
Multi-agent scheduling on a single machine with

max-form criteria

T.C.E. Cheng1∗, C.T. Ng1 and J.J. Yuan2

1Department of Logistics, The Hong Kong Polytechnic University,

Hung Hom, Kowloon, Hong Kong, People’s Republic of China
2Department of Mathematics, Zhengzhou University,

Zhengzhou, Henan 450052, People’s Republic of China

Abstract: We consider multi-agent scheduling on a single machine, where the
objective functions of the agents are of the max-form. For the feasibility model, we show
that the problem can be solved in polynomial time even when the jobs are subject to
precedence restrictions. For the minimality model, we show that the problem is strongly
NP-hard in general, but can be solved in pseudo-polynomial time when the number of
agents is a given constant. We then identify some special cases of the minimality model
that can be solved in polynomial time.

Keywords: Scheduling, Multi-agent, Fixed jobs.

1 Introduction and Problem Formulation

The following single-machine multi-agent scheduling problem was introduced by Agnetis
et al. (2004) and Baker and Smith (2003). There are several agents, each with a set of
jobs. The agents have to schedule their jobs on a common processing resource, i.e., a
single machine, and each agent wishes to minimize an objective function that depends
on the completion times of his own set of jobs. The problem is either to find a schedule
that minimizes a combination of the agents’ objective functions or to find a schedule that
satisfies each agent’s requirement for his own objective function.

Scheduling is in fact concerned with the allocation of limited resources over time.
Scheduling problems involving multiple customers (agents) competing for a common pro-
cessing resource arise naturally in many settings. For example, in industrial management,
the multi-agent scheduling problem is formulated as a sequencing game, where the ob-
jective is to devise some mechanisms to encourage the agents to cooperate with a view

∗Corresponding author

1

This is the Pre-Published Version.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by PolyU Institutional Repository

https://core.ac.uk/display/61008223?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

to minimizing the overall cost (see, for example, Curiel et al. (1989), and Hamers et
al. (1995)). In project scheduling, the problem is concerned with negotiation to resolve
conflicts whenever the agents find their own schedules unacceptable (Kim et al. (1999)).
In telecommunication services, the problem is to do with satisfying the service require-
ments of individual agents, who compete for the use of a commercial satellite to transfer
voice, image and text files for their clients (Schultz et al. (2002)). Following Agnetis
et al. (2004) and Baker and Smith (2003), and intending to generalize their results on
two-agent scheduling, we focus this study on deriving feasible or optimal solutions for
different scenarios of competition among the agents, and examining the computational
complexity issues of some intractable cases of the single-machine multi-agent scheduling
problem.

Now we define the multi-agent scheduling in terms of common scheduling terminology.
We have m families of jobs J (1),J (2), ...,J (m), where, for each i with 1 ≤ i ≤ m, J (i) =
{J (i)

1 , J
(i)
2 , ..., J (i)

ni
}. The jobs in J (i) are called the i-th agent’s jobs. Each job J

(i)
j has a

positive integral processing time p
(i)
j , a positive integral due date d

(i)
j , and a positive weight

w
(i)
j . All the jobs have zero release dates. The jobs will be processed on a single machine

starting at time zero without overlapping and idle time between them. A schedule is a
sequence of the jobs that specifies the processing order of the jobs on the machine. Under
a schedule σ, the completion time of job J

(i)
j is denoted by C

(i)
j (σ); job J

(i)
j is called tardy if

C
(i)
j (σ) > d

(i)
j ; U

(i)
j (σ) = 1 if J

(i)
j is tardy and zero otherwise; the lateness of J

(i)
j is defined

as L
(i)
j (σ) = C

(i)
j (σ)−d

(i)
j ; the tardiness of J

(i)
j is defined as T

(i)
j (σ) = max{0, L(i)

j (σ)}; the

maximum lateness of the i-th agent is defined as L(i)
max(σ) = max1≤j≤ni

L
(i)
j (σ); and the

maximum tardiness of the i-th agent is defined as T (i)
max(σ) = max1≤j≤ni

T
(i)
j (σ). For each

job J
(i)
j , let f

(i)
j (·) be a nondecreasing function of the completion time of job J

(i)
j (such an

objective function is called regular in the scheduling literature). We assume in this paper

that f
(i)
j (·) can be evaluated in constant time. The i-th agent’s objective function F (i)(σ)

takes either one of the following two forms:

max-form F (i)(σ) = max1≤j≤ni
f

(i)
j (C

(i)
j (σ)),

sum-form F (i)(σ) =
∑

1≤j≤ni
f

(i)
j (C

(i)
j (σ)).

Throughout this paper, each agent’s objective function is assumed to be of the max-form.

The scheduling problem studied in this paper includes the following two models:

• Feasibility model: 1|prec|F (i) ≤ Qi, 1 ≤ i ≤ m. In this model the goal is to find a
feasible schedule σ that satisfies F (i)(σ) ≤ Qi, 1 ≤ i ≤ m.

• Minimality model: 1|prec|∑1≤i≤m F (i). In this model the goal is to find a schedule
σ that minimizes

∑
1≤i≤m F (i)(σ).

In the above scheduling models, prec denotes that the jobs are subject to precedence
restrictions. When the jobs are independent, i.e., there are no precedence relations among
the jobs, we leave the second field of the model description blank.

2

The feasibility model of multi-agent scheduling was first studied by Agnetis et al.
(2004), and the minimality model of multi-agent scheduling was first studied by Baker
and Smith (2003). This paper seeks to present general methods to treat the single-machine
multi-agent scheduling problem. The results presented in this paper embrace some of the
results on single-machine two-agent scheduling reported in the literature (Agnetis et al.
(2004), Baker and Smith (2003), and Yuan et al. (2005)).

The work of this paper is related to scheduling with fixed jobs. This scheduling problem
was first introduced by Scharbrodt et al. (1999). In this model we have two types of jobs:
free jobs and fixed jobs. The fixed jobs are already fixed in the schedule. The intervals
occupied by the fixed jobs can be referred to as unavailability intervals of the machine.
The remaining free jobs, which consist of the jobs of all the agents, are to be assigned to
the remaining time slots of the machine in such a way that they do not overlap with one
another nor with the fixed jobs. In our discussion we allow preemption of the free jobs.

The adding of fixed jobs in the scheduling model is motivated by the need to perform
maintenance on the machine in real-life settings. Due to the need for maintenance, the
machine is unavailable during certain periods of time over the scheduling horizon. Usually
machine maintenance operations are planned in advance and so the unavailable periods
on the machine are pre-specified (i.e., fixed). Kovalyov et al. (2007) provided a detailed
survey on fixed interval scheduling. In deriving the results in this paper, we use a technique
to transform a free job into a fixed job. Hence, we use the terminology “fixed jobs” as in
Scharbrodt et al. (1999).

The feasibility model of single-machine multi-agent preemptive scheduling with fixed
jobs is denoted by 1|prec; fix; pmtn|F (i) ≤ Qi, 1 ≤ i ≤ m, and the minimality version
is denoted by 1|prec; fix; pmtn|∑1≤i≤m F (i). Here fix denotes the constraint due to the
presence of the fixed jobs, and pmtn means that the free jobs are preemptively scheduled.
Throughout this paper, n∗ and n are used to denote the number of fixed jobs and the
number of free jobs, respectively. Then we have n = n1 + n2 + · · ·+ nm.

Since the objective functions are assumed to be regular, we need only to consider
regular schedules, where a schedule is called regular if under the schedule there is no idle
time on the machine before the completion time of the last free job.

The idea in this paper comes partially from Agnetis et al. (2004), Baker and Smith
(2003), and Yuan et al. (2005). This paper is organized as follows. In Section 2 we show
that the feasibility model can be solved in polynomial time. In Section 3 we show that
the minimality model is strongly NP-hard. In Section 4 we show that, when the number
of agents is a constant, the minimality model can be solved in pseudo-polynomial time.
In Section 5 we give some polynomial-time solvable sub-cases of the minimality model.

3

2 Polynomial-time algorithm for the feasibility model

Consider the feasibility problem 1|prec; fix; pmtn|F (i) ≤ Qi, 1 ≤ i ≤ m, where each F (i)

is of the max-form F (i)(π) = max1≤j≤ni
f

(i)
j (π). We present an O(n∗+n2) time algorithm.

When the free jobs are independent, the running time of the algorithm is O(n∗+n log n).
The idea of our discussion comes from Lawler’s (1973) algorithm for the single machine
scheduling 1|prec|fmax. The same procedure was also used in Agnetis et al. (2004).

The first technical issue to deal with is that, if a block of free jobs of total length l
is to be processed preemptively under a regular schedule on the machine with fixed jobs,
how do we determine the completion time ∆(l) of the last free job in the block?

Let the n∗ intervals occupied by the fixed jobs be [s1, t1), [s2, t2), ..., [sn∗ , tn∗), where
0 ≤ s1 < t1 ≤ s2 < t2 ≤ · · · ≤ sn∗ < tn∗ . Note that the sorting of these intervals
needs O(n∗ log n∗) time. We further define t0 = 0 for convenience. We first calculate all
FBj =

∑
1≤i≤j(ti− si) in O(n∗) time, where FBj is the total length of the first j intervals

occupied by the fixed jobs. Clearly, ∆(l) > tj if and only if l + FBj > tj. Hence, we have

Lemma 2.1 The value ∆(l) can be calculated in O(n∗) time by the formula ∆(l) =
l + FBj∗ , where j∗ is the maximum index j such that l + FBj > tj. 2

For each job J
(i)
j , we define its deadline as

D
(i)
j = max{C : C is a positive integer and f

(i)
j (C) ≤ Qi}.

In the case that D
(i)
j > ∆(P), we re-define D

(i)
j = P , where P is the sum of the length

of all the free jobs. As stated in Agnetis et al. (2004), if the inverse function of f
(i)
j is

available, the deadline D
(i)
j can be computed in constant time; otherwise this requires

O(log P
(i)
j) time. We assume the former case for every job.

Now we denote the set of all the free jobs by J = {J1, J2, ..., Jn}. That is, J is the
union of the free jobs from each agent. The processing time and deadline of Jj are denoted
by pj and Dj, respectively. We write Ji ≺ Jj if job Ji must be processed before job Jj.

If Ji and Jj are two jobs such that Ji ≺ Jj, then the completion time Ci of Ji must be
less than or equal to Cj − pj under any feasible schedule. Modifying the deadline of job
Ji by setting Di := min{Di, Dj − pj}, we lose nothing, but we obtain a beneficial relation
Di < Dj. Hence, we can recursively modify the deadlines of the jobs such that, for each
pair of jobs Ji and Jj, if Ji ≺ Jj, then Di < Dj. This procedure can be performed in
O(n2) time using the standard “Algorithm Modify dj” given by Brucker (2001).

Clearly, the feasibility problem has a solution if and only if the regular schedule ob-
tained by the EDD rule on the modified deadline meets every job’s deadline. Suppose that
the deadlines have been modified. Then we re-label the free jobs in the EDD order, i.e.,
D1 ≤ D2 ≤ · · · ≤ Dn, which will take O(n log n) time. Let π be the regular preemptive
schedule obtained by the free job sequence (J1, J2, ..., Jn). Then the feasibility problem
has a solution if and only if ∆(p1 + p2 + · · ·+ pj) ≤ Dj for 1 ≤ j ≤ n.

4

Note that all the values P (j) = p1 +p2 + · · ·+pj, 1 ≤ j ≤ n, can be calculated in O(n)
time recursively, and all the values ∆(P (j)), 1 ≤ j ≤ n, can be calculated in O(n∗ + n)
time recursively by the following dynamic programming recursion: Let k0 = 0 and, for j
from 1 to n, let kj ≥ kj−1 be the maximum value such that P (j) + FBkj

> tkj
, and then

set ∆(P (j)) = P (j) + FBkj
. From this, we conclude the following result.

Theorem 2.2 The feasibility problem 1|prec; fix; pmtn|F (i) ≤ Qi, 1 ≤ i ≤ m can be
solved in O(n∗ log n∗ + n2) time.

When the set of fixed jobs is empty, the problem under study is equivalent to 1| ≺
|F (i) ≤ Qi, 1 ≤ i ≤ m. Hence, we have

Corollary 2.3 1|prec|F (i) ≤ Qi, 1 ≤ i ≤ m can be solved in O(n2) time.

When the free jobs are independent, the procedure for modifying the deadlines can be
omitted. Hence, we have

Theorem 2.4 1|fix; pmtn|F (i) ≤ Qi, 1 ≤ i ≤ m can be solved in O(n∗ log n∗+n log n)
time.

Corollary 2.5 1||F (i) ≤ Qi, 1 ≤ i ≤ m can be solved in O(n log n) time.

3 NP-hardness for the minimality model

Theorem 3.1 Both 1||∑1≤i≤m L(i)
max and 1||∑1≤i≤m T (i)

max are binary NP-hard.

Proof Recall that, by Du and Leung (1990), the feasibility scheduling problem
1||∑ Tj ≤ Y is binary NP-complete.

Let us be given an instance I of 1||∑ Tj ≤ Y : (p1, p2, ..., pn; d1, d2, ..., dn; Y), where pi

and di are the processing time and due date of the i-th job Ji, 1 ≤ i ≤ n, and Y ≥ 0 is
the threshold value of the total tardiness. The decision asks whether there is a schedule
σ for the n jobs such that

∑
1≤i≤n Ti(σ) ≤ Y .

Write P =
∑

1≤i≤n pi. By the proof of the NP-completeness of 1||∑ Tj ≤ Y in Du
and Leung (1990), we can further assume that 0 ≤ di ≤ P for each i, and Y ≤ nP .
We construct an instance I∗ of the feasibility scheduling problem 1||∑1≤i≤m L(i)

max ≤ Q as
follows.

• n agents with each agent having exactly two jobs, i.e., J (i) = {J (i)
1 , J

(i)
2 }, 1 ≤ i ≤ n.

• Processing times of the jobs are defined by p
(i)
1 = pi and p

(i)
2 = X, 1 ≤ i ≤ n, where

X = nP + Y + 1. The jobs J
(i)
2 , 1 ≤ i ≤ n, are called large jobs, and the jobs J

(i)
1 ,

1 ≤ i ≤ n, are called small jobs.

• Due dates of the jobs are defined by d
(i)
1 = di and d

(i)
2 = P + iX, 1 ≤ i ≤ n.

• Threshold value is defined by Q = Y , and the decision asks whether there is a schedule
π such that

∑
1≤i≤m L(i)

max(π) ≤ Q.

5

The above construction can be done in polynomial time. We show in the following
that I is feasible if and only if I∗ is feasible.

If there is a feasible schedule π for I∗, we claim that: C
(i)
1 (π) ≤ P , and C

(i)
2 (π) =

d
(i)
2 = P + iX, 1 ≤ i ≤ n.

We notice that L(i)
max(π) ≥ −P for each i, since di ≤ P . If C

(x)
1 (π) > P for a certain x,

then there must be at least one large job completed before J
(x)
1 , and thus C

(x)
1 (π) ≥ X.

This means that L(x)
max(π) ≥ X − P . Consequently,

∑
1≤i≤m L(i)

max(π) ≥ X − nP = Y +
1 > Q, contradicting the assumption that π is feasible. So, under π, any small job is
processed before any large job. This also means that the completion times of the large
jobs are P + iX, 1 ≤ i ≤ n. If possible, let y, 1 ≤ y ≤ n, be the minimum such that
C

(y)
2 (π) > d

(y)
2 = P + yX. Then, L(y)

max(π) ≥ X. Again, this implies
∑

1≤i≤m L(i)
max(π) > Q,

contradicting the assumption that π is feasible. We conclude that the claim holds.

The above claim means that under the feasible schedule π each large job completes
at its due dates, and L(i)

max(π) = T (i)
max(π) = T

(i)
1 , 1 ≤ i ≤ n. Since the small jobs in I∗

correspond one-to-one to the jobs in I with the same processing times and due dates, we
deduce that I is feasible if and only if I∗ is feasible. We conclude that 1||∑1≤i≤m L(i)

max ≤ Q
is NP-complete.

The above proof is also valid for 1||∑1≤i≤m T (i)
max ≤ Q. Hence, the result follows. 2

The classical scheduling problem 1||∑ wjTj is strongly NP-hard. One of the well-
known proofs for the strongly NP-hardness of this problem was given by Lawler (1977)
by using a reduction from the strongly NP-complete 3-Partition problem to the decision
version of the scheduling problem. In the constructed instance of 1||∑ wjTj in Lawler
(1977), the jobs are of two families J (1) and J (2): each job Jj ∈ J (1) has a due date dj = 0
and so Tj = Cj in any schedule; and each job Jj ∈ J (2) has a positive due date dj and a
sufficiently large weight wj so that Tj = 0 in any feasible schedule. This just implies that

the feasibility problem 1||∑ w
(1)
j C

(1)
j ≤ Y : L(2)

max ≤ 0 is strongly NP-complete. Note that
Agnetis et al. (2004) have proved the ordinary NP-completeness of the same problem.

Theorem 3.2 1||∑1≤i≤m max1≤j≤ni
w

(i)
j C

(i)
j is strongly NP-hard.

Proof Let us be given an instance I of 1||∑ w
(1)
j C

(1)
j ≤ Y : L(2)

max ≤ 0:

(p1, , ..., pn; w1, ..., wk; dk+1, ..., dn; Y),

where J1, ..., Jk are the first agent’s jobs and Jk+1, ..., Jn are the second agent’s jobs;
pj ≥ 1 is the integral processing time of job Jj, 1 ≤ j ≤ n; wj ≥ 1 is the weight of job
Jj, 1 ≤ j ≤ k; dj ≥ 1 is the integral due date of job Jj, k + 1 ≤ j ≤ n; and Y > 0 is
the threshold value of the total weighted completion time of the first agent’s jobs. The
decision asks whether there is a schedule σ on the machine such that L(2)

max(σ) ≤ 0 and∑
1≤i≤k wiCi(σ) ≤ Y .

Since the completion time of each job cannot exceed P =
∑

1≤j≤n pj, we can assume
that Y ≤ WP , where W =

∑
1≤j≤k wj. It is also reasonable to suppose that dj ≤ P for

6

every Jj with j > k. We construct an instance I∗ of the feasibility scheduling problem

1||∑1≤i≤m max1≤j≤ni
w

(i)
j C

(i)
j ≤ Q as follows.

• k + 1 agents and n + 1 jobs J ′1, J
′
2, ..., J

′
n+1 with J ′j, 1 ≤ j ≤ n, corresponding to job Jj

in I. For 1 ≤ i ≤ k, the i-th agent has exactly one job J ′i . The job set of the (k + 1)-th
agent is defined by {J ′k+1, J

′
k+2, ..., J

′
n+1}.

• Processing times of the jobs are defined by p′j = pj for 1 ≤ j ≤ n and p′n+1 = M − P ,
where M = dmax(Y + W) + Y + P with dmax = maxk+1≤j≤n dj.

• Weights of the jobs are defined by w′
i = 2wi for 1 ≤ i ≤ k, w′

j = M/dj for k+1 ≤ j ≤ n,
and w′

n+1 = 1.

• Threshold value is defined by Q = 2Y + M , and the decision asks whether there is a
schedule π such that

∑
1≤i≤m max1≤j≤ni

w
(i)
j C

(i)
j ≤ Q.

The above construction can be done in polynomial time. We show in the following
that I is feasible if and only if I∗ is feasible.

Suppose I has a feasible schedule π. Then we obtain a corresponding sequence π∗ of the
jobs in I apart from J ′n+1. We insert job J ′n+1 in the last position of π∗ to obtain a schedule
σ. It can be seen that C ′

j(σ) ≤ Cj(π) for 1 ≤ j ≤ n, and maxk+1≤j≤n+1 w′
jC

′
j(σ) = M . It

follows that the objective value of the instance I∗ is no more than 2Y + M = Q.

Conversely, suppose that π is a feasible schedule of I∗. From the construction of I∗,
we see that

∑
1≤j≤n+1 p′j = P + M − P = M , 2M > Q and w′

j(dj + 1) > 2Y + M = Q
for k + 1 ≤ j ≤ n. If, for some j with 1 ≤ j ≤ k, J ′j is the last job in π, then
Q ≥ w′

jC
′
j(π) ≥ 2M > Q, a contradiction. If, for some j with k+1 ≤ j ≤ n, C ′

j(π) ≥ dj+1,
then Q ≥ w′

jC
′
j(π) ≥ w′

j(dj + 1) > Q, a contradiction again. It follows that the last job
in π must be J ′n+1, and C ′

j(π) ≤ dj for each j with k + 1 ≤ j ≤ n. Hence, we must have
max{w′

jC
′
j(π) : 1 ≤ j ≤ n + 1} = M . Since the cost of π is no more than Q = 2Y + M ,

we deduce that
∑

1≤j≤k w′
jC

′
j(π) ≤ 2Y .

Since Jj and J ′j have the same processing time for 1 ≤ j ≤ n, π, restricted on the
jobs J ′j, 1 ≤ j ≤ n, can also be seen as a schedule for the instance I. Now, w′

j = 2wj for
each j and

∑
1≤j≤k w′

jC
′
j(π) ≤ 2Y implies that

∑
1≤j≤k wjCj(π) ≤ Y . Consequently, π is

a feasible schedule for I. The result follows. 2

It is still open whether the problem 1||∑1≤i≤m L(i)
max is strongly NP-hard.

4 Pseudo-polynomial-time algorithms for given m

Suppose that F (i) is an integral regular function for each agent i. When m, the number of
agents, is a given constant, even the general problem 1|prec; fix; pmtn|∑1≤i≤m F (i) can be
theoretically solved in pseudo-polynomial time provided that, for each agent i, the upper
bound UB(i) and the lower bound LB(i) of F (i), with LB(i) ≤ F (i)(π) ≤ UB(i) for any
regular schedule π, can be determined in pseudo-polynomial time, say P(i).

7

By the discussion of Section 2, for every set {Q1, Q2, ..., Qm} with LB(i) ≤ Qi ≤
UB(i), 1 ≤ i ≤ m, the feasibility problem 1|prec; fix; pmtn|F (i) ≤ Qi, 1 ≤ i ≤ m can be
solved in O(n∗ log n∗+n2) time. By enumerating all the possibilities of Q1, Q2, ..., Qm and
choosing the best one, we eventually solve the problem. Let B(i) = UB(i) − LB(i) + 1,
1 ≤ i ≤ m. Then each Qi has at most B(i) choices. Hence, we have

Theorem 4.1 1|prec; fix; pmtn|∑1≤i≤m F (i) can be solved in O(
∑

1≤i≤m P(i) +
(n∗ log n∗ + n2) Π1≤i≤mB(i)) time.

Similarly, we have

Theorem 4.2 1|prec|∑1≤i≤m F (i) can be solved in O(
∑

1≤i≤m P(i)+n2 Π1≤i≤mB(i))
time.

Theorem 4.3 1|fix; pmtn|∑1≤i≤m F (i) can be solved in O(
∑

1≤i≤m P(i)+(n∗ log n∗+
n log n) Π1≤i≤mB(i)) time.

Theorem 4.4 1||∑1≤i≤m F (i) can be solved in O(
∑

1≤i≤m P(i)+(n log n) Π1≤i≤mB(i))
time.

When each F (i) is in a form familiar to us, the complexity can be reduced to a normal
size. For example, if F (i) = maxj w

(i)
j T

(i)
j , then we can choose UB(i) = max1≤j≤ni

w
(i)
j ×P

and LB(i) = 0; in this case, P(i) can be omitted from the complexity.

5 Polynomial-time algorithms for special models

Let K be a subset of the free jobs, and let π be a schedule of 1|fix; pmtn|∑1≤i≤m F (i). We
use SK and CK to denote the minimum starting time, and the maximum completion time
of the jobs in K under π, respectively. We say the jobs in K are consecutively processed
in π if, under the schedule π, the machine has no idle time in [SK , CK), and no free jobs
other than that in K are processed in [SK , CK).

The following observation, which holds for two-agent scheduling (see Baker and Smith
(2003), and Yuan et al. (2005)), still holds for multi-agent scheduling.

Observation 5.1 For the problem 1|fix; pmtn|∑1≤i≤m F (i), there is an optimal sched-
ule σ such that,

(1) if there is a certain i such that F (i) = max1≤j≤ni
w(i)C

(i)
j , then the jobs in J (i)

are consecutively processed;

(2) if there is a certain i such that F (i) = max1≤j≤ni
w

(i)
j C

(i)
j , then the jobs in J (i)

are processed in the maximum weight (MAX-W) order; and furthermore, the jobs with
the same weights are consecutively processed; and

(3) if there is a certain i such that F (i) = w(i)L(i)
max, then the jobs in J (i) are processed

in the EDD order; and furthermore, the jobs with the same due dates are consecutively
processed.

8

Proof By the job-shifting argument. 2

Theorem 5.2 1||∑1≤i≤m w(i)C(i)
max can be solved in O(n + m log m) time.

Proof By Observation 5.1(1), we first combine the jobs in each J (i) into a large

job Ji with processing time pi =
∑

1≤j≤ni
p

(i)
j and weight w(i). As a result, the problem is

transformed into the standard single-machine scheduling problem 1||∑ w(i)Ci, which can
be solved by the SWPT rule in O(m log m) time. The result follows. 2

In the following, we consider that, for each agent i, either F (i) = max1≤j≤ni
w

(i)
j C

(i)
j

or F (i) = w(i)L(i)
max. By Observation 5.1, the i-th agent’s jobs with the same weights

(F (i) = max1≤j≤ni
w

(i)
j C

(i)
j) or the same due dates (F (i) = w(i)L(i)

max) can be combined into
a large job. Hence, in the following, we suppose that the i-th agent’s jobs have distinct
weights or due dates, according to F (i) = max1≤j≤ni

w
(i)
j C

(i)
j or F (i) = w(i)L(i)

max.

Furthermore, we suppose that, when F (i) = max1≤j≤ni
w

(i)
j C

(i)
j , the jobs in J (i) =

{J1(i), J2(i), ..., Jni
(i)} are indexed in the MAX-W order w

(i)
1 < w

(i)
2 < · · · < w(i)

ni
, and

when F (i) = w(i)L(i)
max, the jobs in J (i) = {J (i)

1 , J
(i)
2 , ..., J (i)

ni
} are indexed in the EDD order

d
(i)
1 < d

(i)
2 < · · · < d(i)

ni
. By Observation 5.1 again, there is an optimal schedule such that,

for each agent i, its jobs are processed in the order (J
(i)
1 , J

(i)
2 , ..., J (i)

ni
). It follows that in

an optimal schedule, the completion time of any job is of the form ∆(P (x1, x2, ..., xm)) for

some x1, x2, ..., xm with 0 ≤ xi ≤ ni, 1 ≤ i ≤ m, where P (x1, x2, ..., xm) =
∑

1≤i≤m

∑
1≤j≤xi

p
(i)
j

and ∆(·) is the same as that in Section 2. Consequently, in an optimal schedule, the pos-

sible value of F (i) belongs to the set R(i) = {f (i)
j (∆(P (x1, x2, ..., xm)) : 0 ≤ xi ≤ ni}.

Note that R(i) = O(n1n2 · · ·nm) for each i.

By the discussion of Section 2, for every sequence Q1, Q2, ..., Qm with Qi ∈ R(i),
1 ≤ i ≤ m, the feasibility problem 1|FB; pmtn|F (i) ≤ Qi, 1 ≤ i ≤ m can be solved in
O(n∗ log n∗+n log n) time. By enumerating all possibilities of Q1, Q2, ..., Qm and choosing
the best one, we eventually solve the problem. Since the sequence Q1, Q2, ..., Qm has at
most O((n1n2 · · ·nm)m) choices and all the values ∆(P (x1, x2, ..., xm)) can be calculated
in O(n∗n1n2 · · ·nm) time, the total complexity is O((n∗ log n∗ + n log n)(n1n2 · · ·nm)m),
which is polynomial when m is fixed.

Theorem 5.3 The problem 1|fix; pmtn|∑1≤i≤m F (i) can be solved in O((n∗ log n∗ +
n log n)(n1n2 · · ·nm)m) time.

Similarly, we have

Theorem 5.4 1||∑1≤i≤m F (i) can be solved in O((log n)(n1n2 · · ·nm)m) time.

Acknowledgements

We are grateful for the helpful comments of two anonymous referees on an earlier version of
this paper. This research was supported in part by The Hong Kong Polytechnic University

9

under grant number S818 and The National Natural Science Foundation of China under
grant number 10671183.

References

Agnetis, A., P.B. Mirchandani, D. Pacciarelli, and A. Pacifici, “Scheduling problems
with two competing agents”, Operations Research, 52, 229-242 (2004).

Baker, K.R., and J.C. Smith, “A multiple-criterion model for machine scheduling”,
Journal of Scheduling, 6, 7-16 (2003).

Brucker, P., Scheduling Algorithms, Springer Verlag, Berlin, 2001.

Curiel, I., G. Pederzoli, and S. Tijs, “Sequencing games”, European Journal of Op-
erational Research, 40, 344-351 (1989).

Du, J., and J.Y.-T. Leung, “Minimizing total tardiness on one machine is NP-hard”,
Mathematics of Operations Research, 15, 483-495 (1990).

Garey, M.R., and D.S. Johnson, Computers and Intractability: A Guide to the The-
ory of NP-Completeness, Freeman, San Francisco, CA, 1979.

Hamers, H., P. Borm, and S. Tijs, “On games corresponding to sequencing situations
with ready times”, Mathematical Programming, 70, 1-13 (1995).

Kim, K., B.C. Paulson, C.J. Petrie, and V.R. Lesser, “Compensatory negotiation
for agent-based project schedule coordination”, CIFE working paper #55, Stanford
University, Stanford, CA, 1999

Kovalyov, M.Y., C.T. Ng, and T.C.E. Cheng, “Fixed interval scheduling: models,
applications, computational complexity and algorithms”, European Journal of Op-
erational Research, 178, 331-342 (2007).

Lawler, E.L., “Optimal sequencing of a single machine subject to precedence con-
straints”, Management Science, 19, 544-546 (1973).

Lawler, E.L., “A pseudopolynomial algorithm for sequencing jobs to minimize total
tardiness”, Annals of Discrete Mathematics, 1, 331-342 (1977).

Scharbrodt, M., A. Steger, and H. Weisser, “Approximability of scheduling with fixed
jobs”, Journal of Scheduling, 2, 267-284 (1999).

Schultz, D., S.-H. Oh, C.F. Grecas, M. Albani, J. Sanchez, C. Arbib, V. Arvia, M.
Servilio, F. Del Sorbo, A. Giralda, and G. Lombardi, “A QoS concept for packet ori-
ented S-UMTS services”, Proceedings of the 1st Mobile Summit 2002, Thessaloniki,
Greece.

Yuan, J.J., W.P. Shang, and Q. Feng, “A note on the scheduling with two families
of jobs”, Journal of Scheduling, 8, 537-542 (2005).

10

