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Abstract 

This paper studies the two-machine flowshop scheduling problem with job class setups to 

minimize the total flowtime. The jobs are classified into classes, and a setup is required on a 

machine if it switches processing of jobs from one class to another class, but no setup is 

required if the jobs are from the same class. For some special cases, we derive a number of 

properties of the optimal solution, based on which we design heuristics and branch-and-bound 

algorithms to solve these problems. Computational results show that these algorithms are 

effective in yielding near-optimal or optimal solutions to the tested problems. 
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1. Introduction 

In many manufacturing settings classes of jobs are processed on one or more machines. On 

each machine, a setup is required at the beginning of each batch, where a batch is a maximal 

set of consecutively processed jobs from the same class. A machine can only process one job at 

a time, and cannot perform any processing while undergoing a setup. For the objective of 

minimizing the total flowtime, a schedule defines how batches are formed and specifies the 

processing order of the batches and that of the jobs within the batches. 

The single-machine job class scheduling problem to minimize the (weighted) total flowtime 

has been widely studied by many researchers. For the case of two job classes, Gupta (1984) 

and Potts (1991) proposed a polynomial time algorithm and a dynamic programming algorithm, 

respectively. However, Gupta’s algorithm is not optimal. For the case of multiple job classes, 

Gupta (1988), and Ahn and Hyun (1990) proposed different heuristics. Mason and Anderson 

(1991) developed a branch-and-bound algorithm for the problem to minimize the mean and 

weighted flowtime. Crauwels et al. (1998), too, proposed a branch-and-bound algorithm, which 

is superior to that of Mason and Anderson (1991) by using the derived lower bounds from a 

Lagrangian relaxation of the machine capacity constraints. Crauwels et al. (1997) also 

developed several local search heuristics, whose performance is superior to the method in Ahn 

and Hyun (1990). Reviews on this topic have been presented by Potts and Van Wassenhove 

(1992), Webster and Baker (1995), and Potts and Kovalyov (2000). 

 In contrast to the existence of many significant research results on the single-machine job 

class scheduling problem to minimize the (weighted) total flowtime, there have been few 

attempts to study the problem involving two or more machines (see, for example, Cheng et al., 

2000). The two-machine flowshop job class scheduling problem is evidently NP-hard because 

if all the setup times of the job classes are zero, it becomes the classical two-machine flowshop 

scheduling problem, which is NP-hard (Gonzalez and Sahni, 1978). For the two-machine 

flowshop scheduling problem to minimize the mean flowtime, Woo and Yim (1998) proposed 

an efficient heuristic algorithm. Ho and Gupta (1995) proposed polynomial time algorithms 

under the dominant machine situation. When each job belongs to a different job class, the 

problem becomes the two-machine flowshop scheduling problem with sequence-independent 
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setup times, for which Allahverdi (2000) developed a branch-and-bound algorithm and a 

heuristic. For the general case, it is highly unlikely that a polynomial algorithm can be found to 

solve the problem. In this paper we study several special cases of the two-machine flowshop 

job class scheduling problem and develop efficient algorithms for them. We solve two special 

cases of the problem and develop several heuristics and branch-and-bound algorithms for the 

other cases. The efficiency and effectiveness of the heuristics and branch-and-bound algorithms 

are numerically evaluated. 

 

2. Problem description and notation 

For the classical two-machine flowshop scheduling problem with the objective of 

minimizing the total flowtime, there exists an optimal permutation schedule. To the best of our 

knowledge, the issue of whether this property can be extended to the corresponding problem 

with class setups has remained unresolved. However, we assume in this paper that all jobs are 

available at time zero and no jobs are allowed to pass. In other words, the job sequence is the 

same on both machines. We are given n jobs that are divided into c classes. Each class i, for 

, contains cci ,,2,1 L= i jobs. For the jth job of class i, which we denote by job (i, j), the 

following notation is defined: 

iks : setup time of class i on machine k, k = 1, 2; 

ija : processing time of job (i, j) on machine 1,  c   i ,,2,1 L= , i c  j ,,2,1 L= ; 

ijb : processing time of job (i, j) on machine 2,  c   i ,,2,1 L= , i c  j ,,2,1 L= ; 

ijC : completion time of job (i, j) on machine 2,  c   i ,,2,1 L= , i c  j ,,2,1 L= . 

A schedule S is an ordered set of the n jobs. It is convenient to regard a schedule as a 

sequence of batches, where a batch is a maximal consecutive subsequence of the jobs from the 

same class in S. Let r denote the number of batches and ni the number of jobs in the ith batch. 

And let job [i, j] denote the jth job processed in the ith batch in schedule S. We define 

kis ],[ : setup time of the ith batch on machine k, k = 1, 2; 

],[ jia : processing time of job [i, j] on machine 1,  r   i ,,2,1 L= , i n  j ,,2,1 L= ; 
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],[ jib : processing time of job [i, j] on machine 2,  r   i ,,2,1 L= , i n  j ,,2,1 L= ; 

],[ jiC : completion time of job [i, j] on machine 2,  r   i ,,2,1 L= , i n  j ,,2,1 L= . 

We now define the total flowtime of the jobs under S as 
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In order to unify the notation, we set  and to be zero. ],0[100 ,, jj CAA ]0,1[C

Adopting the notation in Brucker (1995), we denote the two-machine flowshop job class 

scheduling problem to minimize the total flowtime under study as . ∑ ],[//2 jiCclassF

Suppose that all the processing times of the jobs on machines 1 and 2 are equal to a constant 

t, and each class setup time on machine 1 is no less than that on machine 2. Then this case can 

be denoted as ∑==≥ ],[21 /,,/2 jiijijii CclasstbassF . 

Suppose that the processing times of all jobs on machines 1 and 2 are equal to a constant t, 

and each job class setup time on machine 2 is no less than the sum of t and the setup time on 

machine 1. Then this case can be denoted as . ∑==≤+ ],[21 /,,/2 jiijijii CclasstbastsF

For the classical flowshop scheduling problem where no setups or job classes are involved, 

Ho and Gupta (1995) have studied two special structure flowshops with dominant machines. 

The cases considered in this paper are described as follows. 

If 21 ii ss ≥  and for},max{}min{ ijij ba ≥  c   i ,,2,1 L= , i c  j ,,2,1 L= , we claim that 

machine 1 dominates machine 2, denoted by M1 f M2. This case can be denoted as 

∑ ],[21 /,/2 jiCclassMMF f . 
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If , where | any job (i, j) whose iii ass +≥ 12 min{ iji aa = }},,,,min{ 21 iiciiij bbbb L=  and 

, for ,}max{}min{ ijij ab ≥  c   i ,,2,1 L= i c  j ,,2,1 L= , we claim that machine 2 dominates 

machine 1, denoted by M2 f M1. This case can be denoted as . ∑ ],[12 /,/2 jiCclassMMF f

Suppose that the processing time of any job on machine 1 is equal to that on machine 2, and 

the setup time of each class on machine 1 is also equal to that on machine 2. Then this case can 

be denoted as ∑=== ],[21 /,,/2 jiijijijii CclasstbassF . 

For the first two cases, we will see that the restrictions on the general problem lead to these 

cases to be solved in polynomial time. It is evident that the last three cases are NP-hard even 

though they are special cases of the general problem. Furthermore, the cases with dominant 

machines are natural extensions of the classical problem to the processing environment with 

class setups, and the last case has a different structure characteristic from the single machine 

class scheduling problem. Therefore, the derivation of theoretical results and the development 

of effective heuristics and branch-and-bound algorithms for these three special cases are 

challenging and valuable. Moreover, the findings of this research may shed light on the general 

problem and provide hints for its solution. 

 

3. Properties of optimal solutions 

In this section we study several special cases of the general problem . 

Some properties of the optimal solutions are derived in the following. 

∑ ],[//2 jiCclassF

 

3.1  ∑==≥ ],[21 /,,/2 jiijijii CclasstbassF . 

Theorem 1  For the ∑==≥ ],[21 /,,/2 jiijijii CclasstbassF  problem, there exists an 

optimal schedule in which each batch consists of all the jobs of a class, and the batches are 

sequenced in ascending order of . ii ns /1],[

 

Proof  For this case, the completion time of job [i, j] is 
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i) For all schedules that consist of r batches, if a schedule satisfies  

, then it has the smallest value of the total flowtime. 
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Let σ1 denote a schedule where the batches are sequenced by 
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because σ1 satisfies the following conditions: 
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Therefore, 0)()( 12 ≥− σσ FF . 

ii)  Given a schedule (denoted as σ1) in which the batches are sequenced in ascending order 
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Therefore,    F(σ1) − F(σ2) > 0. 

From i) and ii), we reach the conclusion of the theorem.  □ 

 

According to Theorem 1, an algorithm that treats a job class as a single batch and sequences 

the batches in ascending order of  produces an optimal solution. ii ns /1],[

 

3.2  ∑==≤+ ],[21 /,,/2 jiijijii CclasstbastsF . 

Theorem 2  For the ∑==≤+ ],[21 /,,/2 jiijijii CclasstbastsF problem, an optimal 

schedule can be obtained if a batch consists of all the jobs of a class, and the batches are 

sequenced in ascending order of . ii ns /2],[

 

Proof  Similar to the proof of Theorem 1. □ 

 

According to Theorem 2, an algorithm that treats a job class as a single batch and sequences 

all batches in ascending order of  produces an optimal solution. ii ns /2],[

 

3.3  . ∑ ],[21 /,/2 jiCclassMMF f

Theorem 3  For the ∑ ],[21 /,/2 jiCclassMMF f  problem, there exists an optimal 

schedule where the jobs in a batch i are sequenced in ascending order of . ],[ jia
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Interchanging the ith and (i+1)st batches, the sum of the job completion times within the two 
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Clearly, the completion times of the jobs before the ith batch or after the (i+1)st batch are not 

changed after interchanging the ith and (i+1)st batches. Then, for the total completion time F 

and F′ before and after interchanging, respectively, we have 
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Theorem 5  For the ∑ ],[21 /,/2 jiCclassMMF f  problem, where the jobs in the ith and 

(i+k)th batches belong to the same job class, there exists an optimal schedule where ]  and 

 satisfy the following condition 
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Proof.  In a schedule S, we denote all the processed jobs between job [i, ni] and job [i+k, 1] as 

a partial sequence σ. Let S′ be the sequence formed by moving job [i+k, 1] to the last of the ith 
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batch in S. Clearly, the completion times of the jobs sequenced before job [i, ni] or after job 

[i+k, 1] are not changed. Let F and F′ denote the total flowtime of S and S′, respectively. In 

schedule S, we have 
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1 1
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1],[]1,[
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j
jhiki
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saC
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+

−

= =
++

++
= ==

+

=−=+=′

+−=

+++=′

∑∑∑

∑∑∑
+

LL     , 

              

Then, 

)(
1

1 1
],[

1
1],[]1,[

1

1
]1,[

1

1 1
],[]1,[

1

1 1
],[ ∑∑∑∑∑∑∑∑

−

= =
+

=
++

−

=
++

−

= =
++

−

= =
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+++
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n

j
jli
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i
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asCnaCCC . 

Therefore, 

)(
1

1 1
],[

1
1],[

1

1
]1,[ ∑∑∑∑

−

= =
+

=
+

−

=
++

+

+−=−′
k

h

n

j
jhi

k

h
hi

k

l
liki

hi

asnaFF . 

Therefore, if the right hand side of inequality (1) holds, i.e., F′– F ≥ 0, which means that job 

[i+k ,1] should not be moved to the last position of the ith batch to minimize the total flowtime. 

Similar to the above, we can also prove that if the left hand side of inequality (1) holds, job [i, 

ni] should not be moved to the beginning position of the (i+k)th batch to minimize the total 

flowtime. □  

 

3.4  . ∑ ],[12 /,/2 jiCclassMMF f

Theorem 6  For the ∑ ],[12 /,/2 jiCclassMMF f  problem, there exists an optimal 

schedule where the jobs in a batch i are sequenced in ascending order of . ],[ jib
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Proof  Similar to the proof of Theorem 3. □ 

 

Theorem 7  For the ∑ ],[12 /,/2 jiCclassMMF f  problem, there exists an optimal 

schedule where the batches are sequenced in ascending order of . i

n

j
jii nbs

i

/)(
1

],[2],[ ∑
=

+

 

Proof  Similar to the proof of Theorem 4. □ 

 

Theorem 8  For the ∑ ],[12 /,/2 jiCclassMMF f  problem, where the jobs of the ith and 

(i+k)th batches belong to the same job class, there exists an optimal schedule where  and 

 satisfy the following condition 

],[ inib

]1,[ kib +

∑ ∑∑∑
−

=
+

−

=
+

=
+

=
+ ≤+≤

+1

1
]1,[

1

11
],[

1
2],[],[ /)(

k

l
ki

k

l
li

n

j
jli

k

l
lini bnbsb

li

i
. 

 

Proof  Similar to the proof of Theorem 5. □ 

 

3.5  ∑=== ],[21 /,,/2 jiijijijii CclasstbassF .  

For convenience, we set si1 = si2 = si, for ,,,2,1 ci L=  and ai j = bi j= ti j, for  

. For this special case, we can derive some optimal properties in the following. 

,1=i ,,,2 cL

icj ,,2,1 L=

 

Theorem 9  For the ∑=== ],[21 /,,/2 jiijijijii CclasstbassF  problem, there exists an 

optimal schedule where the jobs in a batch i are sequenced in ascending order of . ],[ jit

 

Proof  Let σ1 denote a sequence where the jobs within a batch are sequenced in ascending 

order of t[i, j]. Let σ2 denote a sequence that is obtained from σ1 by swapping the jobs [i, j] and [i, 

j+1]. Obviously, the completion times of all jobs before job [i, j] are equal in σ1 and σ2. In 

schedule σ1, we have 
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,},max{)( ],[]1,[],[1,],[1 jijijijiji tCtAC ++= −−σ  

]1,[],[1]1,[],[1,]1,[1 })(,max{)( ++−+ +++= jijijijijiji tCttAC σσ  

]1,[],[]1,[],[1,]1,[1, },,max{ +−−+− ++++= jijijijijijiji ttCtAtA  

 ,},max{ ]1,[],[]1,[]1,[1, +−+− +++= jijijijiji ttCtA                 (2) 

},max{)()( ]1,[],[1,]1,[1],[1 −−+ +=+ jijijijiji CtACC σσ  

   .2},max{ ]1,[],[]1,[]1,[1, +−+− ++++ jijijijiji ttCtA     (3) 

In schedule σ2, we have  

,},max{)( ]1,[]1,[]1,[1,],[2 +−+− ++= jijijijiji tCtAC σ  

],[],[2],[]1,[1,]1,[2 })(,max{)( jijijijijiji tCttAC +++= +−+ σσ  

]1,[],[]1,[]1,[1,],[1, },,max{ +−+−− ++++= jijijijijijiji ttCtAtA  

,},max{ ]1,[],[]1,[]1,[1, +−+− +++= jijijijiji ttCtA                  (4)    

.2},max{2)()( ]1,[],[]1,[]1,[1,]1,[2],[2 +−+−+ +++=+ jijijijijijiji ttCtACC  σσ      (5) 

From (2) and (4), we have ]1,[2]1,[1 )()( ++ = jiji CC σσ . And, obviously, swapping job [i, j] and 

job [i, j+1] will not change the completion time of the last of these two jobs on machine 1. So 

the completion times of all jobs after job [i, j+1] in σ1 are not changed in σ2. From (3) and (5), 

we have 

]1,[2],[2]1,[1],[1 )()()()( ++ +≤+ jijijiji CCCC σσσσ . 

Then, the total flowtime of σ1 is no greater than the total flowtime of σ2. □ 

 

Theorem 10  For the ∑=== ],[21 /,,/2 jiijijijii CclasstbassF problem, in a sequence where 

batches i and k are adjacent, let the jobs within batch i (or k) be sequenced in ascending order 

of their processing times on machine 1 or 2. In order to minimize the total flowtime, batch i 

should precede batch k, if  

   1kin tt
i
≤ and .                  (6) k

n

j
kjki

n

j
iji ntsnts

ki

/)(/)(
11
∑∑
==

+≤+   

 13



 

Proof  We assume that batches i and k are in positions h and h+1 in a sequence σ1, 

respectively, and sequence σ2 is obtained by swapping batches i and k. Obviously, the 

completion times of any job before the hth batch are equal in σ1 and σ2. For the hth and (h+1)st 

batches in sequence σ1, we have 

ijjiiinhijiinhjh tttsCttsAC
hh

+++++++++= −−− −−
},max{)( 1,1],1[1,1],[1 11

LLσ  

,},max{)( ],1[,1
1

11
 

−− −−
=

+++= ∑ hh nhijnh

j

l
ili CtAts  for ,,,2,1 inj L=  

,},,max{)()(

)}(

,)(,)(max{)(

})(,max{)(

})(,max{)(

],1[,1,1
11

1
],1[

1
,1

1
,1

1

],[1,
1

1,1],[11,],1[1

111

1

11

                    

                      

                   

                   

−−−

−

−−

−−−
==

=
−

=
−

=
−

=

=

−+

++++++=

++

++++++++=

+++=

+++++++++=

∑∑

∑

∑∑∑

∑

hihh

i

i

h

i

i

h

i

h

ik

ih

nhinnhkjnh

j

l
klk

n

l
ili

n

l
ilinh

in

n

l
ilinhkj

n

l
ilinh

j

l
klk

nhkjnh

j

l
klk

kjjkkknhkjkknhjh

CtAtAtsts

tsC

ttsAttsAts

CtAts

tttsCttsAC

σ

σσ LL

 

for   (7) ,,,2,1 knj L=

 ∑∑∑∑
===

+
=

+−++++=+
iiki n

l
ili

n

l
ilkkkiki

n

j
jh

n

j
jh tlntnsnsnnCC

111
],1[1

1
],[1 )1()()()( σσ    

  },{max)1( ],1[,1
11

11 −− −−
==

+++−+ ∑∑ hh

ik

nhilnh

n

l

n

l
klk CtAtln

                        .        (8) },,{max ],1[,1,1
1

111 −−− −−−
=

+++∑ hihh

k

nhinnhklnh

n

l

CtAtA    

For the hth and (h+1)st batches in sequence σ2, similar to the above, we can derive 

    },,max{)()( ],1[,1
1

],[2 11 −− −−
=

+++= ∑ hh nhkjnh

j

l
klkjh CtAtsC σ for ,,,2,1 knj L=   

    }.,,max{)()()( ],1[,1,1
11

],1[2 111 −−− −−−
==

+ ++++++= ∑∑ hkhh

k

nhknnhijnh

j

l
ili

n

l
klkjh CtAtAtstsC σ  

for inj ,,2,1 L= ,     (9) 
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∑ ∑

∑ ∑ ∑ ∑

= =
−−

= = = =
+

−−
+++−+

+−++++=+

i k

hh

k i k k

n

l

n

l
nhklnhili

kl

n

j

n

j

n

l

n

l
kkliiikkijhjh

CtAtln

tlntnsnsnnCC

1 1
],1[,1

1 1 1 1
],1[2],[2

},max{)1(

)1()()()(

11
                                                    

σσ
 

                                      (10) .},,max{
1

],1[,1,1 111∑
=

−−− −−−
+++

i

hkhh

n

l
nhknnhilnh CtAtA 

From (7) and (9), we have 

],1[2],1[1 )()(
ik nhnh CC ++ = σσ . 

Then, the completion times of any job after the (h+1)st batch in σ1 and σ2 are equal. 

From (6), (8) and (10), we have  

∑ ∑ ∑∑
= = =

++
=

+≤+
k i ki n

j

n

j

n

j
jhjhjh

n

j
jh CCCC

1 1 1
],[2],1[2],1[1

1
],[1 )()()()( σσσσ . 

Thus, if the condition of the theorem holds, then the conclusion is valid.  □ 

 

Theorem 11  For the ∑=== ],[21 /,,/2 jiijijijii CclasstbassF  problem, jobs within any 

batches are sequenced in ascending order of their processing times on machine 1 or 2, and the 

jobs in the ith and (i+k)th batches belong to the same job class. In order to minimize the total 

flowtime, 

i)  job [i+k, 1] should move to the last position of the ith batch, if , for 

; 

]1,[]1,[ liki tt ++ ≤

1,,2,1 −= kl L

ii)  job  should move to the first position of the (i+k)th batch, if , for 

. 

],[ ini ],[],[ lii nlini tt
++≥

1,,2,1 −= kl L

 

Proof  i) Let σ1 denote the original schedule, and σ2 a schedule obtained from σ1 by moving 

the first job in the (i+k)th batch to the last position of the ith batch. Obviously, the completion 

times of all the jobs from the first job up to job [i, ni] in σ1 and σ2 are equal. Under the 

assumptions of the theorem, in schedule σ1, we have 
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},max{)( ],[],1[
1

],1[]1[],1[1 ii nijini

j

l
liiji CtAtsC +

=
+++ +++= ∑σ ,  for ,,,2,1 1+= inj L  

},,,,max{)( ],[],[],1[],1[],[1 11 iiliiii nijlininlinininijli CtAtAtAC +−+++ +++=
−++

Lσ  

 ∑∑∑∑
=

+

−

= =
+

=
+ +++

+ j

h
hli

l

h

n

j
jhi

l

h
hi tts

hi

1
],[

1

1 1
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][ ,  for linjkl +== ,,2,1,,,2 LL .  (11) 

In schedule σ2, we have 

, },max{)( ]1,[],[]1,[]1,[2 kinikinini tCtAC
iii +++ ++=σ  

 ]1,[],1[1],1[2 )()( kijiji tCC +++ += σσ , for ,,,2,1  1+= inj L  

},,,,,max{)( ],[]1,[],[],1[],1[],[2 11 iiiliiii nikinijlininlinininijli CtAtAtAtAC ++−+++ ++++=
−++

Lσ  

    ,]1,[
1
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1 1
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jhi
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+
=

+

−

= =
+

=
+ ++++ ∑∑∑∑

+

for ,,,2,1,1,,2 linjkl +=−= LL 
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1 1
],[1]1,[1
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1 1
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i nikini
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jliki
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jlini CtACCCC +

−

= =
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−

= =
++ +++=+ ∑∑∑∑
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σσσσ  

}),,,,max{ ],[]1,[],1[],1[ 11 iikiiii nikininkininini CtAtAtA +−++ +++−
−++

L  

        ,)(   
1
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1

1 1
],[

1

1
]1,[ ∑∑∑∑
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= =
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=
++ −−+

+ k

h
hi

k

h

n

j
jhi

k

l
liki stnt
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           (12) 

},,,,,max{)( ],[]2,[],1[],1[]1,[]1,[2 11 iikiiiii nikininkinininikiniki CtAtAtAtAC +−++++ ++++=
−++

Lσ  

        .]2,[]1,[

1

1 1
],[

1
][ kiki

k

h

n

j
jhi

k

h
hi ttts

hi

++

−

= =
+

=
+ ++++ ∑∑∑

+

                           (13) 

From (11) and (13), considering that ]2,[]1,[ kiki tt ++ ≤ , we have ]1,[2]2,[1 )()( kiki CC ++ = σσ . So, the 

completion times of all the jobs after job [i+k, 1] in schedule σ1 are the same as those in 

schedule σ2. 

Furthermore, from (12), taking into account that ]1,[]1,[ liki tt ++ ≤ , 1,,2,1 −= kl L , we have 

∑∑∑∑
−

= =
++

−

= =
++

++

+<+
1

1 1
],[1]1,[1

1

1 1
],[2]1,[2 )()()()(

k

l

n

j
jliki

k

l

n

j
jlini

lili

i
CCCC σσσσ . 

Therefore, the total flowtime of σ2 is less than the total flowtime of σ1. 

ii) Similar to the proof of i). □ 
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4. Algorithms 

In the previous section, we have derived some properties of the optimal solutions for several 

special cases. Since Theorems 1 and 2 state the conditions for the optimal solutions for cases 

3.1 and 3.2, respectively, it is easy to develop polynomial time solution algorithms for these 

two cases. In this section, we develop some heuristics and branch-and-bound algorithms for 

cases 3.3, 3.4 and 3.5. 

 

4.1  Heuristic algorithms 

Our heuristic algorithms use a construction procedure to find an initial schedule, and then 

improve the performance of the solutions according to the optimal properties stated in the 

various theorems in the previous section. 

 

For , we construct the following algorithms. ∑ ],[21 /,/2 jiCclassMMF f

 

Heuristic algorithm A1(HAA1) 

Step 1. Let )],(,),2,(),1,([ ii cijobijobijob L=σ  be the sequence in ascending order of 

their processing times on machine 1, ci ,,2,1 L= , and set Φ=β (empty set). 

Step 2. Select a job (i, 1) such that },,2,1|min{ 1111 ckasas kkii L=+=+ . Remove job (i, 1) 

from iσ  and place it in the first position of β , and set h = i. 

Step 3. If Φ=∪∪∪ cσσσ L21 , go to step 4, else 

If Φ≠hσ  and ikihm asa +≤ 1 , remove job (h, m) from hσ  and place it in the last position 

of β . Otherwise, remove job (i, k) from iσ  and place it in the last position of β , and set h 

= I, where job (h, m) is the first job in hσ , and job (i, k) satisfies si1 + aik = min{sg1+ ag l | job 

(g, l) is the first job in gσ , }. Go to step 3. hg ≠
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Step 4. For sequence β , calculate for its batches, and sequence all 

batches of 

i

n

j
jii nas

i

/)(
1

],[1],[ ∑
=

+

β  in ascending order of . i

n

j
jii nas

i

/)(
1

],[1],[ ∑
=

+

Step 5. For the two batches containing the jobs of the same class, move their jobs that satisfy 

the conditions for the optimal solution given in Theorem 5. Denote the obtained sequence as β . 

Step 6. Repeat step 4 if necessary. Stop. 

 

Heuristic algorithm A2 (HAA2) 

This heuristic is similar to HAA1 except step 3. We rewrite step 3 as follows. 

Step 3. If Φ=∪∪∪ cσσσ L21 , go to step 4, else 

If Φ≠hσ  and ikimhhm asaa +≤+ + 11, 2/)( , remove jobs (h, m) and (h, m+1) from hσ  and 

place them in the last two positions of β . Otherwise, remove job (i, k) from iσ  and place it 

in the last position of β , and set h = I, where jobs (h, m) and (h, m+1) are the first two jobs in 

hσ , and job (i, k) satisfies si1 + aik = min{sg1+ ag l | job (g, l) is the first job in gσ , }. Go 

to step 3. 

hg ≠

 

For , we have the following algorithms. ∑ ],[12 /,/2 jiCclassMMF f

 

Heuristic algorithm B1 (HAB1) 

Step 1. Let )],(,),2,(),1,([ ii cijobijobijob L=σ  be the sequence in ascending order of 

their processing times on machine 2, ci ,,2,1 L= , and set Φ=β . 

Step 2. Select a job (i, 1) such that },,2,1|min{ 1212 ckbsbs kkii L=+=+ . Remove job (i, 

1) from iσ and place it in the first position of β , and set h = i. 

Step 3. If Φ=∪∪∪ cσσσ L21 , go to step 4, else 
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If Φ≠hσ and ikihm bsb +≤ 2 , remove job (h, m) from hσ  and place it in the last position 

of β . Otherwise, remove job (i, k) from iσ  and place it in the last position of β , and set h 

= I, where job (h, m) is the first job in hσ , and job (i, k) satisfies si2 + bik = min{sg2+ bg l | job (g, 

l) is the first job in gσ , }. Go to step 3. hg ≠

Step 4. For sequence β , calculate  for its batches, and sequence all 

batches of 

i

n

j
jii nbs

i

/)(
1

],[2],[ ∑
=

+

β  in ascending order of . i

n

j
jii nbs

i

/)(
1

],[2],[ ∑
=

+

Step 5. For the two batches containing jobs of the same class, move their jobs that satisfy the 

conditions for the optimal solution given in Theorem 8. Denote the obtained sequence as β . 

Step 6. Repeat step 4 if necessary. Stop. 

 

Heuristic algorithm B2 (HAB2) 

This heuristic is similar to HAB1 except step 3. We rewrite step 3 as follows. 

Step 3. If Φ=∪∪∪ cσσσ L21 , go to step 4, else 

If Φ≠hσ and ikimhhm bsbb +≤+ + 21, 2/)( , remove jobs (h, m) and (h, m+1) from hσ  and 

place them in the last two positions of β . Otherwise, remove job (i, k) from iσ  and place it 

in the last position of β , and set h = I, where jobs (h, m) and (h, m+1) are the first two jobs in 

hσ , and job (i, k) satisfies si2 + bik = min{sg2+ bg l | job (g, l) is the first job in gσ , }. Go 

to step 3. 

hg ≠

 

For ∑=== ],[21 /,,/2 jiijijijii CclasstbassF , we construct the following algorithms. 

 

Heuristic algorithm C1 (HAC1) 

Step 1. Let )],(,),2,(),1,([ ii cijobijobijob L=σ  be a sequence in ascending order of 
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their processing times on machine 1 or 2, ci ,,2,1 L= , and set Φ=β . 

Step 2. Select a job (i, 1) such that },,2,1|min{ 11 cktsts kkii L=+=+ . Remove job (i, 1) 

from iσ  and place it in the first position of β , and set h = i. 

Step 3. If Φ=∪∪∪ cσσσ L21 , go to step 4, else 

If Φ≠hσ and , remove job (h, m) from ikihm tst +≤ hσ  and place it in the last position of 

β . Otherwise, remove job (i, k) from iσ  and place it in the last position of β , and set h = I, 

where job (h, m) is the first job in hσ , and job (i, k) satisfies si + tik = min{sg+ tg l | job (g, l) is 

the first job in gσ , }. Go to step 3. hg ≠

Step 4. For sequence β , interchange the adjacent pairs of batches to improve the objective 

function. 

Step 5. For the two batches containing jobs of the same class, move their jobs that satisfy the 

conditions for the optimal solution given in Theorem 11. Stop. 

 

Heuristic algorithm C2 (HAC2) 

This heuristic is similar to HAC1 except step 3. We rewrite step 3 as follows. 

Step 3. If Φ=∪∪∪ cσσσ L21 , go to step 4, else 

If Φ≠hσ and (thm + th, m+1) / 2 ≤ si + tik , remove jobs (h, m) and (h, m+1) from hσ  and 

place them in the last two positions of β . Otherwise, remove job (i, k) from iσ  and place it 

in the last position of β , and set h = I, where jobs (h, m) and (h, m+1) are the first two jobs in 

hσ , and job (i, k) satisfies si + tik = min{sg+ tg l | job (g, l) is the first job in gσ , }. Go to 

step 3. 

hg ≠

 

4.2  Branch-and-bound algorithms 

For each of the above cases, we derive a lower bound that can be used to reduce the size of 

the search tree generated by the branch-and-bound procedure. 
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We assume that a partial sequence σ1 has been determined, in which job (p, q) is the last job, 

and σ2 is the complement of σ1, which include α  unscheduled jobs. 

For case 3.3, in set σ2, let denote the processing time of job (i, j) on 

machine 1, where job (i, j) is the kth job when being sequenced among these 

),,2,1( αL=kak
ij

α  jobs in 

increasing order of their processing times on machine 1. Let ni
l > 0 ( β,,2,1 L=l ) denote the 

job number of class i in σ2 (excluding class p), where l denotes the lth position in increasing 

order of sl
i 1 / ni

l, and si
l
1 denotes the setup time of these nl

i  jobs on machine 1. A lower bound 

for the case 3.3 can be expressed as follows: 

∑∑ ∑∑∑
∈∈ ===

++−+−++=
21 ),(),( 1

1
1

)1()()(1
σσ

αββ

αα
ji

ij
k
ij

ji k
pqpq

lk

k
i

l
i

l
ij bakbCnsCLB .       (14) 

For case 3.4, in set σ2, let  denote the processing time of job (i, j) on 

machine 2, where job (i, j) is the kth job when being sequenced among these 

),,2,1( αL=kbk
ij

α  jobs in 

increasing order of their processing times on machine 2. Let ni
l >0 ( β,,2,1 L=l ) denote the 

job number of class i in σ2 (excluding class p), where l denotes the lth position in increasing 

order of si
l
2 / ni

l and si
l
2 denotes the setup time of these ni

l jobs on machine 2. A lower bound for 

the case 3.4 can be expressed as follows: 

k
ij

ji k
pq

lk

k
i

l
i

l
ij bkCnsCLB ∑ ∑∑∑

∈ ===

+−+++=
1),( 1

2
1

)1()(2
σ

αββ

αα .                    (15) 

For case 3.5, in set σ2, let  denote the processing time of job (i, j) on 

machine 1 or 2, where job (i, j) is the kth job when being sequenced among these 

),,2,1( αL=kt k
ij

α  jobs in 

increasing order of their processing times on machine 1 or 2. Let ni
l >0 ( β,,2,1 L=l ) denote 

the job number of class i in σ2 (excluding class p), where l denotes the lth position in increasing 

order of si / ni
l and si

l denotes the setup time of these ni
l jobs on machine 1 or 2. A lower bound 

for the case 3.5 can be expressed as follows: 

}.0,{max)1()(3
1),( 111

pq
k
ijpq

ji k

k
ij

k
pq

lk

k
i

l

l
iij CtAtkCnsCLB −+++−+++= ∑ ∑∑∑∑

∈ ====σ

ααββ

αα (16) 

The branch-and-bound algorithm for case 3.3 can be described as follows: At the root node 

of the branch-and-bound search tree, the best result generated by HAA1 and HAA2 is applied 
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as an initial upper bound. At each node of the branch-and-bound search tree, the optimal 

properties of Theorems 3 to 5 are used as pruning devices, and if the current lower bound is 

greater than the upper bound, this node is pruned.  

The branch-and-bound algorithm for case 3.4 can be described as follows: At the root node 

of the branch-and-bound search tree, the best result generated by HAB1 and HAB2 is applied 

as an initial upper bound. At each node of the branch-and-bound search tree, the optimal 

properties of Theorems 6 to 8 are used as pruning devices, and if the current lower bound is 

greater than the upper bound, this node is pruned. 

The branch-and-bound algorithm for case 3.5 can be described as follows: At the root node 

of the branch-and-bound search tree, the best result generated by HAC1 and HAC2 is applied 

as an initial upper bound. At each node of the branch-and-bound search tree, the optimal 

properties of Theorems 9 to 11 are used as pruning devices, and if the current lower bound is 

greater than the upper bound, this node is pruned. 

 

5. Computational results 

The measures of the effectiveness of the heuristic algorithms are the average relative error 

and maximal relative error from the optimal total flowtime, where the relative error is defined 

as: relative error (%) = [(heuristic total flowtime – optimal total flowtime) x 100]/[optimal total 

flowtime]. The branch-and-bound algorithms are evaluated with respect to the average CPU 

time in seconds and the average number of nodes searched. The procedures were coded in VB 

5.0 and run on a Celeron 300 PC. 

Fifty random instances were generated for each of feasible combinations of n = 20, 30 jobs 

and different numbers of job classes. The job processing times for case 3.3 on machines 1 and 

2 were uniformly distributed integers between 50 and 100 and between 1 and 50, respectively. 

The job processing times for case 3.4 on machines 1 and 2 were uniformly distributed integers 

between 1 and 50, and between 50 and 100, respectively. The job processing times for case 3.5 

were uniformly distributed integers between 1 and 100. The class setup times for case 3.3 on 

machine 1, and case 3.5 on machines 1 and 2 were uniformly distributed integers between 1 

and 100. The class setup times for case 3.4 on machine 2 were uniformly distributed integers 
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between 50 and 100. The class setup times for case 3.3 on machine 2, and for case 3.4 on 

machine 1 were randomly generated integers according to the definitions of cases 3.3 and 3.4, 

respectively. We present a summary of our findings in Tables 1, 2 and 3. 

Table 1 reports the performance of HAA1 and HAA2 of case 3.3. It is obvious that HAA1 is 

better than HAA2 except that for 30 jobs divided into 3 classes. We notice that the flowtime is 

made up of the job processing times and the job class setups. In general, the optimal objective 

is obtained through balancing these two items. Since HAA2 tends to produce more batches 

than HAA1, HAA2 is more likely to produce a better solution for the scheduling problem with 

fewer job classes. It seems that the mean relative errors for the two heuristics are independent 

of the number of jobs. The mean relative error for HAA1 decreases as the number of class 

decreases.  

Table 1 also reveals that the branch-and-bound algorithm can find the optimal solutions for 

all the problems generated. Both the searched nodes and CPU time tend to decrease as the 

number of classes increases, which is indicated by the expression of the lower bound (14) as 

the more the jobs are divided into job classes, the tighter the lower bound becomes. 

Table 2 reports the performance of HAB1 and HAB2 and the branch-and-bound algorithm 

for case 3.4, and Table 3 the performance of HAC1 and HAC2 and the branch-and-bound 

algorithm for case 3.5. The algorithms for cases 3.4 and 3.5 have similar characters as those of 

the algorithms for case 3.3.  

Since the conditions for the optimal solution for case 3.5 are stricter than those for cases 3.3 

and 3.4, it is evident that the branch-and-bound algorithm for case 3.5 searches more nodes and 

requires more CPU time than those for cases 3.3 and 3.4.  

 

6. Conclusions 

In this paper we have considered several special cases of the two-machine flowshop 

scheduling with job class setups and derived some optimal solution properties for these 

problems to minimize the total flowtime. We have discussed the use of these optimal properties 

to develop heuristic algorithms. We have also developed branch-and-bound algorithms for 

cases 3.3, 3.4 and 3.5, in which the best solution of two heuristic algorithms is used as an initial 
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upper bound, and the derived lower bounds and optimal properties are used to reduce the size 

of the search tree. We have conducted computational experiments to test these algorithms and 

the results demonstrate that all of the algorithms are very efficient and effective in solving the 

special cases under study. 
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Table 1. Performance evaluation of HAA1, HAA2 and the branch-and-bound algorithm. 

 

 HAA1  HAA2  Branch-and-bound No. of 
jobs 

No. of 
classes Mean(%) Max(%) Mean(%) Max(%) Nodes Times 

20 2 0.050 0.573 0.092 0.869 4179 25.95 
 4 0.000 0.000 0.046 0.919 968 5.97 
 5 0.000 0.000 0.000 0.000 30 0.22 
 10 0.000 0.000 0.000 0.000 17 0.284 

30 3 0.838 3.426 0.497 3.426 65945 1181.52 
 5 0.017 0.330 0.060 0.129 2646 44.658 
 6 0.000 0.000 0.284 4.947 37 0.759 
 10 0.006 0.366 0.024 0.146 29 0.832 

 
Table 2. Performance evaluation of HAB1, HAB2 and the branch-and-bound algorithm. 

 
 HAB1  HAB2  Branch-and-bound No. of 

jobs 
No. of 
classes Mean(%) Max(%) Mean(%) Max(%) Nodes Times 

20 2 0.923 3.766 0.922 3.716 5614 36.227 
 4 0.499 4.428 0.055 4.428 3481 19.538 
 5 0.000 0.000 0.002 0.045 37 0.2265 
 10 0.000 0.000 0.000 0.000 18 0.291 

30 3 0.941 2.137 0.542 4.221 58723 1102.12 
 5 0.018 0.356 0.044 0.701 9675 130.06 
 6 0.004 0.078 0.948 6.221 613 8.192 
 10 0.000 0.000 0.018 0.066 30 0.789 

 
Table 3. Performance evaluation of HAC1, HAC2 and the branch-and-bound algorithm. 

 

 HAC1  HAC2  Branch-and-bound No. of 
jobs 

No. of 
classes Mean(%) Max(%) Mean(%) Max(%) Nodes Times 

20 2 0.947 1.392 0.787 1.351 7042 57.45 
 4 0.108 2.153 0.985 9.038 5433 44.45 
 5 0.066 1.257 1.351 6.761 228 1.6185 
 10 0.000 0.000 0.000 0.000 117 0.897 

30 3 1.796 3.969 1.395 3.462 96536 1326.70 
 5 0.534 4.900 0.476 2.980 14759 443.45 
 6 0.000 0.000 0.532 1.432 110 2.861 
 10 0.048 0.894 1.669 5.339 89 0.914 
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