G be a connected 3-critical graph with α(G) ≤ δ(G).
Then G is Hamilton-connected if and only if τ(G) > 1.

Let G is a 3-connected 3-critical graph. It is shown in [3] that τ(G) ≥ 1 and
τ(G) = 1 if and only if G belongs to a special infinite family G described in [3]. Since
α(G) = δ(G) = 3 for each G ∈ G, we have τ(G) > 1 if α(G) ≥ δ(G) + 1.

In [4], Chen et al. showed that the conjecture holds when α(G) = δ(G) + 2.

Theorem 2 (Chen et al. [4]). Let G be a 3-connected 3-critical graph with α(G) =
δ(G) + 2. Then G is Hamilton-connected.

By a result of Favaron et al. [6] which states that α(G) ≤ δ(G)+2 for any connected
3-critical graph G, we see that the conjecture has only one case α(G) = δ(G) + 1
unsolved.

Recently, Chen et al. [5] showed that the conjecture is true for α(G) = δ(G)+1 ≥ 5.

Theorem 3 (Chen et al. [5]). Let G be a 3-connected 3-critical graph with α(G) =
δ(G) + 1 ≥ 5. Then G is Hamilton-connected.

Since τ(G) > 1 implies δ(G) ≥ 3, the case α(G) = δ(G) + 1 = 4 remains open. In
this paper, we will show that the conjecture is true when α(G) = δ(G) + 1 = 4. The
main result of this paper is the following.

Theorem 4. Let G be a 3-connected 3-critical graph with α(G) = δ(G)+1 = 4. Then
G is Hamilton-connected.

Combining Theorems 1, 2, 3 and 4, we have the following.

Theorem 5. A connected 3-critical graph G is Hamilton-connected if and only if
τ(G) > 1.
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By the main result of [3], we have the following.

Theorem 6. Let G be a 3-connected 3-critical graph. Then G is Hamilton-connected
if and only if G does not belong to a special infinite family G described in [3].

Now, we restate a result due to Chen et al. for later use.

Theorem 7 (Chen et al. [1]). Let G be a 3-connected 3-critical graph of order n.
Then d∗(G) ≥ n− 2.

2. Some Lemmas

Let G be a graph of order n, and x, y vertices of G such that a longest (x, y)-path
is of length n− 2. Let P = Pxy be an (x, y)-path of length n− 2. We denote by xP the
only vertex not in P and let d(xP ) = k with

N(xP ) = X = {x1, x2, . . . , xk}, indices following the orientation of P ;
A = X+ = {a1, a2, . . . , as}, where ai = x+

i , x+
i ∈ P and s ≥ k − 1;

B = X− = {bt, bt+1, . . . , bk}, where bi = x−i , x−i ∈ P and t ≤ 2; and
Pi = ai

−→
P bi+1, where 1 ≤ i ≤ k − 1.

Furthermore, we let P0 = x
−→
P b1 if x /∈ X and Pk = ak

−→
P y if y /∈ X. The length of the

path x1
−→
P xk is denoted by s(P ).

Definition. A vertex v ∈ Pi (1 ≤ i ≤ k) is called an A-vertex if G[Pi∪{xi+1}] contains
a hamiltonian (v, xi+1)-path and v ∈ Pi (0 ≤ i ≤ k − 1) a B-vertex if G[Pi ∪ {xi}]
contains a hamiltonian (xi, v)-path, where xk+1 = y and x0 = x.

From the definition, we can see that each ai is an A-vertex and each bi is a B-vertex.
Furthermore, if v ∈ Pi (i 6= 0) and v+ai ∈ E(G), then v is an A-vertex and if v ∈ Pi

(i 6= k) and v−bi+1 ∈ E(G), then v is a B-vertex.

Lemma 1 (Chen et al. [5]). If ui ∈ Pi and uj ∈ Pj are two A-vertices (B-vertices,
respectively) with i 6= j, then xP ui /∈ E(G) and uiuj /∈ E(G). In particular, both
A ∪ {xP } and B ∪ {xP } are independent sets.

Lemma 2 (Chen et al. [5]). Let ui ∈ Pi, uj ∈ Pj be A-vertices with i < j, Qi and Qj

are hamiltonian (ui, xi+1)-path and (uj , xj+1)-path in G[Pi∪{xi+1}] and G[Pj∪{xj+1}],
respectively, Q = ui

−→
Qixi+1

−→
P xj and R = uj

−→
Qjxj+1

−→
P y. If v ∈ NQ(ui), then v− /∈ N(uj)

and if v ∈ N(ui)∩(x−→P xi∪R), then v+ /∈ N(uj). In particular, let ai, aj ∈ A with i < j

and v ∈ N(ai), then v− /∈ N(aj) if v ∈ ai
−→
P xj and v+ /∈ N(aj) if v ∈ x

−→
P xi ∪ aj

−→
P y.

By the symmetry of A and B, Lemma 2 still holds if we exchange A and B.
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Lemma 3 (Chen et al. [5]). Let u, v ∈ ai
−→
P bj with j ≥ i + 1 and G[ai

−→
P bj ] contain

a hamiltonian (u, v)-path. Suppose that w ∈ x
−→
P xi ∪ xj

−→
P y and uw ∈ E(G). Then

w−v /∈ E(G) if w− ∈ x
−→
P xi ∪ xj

−→
P y and w+v /∈ E(G) if w+ ∈ x

−→
P xi ∪ xj

−→
P y. In

particular, let ai ∈ A and bj ∈ B with j ≥ i + 1. Suppose that v ∈ x
−→
P xi ∪ xj

−→
P y

and aiv ∈ E(G). Then, v−bj /∈ E(G) if v− ∈ x
−→
P xi ∪ xj

−→
P y, and v+bj /∈ E(G) if

v+ ∈ x
−→
P xi ∪ xj

−→
P y.

Lemma 4 (Chen et al. [5]). Let u, u+ ∈ Pi. If u+al ∈ E(G) for some l ≥ i + 1, then
bju /∈ E(G) for all j ≤ i.

Lemma 5 (Chen et al. [2]). Let |Pi| ≥ 2, u, v /∈ Pi and {u, v} � Pi. If uai, vbi+1 ∈
E(G), then there exists some vertex w ∈ Pi such that uw, vw+ ∈ E(G).

Lemma 6 (Chen et al. [5]). Let i ≥ 2, z ∈ Pj and [ai, z] → xP . If |A| ≥ 3 and
j 6= i − 1, then A ∪ {z+, xP } is an independent set if z+ ∈ P and B ∪ {z−, xP } is an
independent set if z− ∈ P .

Lemma 7. Let |A| = |B| = 3, z ∈ Pj and [xP , z]→ ai. If z− ∈ P , then B ∪ {xP , z−}
is an independent set.

Proof. Suppose to the contrary there is some bl such that blz
− ∈ E(G). If l = j + 1,

then z is a B-vertex, which contradicts Lemma 1 since |B| = 3 and B−{ai} ⊆ N(z). If
l < j+1, then j = 2 or 3 for otherwise we have a2, a3 /∈ N(z) by Lemma 4. If j = 2 and
l = 1, then by Lemmas 2 and 4, we have b2, a3 /∈ N(z), and if j = 2 and l = 2, then by
Lemmas 3 and 4, a1, a3 /∈ N(z), a contradiction. Thus, we may assume j = 3. If l = 3,
then by Lemma 3, a1, a2 /∈ N(z); if l = 2, then by Lemmas 2 and 3, b3, a1 /∈ N(z);
and if l = 1, then by Lemma 2, b2, b3 /∈ N(z), a contradiction. If l > j + 1, then
since b1z ∈ E(G), by Lemma 2 we have j = 0. If l = 2, then by Lemma 2 and 3,
b3, a1 /∈ N(z) and if l = 3, then by Lemma 3, a1, a2 /∈ N(z), a contradiction. Since
|A| = 3 and A−{ai} ⊆ N(z), by Lemma 1 we have z /∈ A, which implies z−xP /∈ E(G).
Thus, B ∪ {xP , z−} is an independent set.

Now, let G be a 3-critical graph, α(G) = δ(G) + 1 and v0 ∈ V (G) with d(v0) =
δ(G) = 3. Suppose N(v0) = {v1, v2, v3} and I = {v0, w1, w2, w3} is an independent set.
The following lemma restates a lemma due to Sumner and Blitch [7], which has become
of considerable utility in dealing with 3-critical graphs. In [7] they considered the case
l ≥ 4, which guarantees P (W ) ∩W = ∅. For the cases l = 2 and l = 3, Lemma 8 can
be easily verified since G is a 3-critical graph.

Lemma 8. Let G be a connected 3-critical graph and U an independent set of l ≥ 2
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vertices. Then there exists an ordering u1, u2, · · · , ul of the vertices of U and a sequence
P (U) = (y1, y2, · · · , yl−1) of l−1 distinct vertices such that [ui, yi]→ ui+1, 1 ≤ i ≤ l−1.

The next lemma is a useful consequence of Lemma 8.

Lemma 9 (Favaron et al. [6]). Let U be an independent set of l ≥ 3 vertices of a
3-critical graph G such that U ∪{v} is independent for some v /∈ U . Then the sequence
P (U) defined in Lemma 8 is contained in N(v).

Since I is an independent set of order 4, by Lemmas 8 and 9, we may assume
without loss of generality that [wi, vi]→ wi+1 for i = 1, 2.

Lemma 10 (Chen et al. [5]). If [v0, z]→ wi for i 6= 3, then we have z /∈ N(v0) and if
[v0, vl]→ w3, then l = 2.

Lemma 11 (Chen et al. [5]). If [v0, v2] → w3, then we have v1, v2, w3 /∈ N(v3) and
w1, w2 ∈ N(v3).

Lemma 12. Let G be 3-critical, X = {x1, x2, x3} = {xi, xj , xl} and {xP , ai, u, v} a
maximum independent set. If [xP , xl]→ ai, then we have xlxi ∈ E(G), xi, xl /∈ N(xj)
and {xl, xj} ⊆ N(u) ∩N(v).

Proof. Let U = {ai, u, v} = {u1, u2, u3}. By Lemmas 8 and 9, we may assume that
[um, xqm ] → um+1 for m = 1, 2. Let X − {xq1 , xq2} = {xq3}. If [xP , xl] → ai, then by
Lemma 10, we have ai = u3 and xl = xq2 . Since [u1, xq1 ]→ u2, we have xq1ai ∈ E(G).
By Lemma 11, xq3ai /∈ E(G). Thus, since xi ∈ X and xiai ∈ E(G), we have xq1 = xi

and xq3 = xj , that is, [u1, xi]→ u2 and [u2, xl]→ ai. In this case, we have xixl ∈ E(G)
and by Lemma 11, we have xi, xl /∈ N(xj) and {xl, xj} ⊆ N(u) ∩N(v).

The following two lemmas can be extracted from [2].

Lemma 13 (Chen et al. [2]). Suppose that P is a longest (x, y)-path such that
|X ∩ {x, y}| is as small as possible and that for this path, d(xP ) = k ≥ 4. If G is
3-critical, then there exists an independent set I such that either {xP } ∪ A ⊆ I or
{xP } ∪B ⊆ I and |I| ≥ k + 1.

Lemma 14 (Chen et al. [2]). Let G be a 3-connected 3-critical graph of order n,
x, y ∈ V (G) and p(x, y) = n − 2. Suppose that P is a longest (x, y)-path such that
d(xP ) is as large as possible and subject to this, |X ∩ {x, y}| is as small as possible.
If d(xP ) = 3, {x, y} ⊆ X and Pi is a clique for i = 1, 2, then a1b3 /∈ E(G), and if
a2b2 ∈ E(G), then n = 8 and α(G) = 3.
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3. Proof of Theorem 4

Let G be a 3-connected 3-critical graph with α(G) = δ(G) + 1 = 4. We still use
the notations given in Section 3. Suppose to the contrary that G is not Hamilton-
connected. By Theorem 7, there are two vertices x, y such that p(x, y) = n−2. Among
all the longest (x, y)-paths, we choose P such that

(a) d(xP ) is as large as possible;
(b) subject to (a), |{x, y} ∩N(xP )| is as small as possible;
(c) subject to (a) and (b), s(P ) is as small as possible.

Choose an orientation such that |A| ≥ |B|. Assume without loss of generality that the
orientation is from x to y. Since α(G) = δ(G) + 1 = 4, by the choice of P and Lemma
13, we have d(xP ) = 3.

We consider the following two cases separately.

Case 1. |A| = 3

Let U = N [xP ] ∪ A. If |A| = 3, then by Lemmas 8 and 9, we may assume that
[ail , xjl

]→ ail+1
for l = 1, 2. Thus, noting that |A| = 3, we have

dU (xi) ≥ δ = 3 for any xi ∈ X. (1)

If [a3, b3]→ xP , then b2a3, a1b3 ∈ E(G) by Lemma 1. In this case, we have |P2| ≥ 2
and hence d(x3) ≥ 4 by (1). Thus, Q = x

−→
P x1xP x2

−→
P b3a1

−→
P b2a3

−→
P y is an (x, y)-path

of length n− 2 with xQ = x3, which contradicts the choice of P and hence

[a3, b3]→ xP is impossible. (2)

Claim 1. Let z ∈ Pj and [xP , z]→ ai. If z+ ∈ P , then A ∪ {xP , z+} is an independent
set.

Proof. If |B| = 3, then since B − {ai} ⊆ N(z), by Lemma 1 we have z /∈ B. If |B| = 2
and z = b2, then we must have a2 = b3 = ai. Since P3 ⊆ N(z), by Lemmas 1 and 2 we
have N(ai) ∩ P3 = ∅. Thus, by the choice of P , we have N(ai) = X, which contradicts
τ(G) > 1 since ω(G − X) ≥ 3. If |B| = 2 and z = b3, then a1 = b2 = ai. Since
P3 ⊆ N(z), by Lemmas 1 and 3 we have N(ai) ∩ P3 = ∅. If aix3 ∈ E(G), then by the
choice of P , we have N(ai) = X, which contradicts τ(G) > 1. If x3ai /∈ E(G), then
P ′ = xxP x2

−→
P y is an (x, y)-path of length n−2 such that s(P ′) < s(P ), a contradiction.

Therefore, we have z /∈ B and hence z+xP /∈ E(G). Thus, by Lemma 1, we need only
to show A ∪ {z+} is an independent set.
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Suppose to the contrary there is some al such that alz
+ ∈ E(G). If l = j, then z is

an A-vertex, which contradicts Lemma 1 since |A| = 3 and A− {ai} ⊆ N(z). If l < j,
then by Lemmas 2 and 3, we have aj+1, bj /∈ N(z), which implies j = 3. If l = 1, then
by Lemma 3, we have b2, b3 /∈ N(z) and if l = 2, then by Lemmas 2 and 3 we have
a1, b3 /∈ N(z), a contradiction. Thus we have l > j.

If |B| = 3, then since b1z ∈ E(G), by Lemma 4 we have j = 0. Thus, if l = 1,
then by Lemma 3 we have b2, b3 /∈ N(z); if l = 2, then by Lemmas 2 and 3, we have
a1, b3 /∈ N(z); and if l = 3, then by Lemma 2, we have a1, a2 /∈ N(z), a contradiction.
Thus, we have |B| = 2.

If j = 2, then l = 3. By Lemma 4 we have b2z /∈ E(G), which implies a1 = b2 = ai.
Let Q = xxP x2

−→
P y. Obviously, |Q| = n − 1 and xQ = a1. By the choice of P ,

we have d(a1) = 3. If N(a1) ∩ P3 6= ∅, say v ∈ N(a1) ∩ P3, then the (x, y)-path
xxP x3

←−
P z+a3

−→
P v−z

←−
P a1v

−→
P y is hamiltonian, and hence N(a1)∩P3 = ∅. If a1x3 ∈ E(G),

then since d(a1) = 3, we have N(a1) = X, which contradicts τ(G) > 1. Thus, Q is
an (x, y)-path of length n− 2 with s(Q) < s(P ), which contradicts the choice of P . If
j = 1 and l = 2, then by Lemma 3 we have b3z /∈ E(G), which implies a2 = b3 = ai.
This contradicts Lemma 1 since zb2 ∈ E(G), which implies z+ is a B-vertex. If j = 1
and l = 3, then by Lemma 2 we have za2 /∈ E(G), which implies a2 = ai. If N(a2) ∩
P3 6= ∅, say v ∈ N(a2) ∩ P3, then the (x, y)-path x

−→
P zv−

←−
P a3z

+−→P x2xP x3
←−
P a2v

−→
P y

is hamiltonian, and hence N(a2) ∩ P3 = ∅. If a2 = b3, then we have d(a2) = 3 and
xa2 ∈ E(G) for otherwise we can choose R = x

−→
P x2xP x3

−→
P y replacing P . In this case,

we have N(a2) = X, which contradicts τ(G) > 1. Thus we may assume a2 6= b3.
Let S = x

−→
P za+

2
−→
P x3xP x2

←−
P z+a3

−→
P y. Then S is an (x, y)-path of length n − 2 with

xS = a2. Noting that N(a2) ∩ P3 = ∅, by the choice of P , we have d(a2) = 3 and
xa2 ∈ E(G). In this case, N(a2) = {x1, x2, a

+
2 }. Since a2 6= b3, we have a+

2 6= x3 and
hence s(S) < s(P ), a contradiction. Thus, we have alz

+ /∈ E(G) for any al ∈ A, and
hence A ∪ {xP , z+} is an independent set.

Claim 2. Let v ∈ Pi, where 1 ≤ i ≤ 3. If aiv
+ ∈ E(G), then aiv ∈ E(G).

Proof. Since v+ai ∈ E(G), v is an A-vertex. If aiv /∈ E(G), then by Lemma 1,
A ∪ {xP , v} is an independent set of order 5, a contradiction.

Claim 3. If z ∈ P1 and [a2, z]→ xP , then B ∪ {xP , z−} is an independent set.

Proof. If z−b2 ∈ E(G), then z is a B-vertex. By Lemma 1, zb3 /∈ E(G), which implies
a2b3 ∈ E(G). By Claim 2, P2 ⊆ N [a2]. If a1x2 ∈ E(G), then z is an A-vertex,
which contradicts Lemma 1 since za3 ∈ E(G). If a1x3 ∈ E(G), then the (x, y)-path
x
−→
P x1xP x2

−→
P x3a1

−→
P z−b2

←−
P za3

−→
P y is hamiltonian. Thus, we have x2, x3 /∈ N(a1). Since
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xP a3 /∈ E(G), there is some vertex w such that [xP , w] → a3 or [a3, w] → xP . If
[a3, w] → xP , then by Lemma 6 we have w ∈ P2 or w = y. Since P2 ⊆ N [a2], we
see that each vertex of P2 − {b3} is an A-vertex. Thus, if w ∈ P2, then we have
w = b3, which contradicts (2), and hence we have w = y. If [xP , w] → a3, then since
x2, x3 /∈ N(a1), we have w /∈ X by Lemma 12. Thus, by Claim 1, we have w = y. In
both cases, y 6= a3 and a1y ∈ E(G). By Lemma 4, zy− /∈ E(G) and hence a2y

− ∈ E(G).
Thus, R = x

−→
P x1xP x3

←−
P a2y

−←−P a3z
−→
P b2z

−←−P a1y is an (x, y)-path of length n − 2 with
xR = x2. Since z ∈ P1 and |A| = 3, we have |P1| ≥ 2. By (1), d(xR) = d(x2) ≥ 4,
which contradicts the choice of P . Therefore, z−b2 /∈ E(G).

If z−b3 ∈ E(G), then by Lemma 1 we have a2x3 /∈ E(G) since a1z ∈ E(G), which
implies z− is an A-vertex. If a2x1 ∈ E(G), then x

−→
P x1a2

−→
P b3z

−←−P a1z
−→
P x2xP x3

−→
P y is a

hamiltonian (x, y)-path. Thus, we have x1, x3 /∈ N(a2). Since z−b2 /∈ E(G), we have
z 6= b2. If a1b2 ∈ E(G), then by Claim 2, z is an A-vertex, which contradicts Lemma
1 since za3 ∈ E(G), and hence a1b2 /∈ E(G). Thus, there is some vertex w such that
[a1, w] → b2 or [b2, w] → a1. It is easy to see w 6= xP . Thus, in order to dominate
xP , we have w ∈ X. If [a1, w] → b2, then w 6= x2. Noting that x1, x3 /∈ N(a2),
we can see that w 6= x1, x3. Thus, we have [b2, w] → a1. Obviously, w 6= x1. If
w = x2, then x2b3 ∈ E(G). By Lemma 3, a2b2 /∈ E(G). Since a2x3 /∈ E(G), we
have zx3 ∈ E(G). If b2a3 ∈ E(G), then the (x, y)-path x

−→
P z−b3

←−
P x2xP x3z

−→
P b2a3

−→
P y is

hamiltonian, and hence b2a3 /∈ E(G). Thus, A∪{b2, xP } is an independent set of order
5, a contradiction. Hence, w 6= x2, which implies w = x3, that is, [b2, x3] → a1. In
this case, a2b2 ∈ E(G) since a2x3 /∈ E(G). By Lemma 5, there is some vertex u ∈ P2

such that b2u, u+x3 ∈ E(G). Thus, the (x, y)-path x
−→
P z−b3

←−
P u+x3xP x2

−→
P ub2

←−
P za3

−→
P y

is hamiltonian, a contradiction. Hence, z−b3 /∈ E(G).
Since za3 ∈ E(G), we have b1z

− /∈ E(G) by Lemma 4 if |B| = 3 and z /∈ A by
Lemma 1, which implies z−xP /∈ E(G). Thus B ∪ {xP , z−} is an independent set.

Claim 4. If z ∈ P2 and [a3, z]→ xP , then B ∪ {xP , z−} is an independent set.

Proof. Since za1 ∈ E(G), we have b2z
− /∈ E(G) by Lemma 3. Since z ∈ P2 and

za1 ∈ E(G), by Lemma 1, |P2| ≥ 2. By (1), d(x3) ≥ 4 and d(x1) ≥ 4 if |B| = 3.
If z−b1 ∈ E(G) or z−b3 ∈ E(G), then by Lemma 2, we have zb2 /∈ E(G), and hence
b2a3 ∈ E(G). Thus, Q = x

−→
P b1z

−←−P x2xP x3
←−
P za1

−→
P b2a3

−→
P y is an (x, y)-path of length

n − 2 with xQ = x1 if z−b1 ∈ E(G) and R = x
−→
P x1xP x2

−→
P z−b3

←−
P za1

−→
P b2a3

−→
P y is an

(x, y)-path of length n− 2 with xR = x3 if z−b3 ∈ E(G), which contradicts the choice
of P . Hence, we have z−b1, z

−b3 /∈ E(G). Since za1 ∈ E(G), by Lemma 1 we have
z /∈ A, and hence z−xP /∈ E(G). Thus, B ∪ {xP , z−} is an independent set.
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Since |A| = 3, by Lemma 10, there are some vertices ai with i ≥ 2 and z /∈ X

such that [xP , z] → ai or [ai, z] → xP . If |B| = 3, then by Lemma 7 and Claim 1, we
have [ai, z] → xP . By Lemma 6, we have z ∈ Pi−1. Thus, by Claims 3 and 4, we see
B ∪{xP , z−} is an independent set of order 5, a contradiction. Hence we have |B| = 2.

Claim 5. If [xP , y]→ ai, then B ∪ {xP , y−} is an independent set.

Proof. Since |A| = 3 and A−{ai} ⊆ N(y), by Lemma 1 we have y 6= a3, which implies
y−xP /∈ E(G). If ai 6= a1, then by Lemma 3, we have b2, b3 /∈ N(y−). If ai = a1,
then we have b3, a2 ∈ N(y). By Lemmas 2 and 3, we have b2, b3 /∈ N(y−). Thus,
B ∪ {xP , y−} is an independent set.

Claim 6. If [a2, z]→ xP , then z = y.

Proof. By Lemma 6, we have z ∈ P1 or z = y. If z 6= y, then z ∈ P1. Since
xP a3 /∈ E(G), there is some vertex w such that [xP , w]→ a3 or [a3, w]→ xP . If w = y,
then by Lemma 6 or Claim 5, B∪{xP , y−} is an independent set. If z−y− ∈ E(G), then
the (x, y)-path x1xP x2

←−
P za1

−→
P z−y−

←−
P a2y is hamiltonian, and hence z−y− /∈ E(G).

Thus, by Claim 3, we can see that B ∪ {xP , y−, z−} is an independent set of order 5,
and hence w 6= y. If [xP , w]→ a3, then by Claim 1, we have w ∈ {x1, x2}. By Lemma
12, we have a1x2 ∈ E(G). By Claim 2, z is an A-vertex, which contradicts Lemma 1
since za3 ∈ E(G). Thus, we have [a3, w] → xP . By Lemma 6, we have w ∈ P2. By
Claim 4, B∪{xP , w−} is an independent set. Noting that z− and w− are A-vertices, we
have z−w− /∈ E(G) by Lemma 1. Thus, by Claim 3, B∪{xP , w−, z−} is an independent
set of order 5, a contradiction.

Claim 7. If [a2, y]→ xP or [xP , y]→ a2, then a3y, a1b2, a2b3 ∈ E(G).

Proof. By Lemma 1, a3y ∈ E(G). Thus, y− is an A-vertex. By Lemma 6 or Claim
5, B ∪ {xP , y−} is an independent set. If a1b2 /∈ E(G) or a2b3 /∈ E(G), then a2b2 ∈
E(G) for otherwise {xP , a1, b2, a2, y

−}, or {xP , b3, b2, a2, y
−} is an independent set and

a1b3 ∈ E(G) for otherwise {xP , a1, b2, b3, y
−}, or {xP , b3, a1, a2, y

−} is an independent
set, which contradicts α(G) = 4. Thus, by Lemmas 1 and 3, we have

a1, b3 /∈ N(x2) and a2, b2 /∈ N(x1) ∪N(x3). (3)

If a1b2 /∈ E(G), then there is some vertex w such that [a1, w] → b2 or [b2, w] → a1.
Obviously, w 6= xP . Thus, in order to dominate xP , we have w ∈ X. By (3), we have
[b2, x3] → a1. By Lemma 5, there is some vertex v ∈ P2 such that b2v, x3v

+ ∈ E(G),
which implies the (x, y)-path x1xP x2

−→
P vb2

←−
P a1b3

←−
P v+x3

−→
P y is hamiltonian, and hence

a1b2 ∈ E(G). If a2b3 /∈ E(G), then there is some vertex u such that [a2, u] → b3 or
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[b3, u] → a2. Clearly, u 6= xP , and hence u ∈ X. By (3), we have [a2, x1] → b3. By
Lemma 5, there is some vertex v ∈ P1 such that x1v, a2v

+ ∈ E(G), which implies the
(x, y)-path x1v

←−
P a1b3

←−
P a2v

+−→P x2xP x3
−→
P y is hamiltonian, and hence a2b3 ∈ E(G).

Claim 8. If [xP , z]→ a2 and z ∈ {x1, x3}, then a1b2, a2b3 ∈ E(G).

Proof. By Lemma 12, we have a1x3 ∈ E(G). By Lemma 3, we have b2, b3 /∈ N(a3).
If a1b2 /∈ E(G) or a2b3 /∈ E(G), then a1b3 ∈ E(G) for otherwise {xP , a1, b2, b3, a3},
or A ∪ {xP , b3} is an independent set of order 5. Thus by Lemmas 2 and 3, we have
b2 /∈ N(x1) ∪N(x3), which contradicts z ∈ {x1, x3}.

Claim 9. If [xP , z]→ a2 and z ∈ {x1, x3}, then a3y ∈ E(G).

Proof. Since xP a3 /∈ E(G), there is some vertex w such that [xP , w]→ a3 or [a3, w]→
xP . If [xP , w] → a3, then since z ∈ X, by Lemma 10 we have w /∈ X. By Claim 1,
w = y. If [a3, w]→ xP , then by Lemma 6, w ∈ P2 or w = y. If w ∈ P2, then by Claims
2 and 8, we have w = b3, which contradicts (2). Thus, we have w = y in both cases.
By Lemma 6 or Claim 5, B∪{xP , y−} is an independent set. If a3y /∈ E(G), then since
z ∈ X, by Lemma 10, there is some vertex u ∈ V (G)−N [xP ] such that [xP , u]→ a1 or
[a1, u]→ xP . Since a3y /∈ E(G), by Claim 1, we can see that [xP , u]→ a1 is impossible.
Thus, we have [a1, u] → xP . If u ∈ B, say u = bi, then since bia3, a1y

− ∈ E(G),
by Lemma 5 there is some vertex v ∈ P3 − {y} such that biv, a1v

+ ∈ E(G), which
contradicts Lemma 3. Thus, in order to dominate a3, we have u ∈ P3−{y} by Claims 2
and 8. Since a2u ∈ E(G), by Lemma 2, a3u

+ /∈ E(G). If a1u
+ ∈ E(G) or a2u

+ ∈ E(G),
then by Lemma 3, b3u /∈ E(G), which implies a1b3 ∈ E(G). Thus, by Lemmas 2 and 3,
we have b2 /∈ N(x1) ∪ N(x3), which contradicts z ∈ {x1, x3}. Hence, a1, a2 /∈ N(u+),
which implies A∪{xP , u+} is an independent set of order 5, a contradiction. Thus, we
have a3y ∈ E(G).

Since xP a2 /∈ E(G), there is some vertex z such that [xP , z] → a2 or [a2, z] → xP .
If [a2, z]→ xP , then z = y by Claim 6. By Claim 7, we have a3y, a1b2, a2b3 ∈ E(G). If
[xP , z]→ a2, then by Claim 1, we have z ∈ {x1, x3, y}. Thus, by Claims 7, 8 and 9, we
have a3y, a1b2, a2b3 ∈ E(G). Hence, by Claim 2, we have

Pi ⊆ N [ai] for i = 1, 2, 3. (4)

If z = y, then by Lemma 1 and (4), we have P3 ⊆ N [y]. If z 6= y, then by Claims
1 and 6, we have [xP , z] → a2 and z ∈ {x1, x3}. Since xP a3 /∈ E(G), there is some
vertex u such that [xP , u] → a3 or [a3, u] → xP . If u 6= y, then Lemma 10 and Claim
1, we have [a3, u]→ xP . By Lemma 6, we have u ∈ P2. By (4), we have u = b3, which
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contradicts (2). If u = y, then by Lemma 6, B ∪ {y−} is an independent set. Since
a1xP /∈ E(G), there is some vertex w such that [a1, w] → xP or [xP , w] → a1. Since
z ∈ X, by Lemma 10, w /∈ X. If w = y, then by Lemma 1 and (4), P3 ⊆ N [y]. If
w 6= y, then by Claim 1, we have [a1, w] → xP . In order to dominate a2, a3, we have
w ∈ B, which is impossible since {a1, w} 6� y−. Therefore, we have

P3 ⊆ N [y]. (5)

Let w be a vertex such that [xP , w]→ a3 or [a3, w]→ xP . If z ∈ X, then by Lemma
10, Claim 1 and (4), we have [a3, w] → xP . By Lemma 6, we have w ∈ P2 or w = y.
By (2) and (4), we have w = y. If z /∈ X, then by Claims 1 and 6, we have z = y.
Thus, we have

either w = y or z = y. (6)

By (6), we have y 6= a3, which implies y−xP /∈ E(G). Let v be a vertex such
that [xP , v] → y− or [y−, v] → xP . By Lemma 6, Claim 5 and (6), B ∪ {xP , y−} is
an independent set. By (4), y− is an A-vertex. Thus, by Lemma 1 and (4), we have
N(y−) ∩ Pi = ∅ for i = 1, 2. If [y−, v] → xP , then we must have v = y, which implies
{xP , y} � V (G) by (5), a contradiction. Thus, we have [xP , v]→ y−. By (4), we have
v ∈ X. If y− = a3, then by Lemma 12, we have N(a3) ∩ {x1, x2} = ∅, which implies
d(a3) = 2, a contradiction. Thus, we have y− 6= a3. In this case, y− /∈ A. By Lemmas
8 and 9, we may assume [ail , xjl

]→ ail+1
for l = 1, 2 and X − {xj1 , xj2} = {xj3}. This

implies v = xj3 . Since y− is an A-vertex, we have y−ai1 /∈ E(G) or y−ai2 /∈ E(G),
which implies either y−xj1 ∈ E(G) or y−xj2 ∈ E(G). Thus, since xj1xj2 ∈ E(G), we
can see that either {xj1 , xj3} � V (G) or {xj2 , xj3} � V (G), a contradiction.

Case 2. |A| = 2

In this case, our main idea is to prove that Pi is a clique for i = 1, 2. In order to do
this, we first show that either a1b2 ∈ E(G) or a2b3 ∈ E(G) and then a1b2, a2b3 ∈ E(G).

If |Pi| = 1 for some i ∈ {1, 2}, then by the choice of P , we have N(ai) = X, which
contradicts τ(G) > 1. Thus, we have |Pi| ≥ 2 for i = 1, 2, which implies b−2 , a+

2 /∈ X.
Noting that a2, b2 ∈ N(x2), by the choice of P , we see that

there is no (x, y)-path Q such that xQ = a2 or b2. (7)

Claim 10. If a ∈ P1 is an A-vertex, then aa+
2 /∈ E(G), and if b ∈ P2 is a B-vertex, then

bb−2 /∈ E(G).

Proof. Let Q be a hamiltonian (a, x2)-path in G[P1 ∪ {x2}]. If aa+
2 ∈ E(G), then
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R = x1xP x2
←−
Qaa+

2
−→
P x3 is an (x, y)-path of length n−2 with xR = a2, which contradicts

(7). As for the latter part, the proof is similar.

Claim 11. If a ∈ P2 is an A-vertex and aa+
1 ∈ E(G), then N(a1) = {x1, x3, a

+
1 }.

Similarly, if b ∈ P1 is a B-vertex and bb−3 ∈ E(G), then N(b3) = {x1, x3, b
−
3 }.

Proof. Let Q be a hamiltonian (a, x3)-path in G[P2 ∪ {x3}]. If aa+
1 ∈ E(G), then

R = x1xP x2
←−
P a+

1 a
−→
Qx3 is an (x, y)-path of length n − 2 with xR = a1. By the choice

of P , we have d(a1) = 3 and x1, x3 ∈ N(a1), which implies N(a1) = {x1, x3, a
+
1 }. As

for the latter part, the proof is similar.

Let a ∈ P1 − {b2} and b ∈ P2 − {a2}. Suppose P ′ is an (a, b−2 )-path with V (P ′) =
P1 − {b2} and P ′′ an (a+

2 , b)-path with V (P ′′) = P2 − {a2}. We have the following two
claims.

Claim 12. If (N(x1) ∪N(x3)) ∩ {b−2 , a+
2 } 6= ∅, then ab /∈ E(G).

Proof. By symmetry, we may assume N(x1) ∩ {b−2 , a+
2 } 6= ∅. If ab ∈ E(G), then Q =

x1b
−
2

←−
P ′ab
←−
P ′′a+

2 a2x2xP x3 is an (x, y)-path of length n− 2 with xQ = b2 if x1b
−
2 ∈ E(G),

and R = x1a
+
2

−→
P ′′ba

−→
P ′b−2 b2x2xP x3 is an (x, y)-path of length n − 2 with xR = a2 if

x1a
+
2 ∈ E(G), which contradicts (7).

Claim 13. If v ∈ P2 and av ∈ E(G), then v+, v− /∈ N(b−2 ) and if u ∈ P1 and bu ∈ E(G),
then u+, u− /∈ N(a+

2 ).

Proof. If v+b−2 ∈ E(G), then Q = x1xP x2
−→
P va
−→
P ′b−2 v+−→P x3 is an (x, y)-path of length

n − 2 with xQ = b2 and if v−b−2 ∈ E(G), then R = x1xP x2
−→
P v−b−2

←−
P ′av

−→
P x3 is an

(x, y)-path of length n− 2 with xR = b2, which contradicts (7). As for the latter part,
the proof is similar.

Claim 14. If a2b2 ∈ E(G) and [a1, x2] → b3, then P2 − {b3} ⊆ N(x2) and N(b3) =
{x1, x3, b

−
3 }.

Proof. If v ∈ P2 and a1v ∈ E(G), then by Lemma 5, there is some vertex u ∈ a2
−→
P v

such that ux2, u
+a1 ∈ E(G). Thus, x1xP x2u

←−
P a2b2

←−
P a1u

+−→P x3 is a hamiltonian (x, y)-
path, and hence N(a1)∩P2 = ∅, which implies P2−{b3} ⊆ N(x2). On the other hand,
since Q = x1

−→
P b2a2

−→
P b−3 x2xP x3 is an (x, y)-path of length n− 2 with xQ = b3, by the

choice of P , we have d(b3) = 3 and x1 ∈ N(b3), which implies N(b3) = {x1, x3, b
−
3 }.

Claim 15. If a1b2, a2b3 /∈ E(G), then either a1b3 ∈ E(G) or a2b2 ∈ E(G).

Proof. Otherwise, {xP , a1, a2, b2, b3} is an independent set of order 5 by Lemma 1, a
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contradiction.

Assume a1b2, a2b3 /∈ E(G). Let z be a vertex such that [a1, z]→ b2 or [b2, z]→ a1.
Obviously, z 6= xP . In order to dominate xP , we have z ∈ X. It is easy to check that
there are four cases: [a1, x1] → b2, [a1, x3] → b2, [b2, x2] → a1 or [b2, x3] → a1, and at
least one of the four cases occurs.

If [a1, x1] → b2, then by Lemma 1, x1a2 ∈ E(G). By Lemma 3, a1b3 /∈ E(G). By
Claim 15, a2b2 ∈ E(G). By Lemma 3, a1, b3 /∈ N(x2). Consider a2b3 /∈ E(G), we
can easily get that [b3, x3] → a2. Thus, consider a1b3 /∈ E(G), we have [a1, x2] → b3

or [b3, x2] → a1. Since [a1, x1] → b2 and [b3, x3] → a2, by symmetry, we may assume
that [a1, x2] → b3. By Claim 14, P2 − {b3} ⊆ N(x2) and N(b3) = {x1, x3, b

−
3 }. Thus,

we have P1 ⊆ N(x3) since [b3, x3] → a2. Since [a1, x1] → b2 and a1 /∈ N(x2), we
have x1x2 ∈ E(G). Therefore, we have {x2, x3} � V (G), a contradiction. Hence,
[a1, x1]→ b2 is impossible. By symmetry, [b3, x3]→ a2 is impossible.

If [a1, x3] → b2, then a2x3 ∈ E(G), which implies b3 is an A-vertex. By Lemma
1, a1b3 /∈ E(G). By Claim 15, a2b2 ∈ E(G). By Lemma 3, a1, b3 /∈ N(x2). Con-
sider a2b3 /∈ E(G), we have [a2, x1] → b3 or [b3, x1] → a2. If [a2, x1] → b3, then
x1b3 /∈ E(G). In this case, consider a1a2 /∈ E(G), we have [a2, x3] → a1. Thus, by
Claim 11, a+

1 a2, a
+
1 b3 /∈ E(G). Now, consider a+

1 a2 /∈ E(G). It is not difficult to check
that there is no vertex w such that [a+

1 , w] → a2 or [a2, w] → a+
1 , a contradiction. If

[b3, x1] → a2, then consider a1b3 /∈ E(G), we have [a1, x2] → b3 or [b3, x2] → a1. Since
[a1, x3] → b2 and [b3, x1] → a2, by symmetry, we may assume that [a1, x2] → b3. By
Claim 14, P2 − {b3} ⊆ N(x2) and N(b3) = {x1, x3, b

−
3 }. Since [b3, x1] → a2, we have

P1 ⊆ N(x1). Since [a1, x3] → b2 and a1x2 /∈ E(G), we have x2x3 ∈ E(G). Thus, we
have {x1, x2} � V (G), a contradiction. Hence, [a1, x3]→ b2 is impossible. By symme-
try, [b3, x1]→ a2 is impossible.

If [b2, x2] → a1, then x2b3 ∈ E(G). By Lemma 3, a2b2 /∈ E(G). By Claim 15,
a1b3 ∈ E(G). By Lemmas 2 and 3, a2, b2 /∈ N(x1) ∪ N(x3). In this case, it is not
difficult to see that there is no vertex w such that [a2, w] → b3 or [b3, w] → a2, a con-
tradiction. Thus, [b2, x2]→ a1 is impossible. By symmetry, [a2, x2]→ b3 is impossible.

If [b2, x3]→ a1, then by Lemma 5, there is some vertex u ∈ P2 such that ub2, u
+x3 ∈

E(G). If a1b3 ∈ E(G), then x1xP x2
−→
P ub2

←−
P a1b3

←−
P u+x3 is a hamiltonian (x, y)-path,

and hence a1b3 /∈ E(G). By Claim 15, a2b2 ∈ E(G). By Lemma 3, a1, b3 /∈ N(x2).
Consider a2b3 /∈ E(G). Since [b3, x3] → a2, [b3, x1] → a2 and [a2, x2] → b3 are im-
possible, we have [a2, x1] → b3. If a+

1 a+
2 ∈ E(G), then Q = x1xP x2a2b2

←−
P a+

1 a+
2
−→
P x3

is an (x, y)-path of length n − 2 with xQ = a1, which contradicts the choice of P

since a1x3 /∈ E(G). By Claim 11, a+
1 a2 /∈ E(G). Consider a+

1 a2 /∈ E(G), we have
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[a+
1 , x1]→ a2 or [a+

1 , x3]→ a2. If [a+
1 , x1]→ a2, then a+

1 b3, x1a
+
2 ∈ E(G), which implies

R = x1a
+
2
−→
P b3a

+
1
−→
P b2a2x2xP x3 is an (x, y)-path of length n−2 with xR = a1, a contra-

diction. Hence, we have [a+
1 , x3] → a2. Since [b2, x3] → a1 and [a2, x1] → b3, by sym-

metry, we have [b−3 , x1] → b2. Thus, x1b2, a2x3 /∈ E(G). Now, consider a1b3 /∈ E(G),
we have [a1, x2]→ b3 or [b3, x2]→ a1. By symmetry, we may assume that [a1, x2]→ b3.
By Claim 14, x1b3 ∈ E(G), which contradicts [a2, x1]→ b3. Therefore, [b2, x3]→ a1 is
impossible.

It follows from the argument above that either a1b2 ∈ E(G) or a2b3 ∈ E(G).

Since a1b2 ∈ E(G) or a2b3 ∈ E(G), by symmetry, we may assume a1b2 ∈ E(G).
If a2b3 /∈ E(G), then there is some vertex z such that [a2, z] → b3 or [b3, z] → a2.
Obviously, z 6= xP and hence z ∈ X. It is not difficult to see that there are four cases:
[a2, x1] → b3, [a2, x2] → b3, [b3, x1] → a2 or [b3, x3] → a2, and at least one of the four
cases occurs.

In order to prove a2b3 ∈ E(G), we need the following four claims.

Claim 16. If a2b3 /∈ E(G), then P1 ⊆ N [a1] and N(b3) ∩ P1 = ∅.

Proof. If [a2, x1] → b3 or [b3, x1] → a2, then since a1b2 ∈ E(G), we have b−2 x1 ∈ E(G)
by Lemma 1 and Claim 10. By Claim 12, a1b3 /∈ E(G). By Claim 10, b−2 b3 /∈ E(G).
If a1b

−
2 /∈ E(G), then {a1, b

−
2 , a2, b3, xP } is an independent set of order 5, and hence

a1b
−
2 ∈ E(G). If P1 6⊆ N [a1], then since a1b2 ∈ E(G), there is some vertex v ∈

P1 − {b−2 , b2} such that a1v /∈ E(G) and a1v
+ ∈ E(G). Clearly, v is an A-vertex. By

Claim 12, vb3 /∈ E(G). Thus, {a1, v, a2, b3, xP } is an independent set of order 5, and
hence P1 ⊆ N [a1]. Thus, by Lemma 1 and Claim 12, we have N(b3) ∩ P1 = ∅.

If [b3, x3] → a2, then since b2x3 ∈ E(G), we have a1b3 /∈ E(G) by Lemma 3. If
P1 6⊆ N [a1], we let v ∈ P1−{b2} such that a1v /∈ E(G) and a1v

+ ∈ E(G). Clearly, v is
an A-vertex. By Lemma 3, vb3 /∈ E(G). Thus, {a1, v, a2, b3, xP } is an independent set
of order 5, and hence P1 ⊆ N [a1]. By Lemmas 1 and 3, we have N(b3) ∩ P1 = ∅.

If [a2, x2] → b3, then x2a1 ∈ E(G), and hence b2 is an A-vertex. By Lemma 1,
b2a2 /∈ E(G). If N(a2) ∩ P1 6= ∅, then since a1a2 /∈ E(G), there is some vertex u ∈ P1

such that u−a2 /∈ E(G) and ua2 ∈ E(G). Obviously, u−x2 ∈ E(G). This contradicts
Lemma 3, since a1b2 ∈ E(G) implies there is a (u, u−)-path P ′ with V (P ′) = V (P1).
Thus, N(a2) ∩ P1 = ∅, and hence P1 ⊆ N(x2). If P1 6⊆ N [b2], then since a1b2 ∈ E(G),
there is some vertex u ∈ P1 such that u−b2 ∈ E(G) and ub2 /∈ E(G). Obviously, u is
a B-vertex. Thus, {u, b2, a2, b3, xP } is an independent set of order 5, a contradiction.
Hence, P1 ⊆ N [b2]. By Lemma 1, N(b3) ∩ a+

1
−→
P b2 = ∅. If a1b3 ∈ E(G), then by

Claims 10 and 13, we have b2a
+
2 /∈ E(G) and a+

2 , b−2 /∈ N(x1) ∪N(x3). Thus, consider
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a2b2 /∈ E(G), we cannot find a vertex w such that [a2, w] → b2 or [b2, w] → a2, and
hence a1b3 /∈ E(G), which implies N(b3) ∩ P1 = ∅. If v ∈ P1 and a1v /∈ E(G), then
noting that N(a2) ∩ P1 = ∅, {a1, v, a2, b3, xP } is an independent set of order 5, and
hence P1 ⊆ N [a1].

Claim 17. Let z ∈ P2, Q1 = a2
−→
P z− and Q2 = z+−→P b3. If a2b3 /∈ E(G) and a1, b

−
2 , b3 ∈

N(z), then Qi is a clique for i = 1, 2 and E(Q1, Q2) = ∅.

Proof. By Lemma 1 and Claim 10, z is neither an A-vertex nor a B-vertex. Thus,
z ∈ P2 − {a2, b3}. By Claim 13, a1, b

−
2 /∈ N(z+) ∪ N(z−). If Q2 6⊆ N [b3], then since

zb3 ∈ E(G), there is some vertex v ∈ Q2 such that vb3 /∈ E(G) and v−b3 ∈ E(G).
Obviously, v is a B-vertex. If z−v ∈ E(G) or b3z

− ∈ E(G), then z is a B-vertex,
and hence v, b3 /∈ N(z−). Thus, by Claim 10, we can see that {b−2 , z−, v, b3, xP } is an
independent set of order 5, and hence Q2 ⊆ N [b3]. In this case, we have N(z−)∩Q2 = ∅
for otherwise z is a B-vertex. If there are two vertices u, v ∈ Q2 such that uv /∈ E(G),
then since u and v are B-vertices, by Claim 10 we can see that {b−2 , z−, u, v, xP } is
an independent set of order 5, and hence Q2 is a clique. If N(a2) ∩ Q2 6= ∅, then
since Q2 is a clique, it is easy to see that z is an A-vertex. Thus, N(a2) ∩ Q2 = ∅.
If a2z

− /∈ E(G), then {a1, a2, z
−, z+, xP } is an independent set of order 5, and hence

a2z
− ∈ E(G). If Q1 6⊆ N [a2], then since a2z

− ∈ E(G), there is some vertex v ∈ Q1 such
that va2 /∈ E(G) and a2v

+ ∈ E(G). Clearly, v is an A-vertex. If vz+ ∈ E(G), then z

is an A-vertex, a contradiction. Thus, {a1, a2, v, z+, xP } is an independent set of order
5, and hence Q1 ⊆ N [a2]. In this case, N(z+) ∩Q1 = ∅ for otherwise z is an A-vertex.
If u, v ∈ Q1 and uv /∈ E(G), then {a1, u, v, z+, xP } is an independent set of order 5,
and hence Q1 is a clique. If vi ∈ Qi for i = 1, 2 and v1v2 ∈ E(G), then v1 6= a2, z

−,
and hence x2a2

−→
P v−1 z−

←−
P v1v2

−→
P b3v

−
2
←−
P z is a hamiltonian (x2, z)-path in G[P2 ∪ {x2}],

which implies z is a B-vertex, a contradiction. Thus, we have E(Q1, Q2) = ∅.

Claim 18. If a2b3 /∈ E(G), then for any z ∈ P2, both [xP , z]→ a2 and [a2, z]→ xP are
impossible.

Proof. Suppose to the contrary that there is some vertex z ∈ P2 such that [xP , z]→ a2

or [a2, z] → xP . If [xP , z] → a2, then z 6= b3. If [a2, b3] → xP , then by Lemmas 1 and
5, there is some vertex u ∈ P1 such that ub3, u

+a2 ∈ E(G), which contradicts Lemma
3. Thus, we have z 6= b3 in both cases. Let P ′ = a2

−→
P z− and P ′′ = z+−→P b3. Since

a1b2 ∈ E(G), by Lemma 1, we have b−2 a2 /∈ E(G). Thus, a1, b
−
2 , b3 ∈ N(z). Since

za1 ∈ E(G), by Lemma 3 and Claim 13, we have b2, b
−
2 /∈ N(z−). By Lemma 1 and

Claim 16, we have a1
−→
P b−2 ⊆ N(z). By Claim 17, P ′′ ⊆ N(z). Since {b−2 , a2, b3, xP }

is a maximum independent set, by Lemma 10, there is some vertex u ∈ {b−2 , b3} and
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a vertex w ∈ V (G) − N [xP ] such that [u, w] → xP or [xP , w] → u. If [xP , w] → u,
then w 6= z. If u = b−2 , then since wb3 ∈ E(G), by Claims 16 and 17, we have
w ∈ P ′′ which is impossible since wa2 /∈ E(G). If u = b3, then w /∈ P ′′ by Claim
17. Since b2z

− /∈ E(G), we have w 6= b2, z
−. Thus, by Lemma 1 and Claims 16

and 17, we see that w /∈ P1 ∪ P2, a contradiction. Hence, we have [u, w] → xP . If
u = b−2 , then in order to dominate a2 and b3, we have w = z by Lemma 1 and Claims
16 and 17. If u = b3, then in order to dominate P1 and P ′, it is easy to see that
w = z by Lemma 1 and Claims 16 and 17. In both cases, we have P ′ ⊆ N(z) by
Lemma 1 and Claim 17. Thus, we have [a2, z] → xP . If b2z ∈ E(G), then we have
{xP , z} � V (G). If b2z /∈ E(G), then a2b2 ∈ E(G). By Lemma 3, b−2 , b3 /∈ N(x2).
If z−x2 ∈ E(G), then x1xP x2z

−←−P a2b2
←−
P a1z

−→
P x3 is a hamiltonian (x, y)-path. Thus,

b−2 , z−, b3 /∈ N(x2). Noting that {b−2 , z−, b3, xP } is an independent set, by Lemmas 8
and 9, we have x1, x3 ∈ N(x2), which implies {x2, z} � V (G), a contradiction.

Claim 19. If a2b3 /∈ E(G) and x1, x3, b2 /∈ N(a2), then [xP , a+
2 ]→ a1 is impossible.

Proof. If [xP , a+
2 ] → a1, then a+

2 b3 ∈ E(G). If a+
2
−→
P b3 6⊆ N [b3], then there is some

vertex v ∈ a+
2
−→
P b3 such that v−b3 ∈ E(G) and vb3 /∈ E(G). Clearly, v is a B-vertex.

By Claim 10, v, b3 /∈ N(b−2 ). By Lemma 1 and Claim 16, a2 /∈ N(b−2 ). If a2v ∈ E(G),
then it is easy to see that a+

2 is a B-vertex, which contradicts Lemma 1 since b2a
+
2 ∈

E(G). Thus, {b−2 , a2, v, b3, xP } is an independent set of order 5, a contradiction. Hence,
we have a+

2
−→
P b3 ⊆ N [b3], which implies N(a2) ∩ a+

2
−→
P b3 = {a+

2 }. Thus, noting that
x1, x3, b2 /∈ N(a2), by Lemma 1 and Claim 16, we have d(a2) = 2, a contradiction.
Hence, [xP , a+

2 ]→ a1 is impossible.

We now begin to prove a2b3 ∈ E(G). Suppose to the contrary that a2b3 /∈ E(G).

Since xP a2 /∈ E(G), there is some vertex z such that [xP , z] → a2 or [a2, z] → xP .
By Claim 16, we have z /∈ P1. By Claim 18, we have z /∈ P2. Thus, we have z ∈ X. In
this case, we have [xP , x1]→ a2 or [xP , x3]→ a2.

If [a2, x1]→ b3, then [xP , x1]→ a2 is impossible. If [xP , x3]→ a2, then by Lemma
12, we have x1x3 /∈ E(G), which is impossible since a2x3 /∈ E(G) and [a2, x1] → b3.
Thus, [a2, x1]→ b3 is impossible. If [a2, x2]→ b3, we let {i, j} = {1, 3}. If [xP , xi]→ a2,
then by Lemma 12, we have x2xi ∈ E(G). Since [a2, x2] → b3, we have x2xj ∈ E(G)
or a2xj ∈ E(G), which implies {xi, x2} � V (G) or {xi, a2} � V (G), a contradiction.
Thus, [a2, x2]→ b3 is impossible. Therefore, we have [b3, x1]→ a2 or [b3, x3]→ a2.

By Claim 16, {xP , a1, a2, b3} is a maximum independent set. Since [xP , x1] → a2

or [xP , x3] → a2, by Lemma 12, we have x1, x3 ∈ N(a1) ∩ N(b3) and x1, x3 /∈ N(a2).
If [xP , b2] → b3, then since [b3, x1] → a2 or [b3, x3] → a2, we have {b2, x3} � V (G) or
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{b2, x1} � V (G) by Lemma 1, a contradiction. Obviously, [xP , b3] → b2 is impossible.
Thus, there is some vertex u ∈ X such that [b2, u]→ b3 or [b3, u]→ b2. Since {b3, xi} 6�
a2 for i = 1, 3 and x1, x3 ∈ N(b3), we have [b2, x2]→ b3.

Since [xP , x1] → a2 or [xP , x3] → a2, by Lemma 12, we have x2x3 /∈ E(G) or
x1x2 /∈ E(G). Noting that [b2, x2] → b3, by Lemma 1, we have b2x3 ∈ E(G) or
b2x1 ∈ E(G). Thus, if a2b2 ∈ E(G), then we have {b2, x1} � V (G) or {b2, x3} � V (G),
and hence a2b2 /∈ E(G). Thus, we have x1, x3, b2 /∈ N(a2).

By Claim 10, a1a
+
2 /∈ E(G). Since x1, x3, b2 /∈ N(a2), by Claim 19, [xP , a+

2 ]→ a1 is
impossible. Obviously, [xP , a1]→ a+

2 is impossible. Thus, there is some vertex w ∈ X

such that [a1, w] → a+
2 or [a+

2 , w] → a1. Since [b2, x2] → b3, we have x2b3 /∈ E(G).
Thus, noting that {a1, xi} 6� a2 for i = 1, 3, {a1, x2} 6� b3 and x1, x3 ∈ N(a1), we
have [a+

2 , x2] → a1. If [xP , x1] → a2, then by Lemma 12, we have x1x2 ∈ E(G) and
x2x3 /∈ E(G). In this case, we have a+

2 x3 ∈ E(G), which implies {x1, a
+
2 } � V (G),

a contradiction. If [xP , x3] → a2, then by Lemma 12, we have x2x3 ∈ E(G) and
x1x2 /∈ E(G). In this case, we have a+

2 x1 ∈ E(G), which implies {x3, a
+
2 } � V (G),

again a contradiction. Thus, we have a2b3 ∈ E(G).

Up to now, we have shown that a1b2, a2b3 ∈ E(G). In the following, we will show
that Pi is a clique for i = 1, 2. If Pi 6⊆ N [ai], then since aibi+1 ∈ E(G), there is some
vertex u ∈ Pi such that aiu /∈ E(G) and aiu

+ ∈ E(G). We let ui ∈ Pi be such a vertex
if Pi 6⊆ N [ai], where i = 1, 2.

If P1 6⊆ N [a1], then {a1, u1, a2, xP } is an independent set. By Lemma 9, we have
[a1, x1]→ a2, [a1, x3]→ a2, [a2, x2]→ a1 or [a2, x3]→ a1.

If P2 6⊆ N [a2], then {a1, u1, a2, u2, xP } is an independent set of order 5, a contradic-
tion. By Lemma 1, we have N(a1)∩ (P2 − {b3}) = ∅ and N(u1)∩ (P2 − {b3}) = ∅. We
now show a1, u1 /∈ N(b3). By Claim 10, we have b−2 b3 /∈ E(G), and hence we may as-
sume u1 6= b−2 . If [a1, x1]→ a2 or [a1, x3]→ a2, we have x1a

+
2 ∈ E(G) or x3a

+
2 ∈ E(G).

By Claim 13, we have a1, u1 /∈ N(b3). If [a2, x3] → a1, then b−2 x3 ∈ E(G). By Claim
13, a1, u1 /∈ N(b3). If [a2, x2] → a1, then since x2b

−
2 , a1b2 ∈ E(G), b2 is an A-vertex.

By Lemma 1, a2b2 /∈ E(G). Since {b2, a2, b3, xP } is an independent set, by Lemma
9, we have [a2, x1] → b2, [a2, x3] → b2, [b2, x1] → a2 or [b2, x3] → a2. This implies
(N(x1) ∪N(x3)) ∩ {b−2 , a+

2 } 6= ∅. By Claim 13, a1, u1 /∈ N(b3). Thus, we have

N(a1) ∩ P2 = ∅ and N(u1) ∩ P2 = ∅. (8)

Let a ∈ {a1, u1} and w ∈ V (G) − N [xP ]. If [xP , w] → a or [a,w] → xP , then by (8),
we have w ∈ P1 and P2 ⊆ N(w). Thus, by Lemma 1, w is neither an A-vertex nor a
B-vertex. Obviously, |P1| ≥ 3. Since a1b2 ∈ E(G), it is easy to see that
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G[P1] contains a hamiltonian (w,w+)-path. (9)

If [a1, x1]→ a2 or [a1, x3]→ a2, then since w is not an A-vertex, we have a1w
+ /∈ E(G),

and hence x1w
+ ∈ E(G) or x3w

+ ∈ E(G). If x1w
+ ∈ E(G), then since a1b2 ∈ E(G),

we see that w is a B-vertex, a contradiction. If x3w
+ ∈ E(G), then by (9) and

Lemma 3, we have wb3 /∈ E(G), which contradicts P2 ⊆ N(w). If [a2, x2] → a1,
then since a2w, b2x2 ∈ E(G), by Lemma 5, there is some vertex v ∈ w

−→
P b2 such that

va2, v
+x2 ∈ E(G), which contradicts Lemma 3 since a1b2 ∈ E(G), which implies G[P1]

contains a hamiltonian (v, v+)-path. Since a2, b2 ∈ N(w), by (9) and Lemma 3, we
have w+x3, w

+a2 /∈ E(G), which implies [a2, x3] → a1 is impossible. Thus, for any
a ∈ {a1, u1} and w ∈ V (G)−N [xP ], both [xP , w]→ a and [a,w]→ xP are impossible,
which contradicts Lemma 10 since {a1, u1, a2, xP } is an independent set. Therefore, we
have P1 ⊆ N [a1].

If P2 6⊆ N [a2], then since P1 ⊆ N [a1], by symmetry, we have P2 ⊆ N [b3]. Thus, u2

is both an A-vertex and a B-vertex. By Lemma 1, P1∩N(u2) = ∅. Since xP a2 /∈ E(G),
there is some vertex w such that [xP , w] → a2 or [a2, w] → xP . If [a2, w] → xP , then
w /∈ P1 for otherwise {a2, w} 6� u2. Thus, we have w ∈ P2. Since P2 ⊆ N [b3], by
Lemma 1, we have a2b2, wb−2 ∈ E(G), which contradicts Lemma 3. Thus, we have
[xP , w] → a2. If w ∈ P1, then wu2 /∈ E(G) and if w ∈ P2, then wb2 /∈ E(G). Thus,
we have w ∈ {x1, x3}. If [xP , x1]→ a2, then x1x2 ∈ E(G) by Lemma 12. In this case,
we have {x1, b3} � V (G). If [xP , x3] → a2, then by Lemma 12, we have x2x3 ∈ E(G)
and x1x2 /∈ E(G). Thus, we have x2, a2, a

+
2 /∈ N(x1) for otherwise γ(G) = 2. Since

b2u2 /∈ E(G), there is some vertex v such that [b2, v] → u2 or [u2, v] → b2. Obviously,
v 6= xP , and hence v ∈ X. Since [xP , x3]→ a2 implies b2, b3 ∈ N(x3), we have v 6= x3.
Since {u2, x1} 6� a2 and {b2, x1} 6� a+

2 , we have v 6= x1, and hence v = x2, which
implies [b2, x2] → u2. Since x1x2 /∈ E(G), we have x1b2 ∈ E(G). If a2b2 ∈ E(G),
then {x3, b2} � V (G), and hence a2b2 /∈ E(G). Now, consider xP u2 /∈ E(G). Since
{a1, a2, u2} is an independent set and [xP , x3]→ a2, by Lemma 10, there is some vertex
u ∈ V (G) −N [xP ] such that [xP , u] → u2 or [u2, u] → xP . Since N(a2) ∩ P1 = ∅ and
N(u2) ∩ P1 = ∅, we have u ∈ P2 in both cases. This is impossible since {u2, u} 6� b2.
Thus, we have P2 ⊆ N [a2].

By symmetry, we have Pi ⊆ N(ai)∩N(bi+1) for i = 1, 2. If P1 is not a clique, then
there are two vertices u, v ∈ P1−{a1, b2} such that uv /∈ E(G). Obviously, u and v are
both A-vertices and B-vertices. Thus, (N(u) ∪N(v)) ∩ P2 = ∅. Since {u, v, a2, xP } is
an independent set, by Lemma 10, there is some w ∈ V (G) − N [xP ] and a vertex in
{u, v}, say u, such that [u, w]→ xP or [xP , w]→ u. It is easy to see that such a vertex
w does not exist, and hence P1 is a clique. By symmetry, P2 is a clique.
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Since Pi is a clique for i = 1, 2, by Lemmas 1 and 14, we have E(P1, P2) ⊆ {a2b2}. If
a2b2 /∈ E(G), then X is a 3-cutset such that ω(G−X) = 3, which contradicts τ(G) > 1.
If a2b2 ∈ E(G), then by Lemma 14, we have α(G) = 3, again a contradiction.

The proof of Theorem 4 is complete.
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