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A Combined Wavelet-FE Method for Transient
Electromagnetic-Field Computations
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A combined wavelet-finite-element (wavelet-FE) method is proposed for the computation of transient electromagnetic (EM) fields.
In order to retain the essential mathematical properties, such as consistency and linear independence of the shape functions for the
proposed method, bridge scales are used to modify the wavelets. To consider the influence of the external voltage supplies, the proposed
wavelet-FE method is coupled with a state-space model to develop an integrated simulation approach. Computer simulation results are
reported to demonstrate the feasibility of the proposed method for computations of both steady-state and transient EM fields.

Index Terms—Meshless method, multiresolution analysis, transient electromagnetic (EM) field, wavelet.

I. INTRODUCTION

RECENTLY, the wavelet method has become an appealing
alternative for finding the solutions of partial differential

equations of different engineering disciplines by virtue of their
localization properties in both special and spectral domains, their
vanishing moment properties, and their multiresolution analyt-
ical ability. In essence, the salient merits of the wavelet-based
method are: 1) it is truly meshless; 2) the multiresolution analyt-
ical ability of wavelets is serving as the local means in the devel-
opment of a hierarchical solution procedure; and 3) the tradeoff
between continuity and compact support properties is well bal-
anced. Also, the wavelet has great potential in solving typical
electromagnetic (EM) problems [1]–[4]. However, most works
related to wavelet methods hitherto are focused on steady-state
problems, and it ishighlydesirable toextendwavelets to thestudy
of transient EM-field problems.

When wavelets are used as shape functions in numerical
methods, they do not satisfy the Kronecker delta property and do
notvanishonboundarieswhere theessentialboundaryconditions
are imposed. Consequently, some special strategies are required
to enforce the essential boundary conditions. On the other hand,
the finite-element (FE) method is very efficient and simple in
dealing with boundary conditions. Therefore, it is desirable to
combine wavelet and FE methods in the development of a new al-
ternative which inherits the advantages of both methods. Hence,
a combined wavelet-FE method is proposed. Of course, the idea
of combining FE method with meshless methods that incorporate
wavelet-based ones is not new. The novelty of the proposed
combination is that the bridge scales are generalized and used to
retain the required mathematical properties, such as consistency
and linear independence, of the entire shape functions.

II. COMBINED WAVELET-FE MODEL AND METHOD

A. Interpolation Using FE Shape Functions and Wavelets

To fully exploit the advantages of wavelet-based methods
(i.e., their truly meshless feature) and those of the FE methods
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(i.e., their simplicity and efficiency in enforcing essential
boundary conditions), it is proposed that the FE method be
used only to enforce boundary conditions. Therefore, the entire
solution domain is divided into two subregions and .
Most of the solution domains belong to where only wavelets
contribute to the approximation of the solution variable. is
the domain corresponding to the very thin layers near the essen-
tial boundaries where both FE and wavelets have influences. In
the subregion , the interpolation of the solution variable is
the standard form of the wavelet method. To develop a general
interpolation formula in the region for the solution variable

in two dimensions using both FE shape functions and
wavelets, one begins with

(1)

where is the FE shape function, and is a one-
dimensional (1-D) wavelet basis at scale .

To guarantee the required mathematical properties of the en-
tire bases of wavelets and FE shape functions, such as consis-
tency and linear independence, the bridging scale concept is
used to modify the wavelets [5], and (1) becomes

(2)

where is the modified wavelets based on the introduc-
tion of bridging scales, and are defined as

(3)
Consequently, the interpolation of the solution variable in the

entire domain is expressed as

(4)

0018-9464/$20.00 © 2006 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 14, 2009 at 08:06 from IEEE Xplore.  Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyU Institutional Repository

https://core.ac.uk/display/61008318?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


572 IEEE TRANSACTIONS ON MAGNETICS, VOL. 42, NO. 4, APRIL 2006

B. Spatial and Temporal Discretization

For the convenience of explanation, the following two-dimen-
sional (2-D) transient eddy current problem is considered

(5)

Based on the weak form of (5) and using the approximation of
(4) and a Galerkin approach, the spatial discretization equation
for problem (5) is

(6)

where and

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

where denotes the partial differential with variable .
In region , only the wavelets contribute to the approxima-

tion; hence, they do not need any modification. Consequently,
(8), (12), and (16) become, respectively, as

(17)

(18)

(19)

It should be pointed out that due to the compactly supported
property of the wavelets, the coefficient matrices (stiffness ma-
trices in FE context) are bounded sparse ones. Moreover, since
both the compactly supported nature of the wavelets and the fact
that very thin layers near the essential boundaries are meshed as

, most of the quantities in the submatrices and
are zeros.

Using the Crank–Nicolson scheme to approximate the dif-
ferential with respect to the time variable in (6), the temporal
discretization of (6) becomes

(20)

where is the time step length , and is
the time step number.

C. State-Space Model

Generally speaking, the current density in (5) is an unknown
quantity to be evaluated in a transient process. Therefore, it is
necessary to couple the proposed combined wavelet-FE model
with the circuit equations of the system. Consequently, the state-
space model as proposed in [6] is used. The state-space model
of the system is formulated as

(21)

where is the resistance matrix; and and are, re-
spectively, the vectors of the instantaneous current and terminal
voltage of the sources; and is the inductance matrix which is
determined from the proposed wavelet-FE solutions of the EM
fields.

Using the Crank–Nicolson scheme to approximate the differ-
ential with respect to the time variable in (21), the time stepping
formulation of the state-space model becomes

(22)

D. Solution Procedure of Different Model Systems

In general, the two equation systems of the proposed com-
bined wavelet-FE and the circuit models are coupled together.
Because these two equation sets are causes and effects of each
other, it is difficult to solve them simultaneously. Consequently,
an iterative procedure as described below is proposed for
solving the equation sets of (20) and (22).

Step 1) Predicate the initial electric current for the th step
of the combined wavelet-FE system from those of
its previous steps using a
response surface model, and denoted it as .

Step 2) Solve (20) using as the known quantity;
then compute the corresponding inductance matrix

.
Step 3) Solve (22) using matrix as the known param-

eters and let the new solution of currents be .
Step 4) Compare and . If significant errors

exist, modify and then go to Step 2 to begin
the subsequent cycles of iterations. Otherwise,
proceed to iterations of the next time step.

In order to predicate the currents of the present time step from
those of their previous values as elucidated in Step 1, the inter-
polating moving least-squares approximation technique as in-
troduced by the authors [7] is used in this paper.
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Fig. 1. Schematic diagram of a typical open-loop PWM inverter-fed cage
induction motor drive system.

Fig. 2. Meshes and integration cells being used for the proposed combined
wavelet-FE method.

III. NUMERICAL EXAMPLES

To validate and demonstrate the effectiveness of the proposed
combined wavelet-FE method in the study of both steady-state
and transient EM phenomena, the proposed algorithm is used to
simulate the transient behavior of a prototype induction motor
drive fed by a pulsewidth-modulation (PWM) inverter as shown
in Fig. 1. In this case study, the induction motor is powered by
a voltage source with a PWM inverter having five switching
angles within one-quarter period.

In the numerical implementation to be reported, the transient
inductances of the motor used in the circuit model are deter-
mined based on numerical solutions of the 2-D transient EM
field of the motor using the proposed method. The wavelets
used in this application are Daubechies’ scale functions with

[8]. For the proposed combined wavelet-FE method to
work, some thin layers near the essential boundaries of the 2-D
solution domain of the motor are first meshed into triangular
elements as represented in solid lines in Fig. 2, and some in-
tegration cells, which are coincidental to the division lines of
different materials, as represented by dotted lines in Fig. 2. The
coefficient matrices and the quantities of (6) related to the (mod-
ified) wavelets are then subsequently generated. Numerical cal-
culation of the integrals of (6) related to (modified) wavelets is
determined using the Gaussian formula and the aforementioned
integration cells. Under these mesh conditions and with the scale
parameter of the wavelets being set to 4, the total number of de-
grees of freedom of the proposed method is 1925.

The transient performances of the system are simulated under
the following operating conditions. 1) The drive starts under
no-load conditions for 0.1 s. 2) It then operates at half rated load
for the next 0.2 s. 3) Finally, it runs at its rated load condition
for another 0.2 s.

Using a PC with an Intel 2.0-GHz processor and a time step
length of s, it was found that it takes about 2 h
and 45 min of CPU time for the proposed combined wavelet-FE

Fig. 3. Computed flux distribution at a specific time step during the no-load
starting process using the proposed combined wavelet-FE method.

Fig. 4. Computed flux distribution at another time step during the no-load
starting process using the proposed combined wavelet-FE method.

method to emulate the behavior of the prototype drive over the
entire transient operating sequence as stipulated above. For per-
formance comparison purposes, this case study is also studied
using a time-stepping FE method coupled to an external circuit
model [9], and the total CPU time it takes for the simulation of
the same transient sequence is about 58 min and 45 s with the
same time step length of s and with meshes com-
prising of 3631 first-order triangular elements and 2045 nodes.
Figs. 3 and 4 depict the computed magnetic flux distribution
at two different time steps during the no-load starting process
using the proposed method. Fig. 5 gives the computed magnetic
flux distribution at the same time step as that of Fig. 3 using the
time-stepping FE method. Fig. 6 shows the computed stator cur-
rent profiles using the proposed combined wavelet-FE method.

Since the numerical computation of a transient EM process
at one time step is equivalent to that of a steady EM problem,
the advantages and shortcomings of the proposed method for
solving a steady-state EM problem can be evaluated using the
averaged performances of transient simulation results. As can
be observed from the results given previously, the averaged CPU
time required to obtain the numerical solution of one time step
for the proposed combined wavelet-FE and the time stepping FE
methods are, respectively, 2.75 s and 1 s. Also, referring to Fig. 2
for the meshes being used in the proposed method and bearing
in mind that about three to four iterations are generally needed
for the proposed wavelet-FE and circuit models to converge in
each time step, one will have the following observations on the
proposed method regarding the study of steady-state problems.

1) Compared with the FE method, the most salient advantage
of the proposed one is that it is nearly meshless despite the
need to have integration cells in the numerical implemen-
tations. Indeed, it is the flexibility of being meshless that
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Fig. 5. Computed flux distribution at the same time step of Fig. 3 during the
no-load starting process using a time-stepping FE method.

Fig. 6. Profiles of the computed phase currents of the motor using the proposed
combined wavelet-FE method.

makes the proposed algorithm a good candidate for being
used in the study of three-dimensional (3-D) problems.

2) Compared with FE methods, the shortcoming of the pro-
posed method is that it is less efficient because this is a
relatively new method and the solver for this method is
not as well developed as those for the FE methods.

3) Compared with other meshless methods, the proposed one
does not require any burdensome techniques for enforcing
the essential boundary conditions.

On the other hand, also considering the fact that three to four
iterations are generally needed for the proposed wavelet-FE and
circuit models to converge at one time step, the total CPU time
required by the proposed algorithm would be reduced from 2 h
and 45 min to around 41 to 55 min if a simultaneous solution
technique, which is the same as that for time-stepping FE and
external circuit model, is developed for the wavelet-FE and cir-
cuit model, provided that the additional time for coupling these
two equation system is negligible. Once such a solver is devel-

oped, the proposed algorithm would become a strong contender
to the well-developed time-stepping FE methods in terms of
both CPU time and accuracies in regards to transient EM-field
study.

IV. CONCLUSION

A combined wavelet-FE method is developed and applied
to study the transient performances of a prototype inverter-fed
motor drive. The primary numerical results demonstrate that the
proposed wavelet-FE algorithm has good potential in terms of
robustness for transient EM-field computations. Even though
there are very few applications of meshless methods, including
the proposed one in the study of transient electromagnetic prob-
lems, the authors will strive, as their long-term goal, to develop a
simultaneous solution technique for the wavelet-FE and circuit
model in order to enhance the computation speed of the pro-
posed algorithm.
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