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An Adaptive Interpolating MLS Based Response
Surface Model Applied to Design Optimizations

of Electromagnetic Devices
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A response surface model (RSM) based on a combination of interpolating moving least squares and multistep method is proposed.
The proposed RSM can automatically adjust the supports of its weight functions according to the distribution of the sampling points
when it is used to reconstruct a computationally heavy design problem. Numerical examples are given to demonstrate the feasibility and
efficiency of the proposed method for solving inverse problems.

Index Terms—Hierarchical interpolation, interpolating moving least squares approximation, response surface model.

I. INTRODUCTION

NOWADAYS stochastic optimal methods have been
playing an increasingly important role in the study of

global optimizations of engineering design problems. How-
ever, the excessive demand for computer resources with these
algorithms often renders these optimal methods inefficient or
impractical for some practical design problems that require, for
example, repetitive usages of finite element (FE) solutions. To
circumvent this problem, the response surface methodology
(RSM) has been introduced to reduce the number of function
evaluations that involve time consuming computer simula-
tions without sacrificing the quality of the numerical solutions
[1]–[6]. So far the most popular RSMs are those based on
globally supported radial basic functions (RBF) because of
their good interpolating power in dealing with both grid and
scattered data. However, globally supported RBFs have the
inherent drawback of having the need to manipulate full inter-
polation matrices. Consequently, the sample points of globally
supported RBF based RSMs cannot exceed an upper limit [2].
In this regard, a compactly supported RSM would be much
sought after.

However, one would face a dilemma in setting a reasonable
support of the compactly supported RSMs, in the construction
of a function, when one attempts to strike a balance between
quality and solution speed of the interpolation. In order to ad-
dress those issues, a compactly supported RSM, based on a
combination of the Interpolating moving least squares (IMLS)
approximation and the multistep method together with a tabu
search method, is proposed in the development of an efficient
global optimal design tool for multimodal functions. To ensure
that the sampling points will have an optimal distribution in the
feasible space, a simulated annealing (SA) algorithm is sug-
gested to be run firstly on the original time consuming optimal
problem to generate the sampling points.
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II. A MULTI-STEP IMLS BASED RSM

A. Brief Introduction of IMLS

Although the IMLS method is well documented in the litera-
ture of related disciplines, it is necessary to give it a brief intro-
duction for the convenience of fellow researchers.

To reconstruct a function on the basis of its
values at a set of sample points in
terms of some basis in IMLS, a local
approximation of it at each point is firstly
defined as

(1)

The basis functions satisfy the following conditions
(1) .
(2) .
(3) are independent over some sets of points of

the given points in .
One then defines a global projector , such that for any

point

(2)

To determine the coefficient in (1), one employs a dis-
crete -norm by the -dependant inner product of vec-
tors and which is defined by

(3)

(4)

where ; is a
diagonal matrix with as its element,

is called the weight function of the IMLS.
A characteristic of the IMLS is that the weight function

is a compactly supported one centred at each sampling
point. This feature renders the IMLS a local approximation of

0018-9464/$25.00 © 2007 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 14, 2009 at 04:23 from IEEE Xplore.  Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyU Institutional Repository

https://core.ac.uk/display/61008322?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1594 IEEE TRANSACTIONS ON MAGNETICS, VOL. 43, NO. 4, APRIL 2007

the function. The generalized form of the weight function of
the proposed IMLS, , is

(5)

where is a positive even integer, is the Euclidean norm,
is a compactly supported function.

Since is the best approximation of in the least squares
sense, it means that

(6)

which yields the following matrix equation

(7)

(8)

(9)

where .
It follows from (7) that

(10)

Obviously, this approximation procedure has no specific re-
quirements on the point pattern. The only condition for the pro-
cedure to work is that the coefficient matrix must be invert-
ible, and this can be guaranteed by automatically adjusting the
support, which in turn refers to the size of the influence domain
of a point, of the weight function, to involve enough sampling
points for each point whose influences are non-zero in some spe-
cific points. Correspondingly, the weight function is of
the form for , and hereafter the parameter is
called the scale of the weight function.

B. A Multistep IMLS Based RSM

Ideally, the sample points of an objective function should be
distributed irregularly such that the point densities are compar-
atively high in regions where the local optima are likely to exist
in order to build a robust RSM. However this feature makes the
finding of the right scale for the weight function very awkward.
For example, the precision of the approximation will be low if
the scale is too small. On the other hand, if the scale is too large,
the interpolation will no longer be a compactly supported one.
Therefore, every weight function should have the ability to ad-
just its support according to the point density around it. For this
purpose, the multistep method as proposed in [7] is used. The
use of the multistep technique is a common practice for scat-
tered data analysis and the procedures required to facilitate the
implementation of such technique are outlined in the following.

For a nested sequence of the set of sample points

(11)

with the subset defined as

(12)

the multistep method decomposes the interpolation problem
into substeps as described below.

Starting with , one will match the error function at the
step as

(13)

on by computing the coefficients of the interpolant

(14)

with , , and

after the value of of the weight function has been chosen.
It follows naturally that

(15)

This approach allows one to choose a relatively large scale at
the lowest level to capture the overall behavior of the function,
and by decreasing it during the process of the procedure, finer
and finer details of the function is obtained step by step, pro-
viding a hierarchical construction procedure with a reasonable
computing time. The scales of the weight functions at a sub-step
are determined in such a way that their influences will cover at
least 30 sample points.

C. Projection Algorithm

To decompose the set of sample points, , into a nested se-
quence, a projection algorithm is proposed as follows.

Firstly, the parameter space is divided into a discrete grid
according to a user predefined precision parameter. The dis-
crete grid is recorded as a binary string. When a sample point
is generated, its location in the grid is determined by repeat-
edly bisecting the range of it in each direction and to iden-
tify the specific half range that contains the solution. The cor-
responding bit of the string is then set to a logical 1. Once
the total sample points, , are generated and the binary string
is assigned, the maximum distances, ,
among every two neighborhood points for each coordinate di-
rection will be evaluated. The algorithm will then begin to de-
compose the sample points into a nested sequence of subsets,

, by using the following
algorithm.

Projection Algorithm: Generation of the first subset . Use
the point of the first non-zero logical 1 in the left bottom of
the hyper-box as a vertex and taking as the edge length
of the direction to construct the first hyper-box; Propagate
from the vertexes of this hyper-box, construct, one by one, the
so defined hyper-boxes until the non-zero logical 1s of the grid
are covered by the vertexes of the hyper-boxes; The subset
is then consisting of the vertex points of the total hyper-boxes
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whose values in the binary string are logical 1s; Set the bits of
the binary string corresponding to points in to logical 2s:

Repeat

;
Step 1) Halve the edge length of the hyper-boxes

of the previous step to construct new
hyper-boxes, find logical 1s of the vertex
points, add the corresponding points to
and set the bit values of the binary string to
logical 2s;

Step 2) Let . If the number of
sample points in is less than a threshold
value prescribed by the user, go to Step 1;
Otherwise, continue the decomposing process
for next level;

Until all the bits of the binary string are 2s or 0s.

III. AN EFFICIENT GLOBAL OPTIMIZER

A. The Optimizer

For the efficient optimization of electromagnetic devices, a
fast global optimizer based on a combination of the proposed
multistep IMLS based RSM and a tabu search method is pro-
posed. To make the best use of the function values of the lim-
ited number of sampling points, the sample points should be
distributed in the feasible parameter space in an irregular pattern
such that the point densities are higher in regions where the local
optima are likely to exist. Rather than randomly or uniformly
arranging the sample points, the proposed method uses SA al-
gorithm to generate the sample points because SA has some “in-
telligence” in generating new states, i.e., intensifying points in
regions where the local optima exist. Once the primary sam-
pling points are generated, an optimal problem will be solved
iteratively following the procedures as described below.

Repeat
(1) Reconstruct the optimal problem based on the proposed

multistep IMLS based RSM and solve it by using a tabu
search method, then report all the searched local/global
optimal solutions;

(2) Solve the original optimal problem by using a
deterministic method starting from the newly searched
local optimal solutions to find the “improved” ones;

(3) Compare the optimal solutions of (1) and (2). If
significant error exists for some solutions, intensify the
sample points around the specified point and compute
the value of the objective/constraint function and then
go to (1); Otherwise, set “ ”;

Until “ ”.

B. Validation

The proposed fast global optimizer is firstly used to find the
global minimum of a multimodal mathematical function to

Fig. 1. The reconstructed mathematical function using the proposed multistep
IMLS based RSM in terms of 455 sampling points.

Fig. 2. The exact function expression of the mathematical function.

TABLE I
PERFORMANCE COMPARISON OF THE PROPOSED AND A SA ALGORITHM ON

SOLVING THE MULTIMODAL MATHEMATICAL FUNCTION

demonstrate its efficiency and global search ability. The details
of this function are described as

(16)
In the numerical implementation of the proposed optimizer, a

SA algorithm is firstly run on this function to generate 455 sam-
pling points. The optimal problem is then reconstructed using
the proposed multistep IMLS based RSM, in which a cubic
spline weight function (17) is used as weight function. The re-
constructed function and the close form expression are depicted,
respectively, in Fig. 1, and Fig. 2. The reconstructed problem is
finally solved using the aforementioned iterative procedure, and
it is found that only one iterative cycle is required in this case
study. The final searched solution and performance of the pro-
posed efficient optimizer, together with those obtained by run-
ning the SA algorithm directly on the mathematical function, are
given in Table I. From these numerical results, it is clear that:

(1) the quality of the reconstructed function using the pro-
posed multistep IMLS based RSM is very high, i.e., the
proposed RSM reproduces exactly the function values
and its stationary points;
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Fig. 3. The schematic diagram of the SMES.

(2) the global search ability of the proposed efficient opti-
mizer is very strong since the final optimal solutions ob-
tained by the proposed optimizer and the well designed
SA algorithm are nearly the same.

Therefore, the efficiency and the global search ability of the
proposed optimizer are positively confirmed by these primary
numerical experiments on this case study

(17)

IV. NUMERICAL APPLICATION

The TEAM Workshop problem 22 of a superconducting mag-
netic energy storage (SMES) configuration with three free pa-
rameters, as shown in Fig. 3, is selected to demonstrate the feasi-
bility of the proposed algorithm for solving engineering design
problems. The problem is formulated as

(18)

where is the energy stored in the SMES device;
; ; and are weighting fac-

tors; and are, respectively, the current
density and the maximum magnetic flux density in the coil;

is a measure of the stray fields which is evaluated along
22 equidistant points of line and line of Fig. 3 by

(19)

In the numerical implementation, 400 sampling points are
firstly generated using the SA algorithm on the original problem
in which the objective function is obtained through finite el-
ement simulations; These sampling points and their function
values are then used to reconstruct the objective function in the
case of a linear basis and the same cubic spline
function as defined in (17) is adopted for the proposed multistep
IMLS based RSM. Two iterative cycles are required before the

TABLE II
PERFORMANCE COMPARISON OF THE PROPOSED AND TRADITIONAL

APPROACHES FOR SOLVING TEAM WORKSHOP PROBLEM 22

procedure converges to an acceptable solution, and the perfor-
mance comparison of the proposed algorithm with an improved
tabu search method running directly on the original problem is
given in Table II. It can be seen that the proposed technique can
virtually reach the same optimal solution as the traditional opti-
mization algorithm, even though the former uses only about one
quarter of the finite element analysis computations of the latter.

V. CONCLUSION

An efficient global optimization tool is proposed, thanks to
the success in the design and development of a new response
surface model using the IMLS interpolation and the multistep
method in conjunction with a tabu search method. The numer-
ical results as reported have confirmed positively the approxi-
mation quality of the proposed multistep IMLS based RSM, and
the global search ability and efficiency of the proposed global
optimizer. Thus the proposed method is expected to be highly
promising for rapid and robust global optimizations, not only
for electromagnetic design problems in which the objective/con-
straint functions must be determined through computationally
expensive algorithms such as three dimensional finite element
analysis, but also for more general engineering design problems.
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