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Abstract

This paper studies the two-machine flowshop scheduling problem with job class setups to
minimize the total flowtime. The jobs are classified into classes, and a setup is required on a
machine if it switches processing of jobs from one class to another class, but no setup is
required if the jobs are from the same class. For some special cases, we derive a number of
properties of the optimal solution, based on which we design heuristics and branch-and-bound
algorithms to solve these problems. Computational results show that these algorithms are

effective in yielding near-optimal or optimal solutions to the tested problems.
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1. Introduction

In many manufacturing settings classes of jobs are processed on one or more machines. On
each machine, a setup is required at the beginning of each batch, where a batch is a maximal
set of consecutively processed jobs from the same class. A machine can only process one job at
a time, and cannot perform any processing while undergoing a setup. For the objective of
minimizing the total flowtime, a schedule defines how batches are formed and specifies the
processing order of the batches and that of the jobs within the batches.

The single-machine job class scheduling problem to minimize the (weighted) total flowtime
has been widely studied by many researchers. For the case of two job classes, Gupta (1984)
and Potts (1991) proposed a polynomial time algorithm and a dynamic programming algorithm,
respectively. However, Gupta’s algorithm is not optimal. For the case of multiple job classes,
Gupta (1988), and Ahn and Hyun (1990) proposed different heuristics. Mason and Anderson
(1991) developed a branch-and-bound algorithm for the problem to minimize the mean and
weighted flowtime. Crauwels et al. (1998), too, proposed a branch-and-bound algorithm, which
is superior to that of Mason and Anderson (1991) by using the derived lower bounds from a
Lagrangian relaxation of the machine capacity constraints. Crauwels et al. (1997) also
developed several local search heuristics, whose performance is superior to the method in Ahn
and Hyun (1990). Reviews on this topic have been presented by Potts and Van Wassenhove
(1992), Webster and Baker (1995), and Potts and Kovalyov (2000).

In contrast to the existence of many significant research results on the single-machine job
class scheduling problem to minimize the (weighted) total flowtime, there have been few
attempts to study the problem involving two or more machines (see, for example, Cheng et al.,
2000). The two-machine flowshop job class scheduling problem is evidently NP-hard because
if all the setup times of the job classes are zero, it becomes the classical two-machine flowshop
scheduling problem, which is NP-hard (Gonzalez and Sahni, 1978). For the two-machine
flowshop scheduling problem to minimize the mean flowtime, Woo and Yim (1998) proposed
an efficient heuristic algorithm. Ho and Gupta (1995) proposed polynomial time algorithms
under the dominant machine situation. When each job belongs to a different job class, the

problem becomes the two-machine flowshop scheduling problem with sequence-independent



setup times, for which Allahverdi (2000) developed a branch-and-bound algorithm and a
heuristic. For the general case, it is highly unlikely that a polynomial algorithm can be found to
solve the problem. In this paper we study several special cases of the two-machine flowshop
job class scheduling problem and develop efficient algorithms for them. We solve two special
cases of the problem and develop several heuristics and branch-and-bound algorithms for the
other cases. The efficiency and effectiveness of the heuristics and branch-and-bound algorithms

are numerically evaluated.

2. Problem description and notation

For the classical two-machine flowshop scheduling problem with the objective of
minimizing the total flowtime, there exists an optimal permutation schedule. To the best of our
knowledge, the issue of whether this property can be extended to the corresponding problem
with class setups has remained unresolved. However, we assume in this paper that all jobs are
available at time zero and no jobs are allowed to pass. In other words, the job sequence is the

same on both machines. We are given n jobs that are divided into ¢ classes. Each class i, for
i=1,2,---,c, contains ¢; jobs. For the jth job of class i, which we denote by job (i, j), the
following notation is defined:

s, . setup time of class i on machine k, k=1, 2;

a,: processing time of job (i, j) on machine 1, i=1, 2, ---, ¢, j=1,2, -+, ¢;;
b, : processing time of job (i, /) on machine 2, i=1, 2, ---, ¢, j=1,2, -+, ¢;;
C;: completion time of job (i, j) on machine 2, i=1, 2, ---,c, j=1,2, ---, c,.

A schedule S is an ordered set of the n jobs. It is convenient to regard a schedule as a
sequence of batches, where a batch is a maximal consecutive subsequence of the jobs from the
same class in S. Let » denote the number of batches and n; the number of jobs in the ith batch.

And let job [, /] denote the jth job processed in the ith batch in schedule S. We define

S - setup time of the ith batch on machine £, k=1, 2;

ag ;" processing time of job [i, /] on machine 1, i=1, 2, -, r, j=1,2, .-, n;
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b, .:processing time of job [7, /] on machine 2, i=1, 2, ---, r, j=1,2, ---, n;

li. /]
C,;. ;- completion time ofjob [i,j] on machine 2, i=1, 2, ---,r, j=1,2, ---, n,.

We now define the total flowtime of the jobs under S as
F= ZZIC[L_/] :
=1 j=
Let 4; denote the sum of the setup times of the batches in positions 1, 2, ---, i, and the
processing times of the jobs in positions from the first job to job [Z, j] on machine 1. Then we

have

i— ny

A; =) (s 1+Z:ak,)-|-(s 1+Z:a

1
_{maX{A, n S +a[ 1-Ci
i,j1

=
Il

+S[,],2}+b[,~,,q if j=1
b if j>1

1,n;_

max{4, ,, +a; ;s

i, j-1 lj

In order to unify the notation, we set 4;, 4,,, C;, ;, and C;, ,, to be zero.

Adopting the notation in Brucker (1995), we denote the two-machine flowshop job class
scheduling problem to minimize the total flowtime under study as F2/class/ Z Cin-

Suppose that all the processing times of the jobs on machines 1 and 2 are equal to a constant
t, and each class setup time on machine 1 is no less than that on machine 2. Then this case can
be denoted as F2/s, 2s5,,,a; =b, =1, class/ZC

Suppose that the processing times of all jobs on machines 1 and 2 are equal to a constant ¢,
and each job class setup time on machine 2 is no less than the sum of 7 and the setup time on

machine 1. Then this case can be denoted as F'2/s,, +1<s,,a, =b; =t, class/ ZC[

For the classical flowshop scheduling problem where no setups or job classes are involved,
Ho and Gupta (1995) have studied two special structure flowshops with dominant machines.

The cases considered in this paper are described as follows.

If s,2>s, and min{a, } > max{b, }, fori=1,2, --,c,j=1,2, -+, ¢c;, we claim that

machine 1 dominates machine 2, denoted by M; > M,. This case can be denoted as

F2/M, - M,, class/ZC[[jj] .



If s5,2>s,+a,, where aq, =min{a, |any job (i, j) whose b; =min{b,, b, -, b, }}, and

ic;

min{b, } > max{a,}, for i=1,2, -+, c,j=1,2, .-+, ¢;, we claim that machine 2 dominates

machine 1, denoted by M, > M. This case can be denoted as F2/M, = M,, class/ ZC[

ij1
Suppose that the processing time of any job on machine 1 is equal to that on machine 2, and

the setup time of each class on machine 1 is also equal to that on machine 2. Then this case can

be denoted as F2/s, =s,,,a,

= by. =t class/ZC[

> ijl°

For the first two cases, we will see that the restrictions on the general problem lead to these
cases to be solved in polynomial time. It is evident that the last three cases are NP-hard even
though they are special cases of the general problem. Furthermore, the cases with dominant
machines are natural extensions of the classical problem to the processing environment with
class setups, and the last case has a different structure characteristic from the single machine
class scheduling problem. Therefore, the derivation of theoretical results and the development
of effective heuristics and branch-and-bound algorithms for these three special cases are

challenging and valuable. Moreover, the findings of this research may shed light on the general

problem and provide hints for its solution.

3. Properties of optimal solutions
In this section we study several special cases of the general problem F2/class/ ZCU, -

Some properties of the optimal solutions are derived in the following.

31 F2/sy=2s,,a;=b; =1, class/zc[,-’j] .

Theorem 1 For the F2/s,2>s,,a; =b;, =t, class/ZC[[’j] problem, there exists an

optimal schedule in which each batch consists of all the jobs of a class, and the batches are

sequenced in ascending order of s, , /n,.

Proof For this case, the completion time of job [Z, /] is



The total flowtime is

= ZZ[ZS[H 1t (an +j+ D]

i=l j=1 k=1
—z<nzs[k1>+z DN EIHY,

i=l j=n+-+n;_+1 i=l j=1

n
= [”15[1],1 t+n, (5[1],1 +S[2],1)+"'+nr(s[1],1 +"'+S[r],1)]+2ﬂ+m

= Z(S[i],lznk)+ (2] +n)t.
i=1 k=i Jj=1
i) For all schedules that consist of r batches, if a schedule satisfies s,,,/n, <s,,,/n,

<.+ <5, /n,, then it has the smallest value of the total flowtime.

Let o7 denote a schedule where the batches are sequenced by

Spa /1y <8y, /ny <---<s,,,/n,, and o, denote a schedule that is obtained from o by

interchanging the batches only in positions i and i+k (k >1). Denoting the total flowtime of o,

and o, as F(o)) and F(07), respectively, we have
F(o))= nt+t2j+(s[1],12nj +---+s[,],12nj),
Jj=1 Jj=1 J=r

F(o,)= nt+t2]+ S[l]lZn ety Zn +s[,+k]12n +S[Hl]l(2n +n,—n,, )+

J=i-1 J=i+l

r r
+S[i+k—1],1( an+ni_ni+k)+s[i],1(2nj+ni 1+k)+(S[1+k+1 Zn teets, Z" )-

J=i+k-1 Jj=i+k Jj=i+k+1
Then,

F(O-Z)_F(O-l):(s[Hk],l _S[i],l)(ni +ob g, ot n) +( _ni+k)(s [i+1],1 +'“+S[i+k—l],l)

+s[,.]1(nl.+n +-tn) - S[Hk]l(l’l +-4n,)

i+k+1 z+k z+k+1

=[n, (S[1+1] P Ee T S, )- S (nz+l +eot )]

+ [S[i+k],1 (M oo tn )=y (S[i+1],l to S )+ (S[i+k], 1 =St 1k )

because o) satisfies the following conditions:



S/ S Sy /ny S <spy /I ny

we have

n; (S[i+1],1 Tt S[i+k71],1) Z S[i1 (R + o+ 1),
Stitk],1 (Mg +o ot n ) 20y, (S[i+1],1 oot S[i+k—l],1)’
Stiviat 2 Sy 1 M-
Therefore, F(o,)—F(o,)=0.

i1) Given a schedule (denoted as o) in which the batches are sequenced in ascending order

of s, /n,, if the kth and /th batches (k + 1 <) belong to the same job class, then we merge

the two batches and again sequence all batches in ascending order of s, /n,. The total
flowtime of the resulting schedule (denoted as 07) is less than that of the original schedule a.

We assume that the merged batch is in the ith position of schedule ;. Obviously, i <k
because s, /(n, +n,) <sy,, /n,. We have

F(Gl):nt+tzn:j+(s Zn +oet sy, Zr: n;)
Jj=r

j=1

and
F(o,)= m‘+t21+s Zn +- Zn +s[k]12n +5y 1(Z:n
Jj=1 Jj=i-1
-
+S[k—1],1(znj_nk_n1)+5[k+1],1(znj_n1)+"'+5[1—1],1(znj_”z)
=k =kl j=i-1
r r
Sy DT, S DN
j=l+1 j=r
Then,

F(o,)-F(o,) :S[l],l(nl + "'+nr)+(s[i],1 + '“+s[k—1],1)(nk +n1)+(5[k+1],1 + "'+S[171],1)n1

—s[k]’l(nl. +n,,++n ).

i+1
Note that schedule o, satisfies the following condition:

St /(n, +n,)< S In; <8,0,/n = < Sy /n, .

z+1 i+1 S

So, we have

St (n,+n,, +-+n_)=< (s[i]’1 + S o +s[k_1],1)(nk +n,).

i+l



Therefore, F(o)) — F(o2)> 0.

From 1) and ii), we reach the conclusion of the theorem. [

According to Theorem 1, an algorithm that treats a job class as a single batch and sequences

the batches in ascending order of s,,, /n, produces an optimal solution.

32 F2/s ;+t<s =b; =t, class/ZC[i’j] .

i2s Ay
Theorem 2 For the F2/s,+t<s,,a,=b,=t, class/ZC problem, an optimal

schedule can be obtained if a batch consists of all the jobs of a class, and the batches are

sequenced in ascending order of s, /n;.

Proof Similar to the proof of Theorem 1. []

According to Theorem 2, an algorithm that treats a job class as a single batch and sequences

all batches in ascending order of s, /n, produces an optimal solution.

33 F2/M, >—M2,class/ZC

[i, /]

Theorem 3  For the F2/M,>M,,class/ ZC[L ;) problem, there exists an optimal

schedule where the jobs in a batch i are sequenced in ascending order of a, .

Proof Let oy denote a schedule that comprises  batches. Let o, denote a schedule obtained
by interchanging only the jobs [i, j] and [i, j*k] (k>1) in schedule o;. Obviously, the

completion times of the jobs up to job [7, j—1] or after job [i, j+k] in the same positions of g
and o, are equal. In schedule o;, we have
i-1 "y

C(Gl Zs[p +Zzapq+za ]+b11

p=I g=1



i-1 "y

i
(e )i jon ZZS +Zza[p 4] +za[z gt e, for h=12,- k.
p=l p=1 g=1

In schedule 0>, we have

i-1 "y

i
C(o) 1= D St + ZZ% g] +Za i jek) T 00 ok
p=1

p=1 g=1
i-1 7y Jj+h
C(O'2  h] Zsp]1+22a[pq Z R Za ]+b”+h forh=1,2,---, k-1,
p=1 g=1 g=j+1
-1 N,
C(O)y joay = Zslp +ZZI% gl +Z%q li, /1
p=lq
Then
Jjt+k i+k
2.C(0) 0y =2, C(O )y + (@ o = g )
q=J q=J
If ag ;< g s then the total flowtime F(o) and F(o2) of schedules g, and o>, respectively,

have the following relation

F(0,)= 33 C0)0 S F) =3 Y C0,), 0 -

p=l g=1 p=l g=1

Hence, schedule o is no worse than schedule ¢,. [

Theorem 4  For the F2/M, > M,,class/) C

ii.;) broblem, there exists an optimal

n;
schedule where the batches are sequenced in ascending order of (s, + Za[i’j])/n[ .
=

Proof In the ith batch, we have

i—-1 ny

Zsm+ZZam+Za ntby . for j=12,- n

k=1 I=1

S

i—1

C =n, ZSU L+, ZZak, +Z(n l+1)a[l.,,] +Zb[i,,]
I=1

Jj=1 k=1 [=1

In the (i+1)st batch, we have



Mg i+l Loy LS| S|

ZC[HI,J‘] 1+lz T nz+lzza en T Z(nm [+ l)a[m nt zbm n-

Jj=1 I=1 k=1 I=1

Then

Niy -1 ny

i1
ZC[I a7 ZCHI 71 =(n; + ni+l)zs[l],1 +(n, +ni+1)z A +(n, +n,, )S[ + 7St
=1

k=1 I=1

Mgy Ny

+ni+12a +Z(n —I+Dag , +Z(n,+1 I+ Dag,, +Zb[, ,]+Zb,+l -
=1

Interchanging the ith and (i+1)st batches, the sum of the job completion times within the two

batches is
iy n; i—1 i—1 1y
!
ZC z [i+1, /] =(n, +n1+l)zs [, 1 +(n, +nz+1)z A, n +(n; +n,, )S[i+l],l 18050
=1 =1 k=1 I=1
Ny iy Ny
+nlz [i+1, j] +Z(nz+l l+1)az+l l]+2(n l+1)a[1 +Zb1+ll +zb

Jj=1
Clearly, the completion times of the jobs before the ith batch or after the (i+1)st batch are not

changed after interchanging the ith and (i+1)st batches. Then, for the total completion time F

and F"' before and after interchanging, respectively, we have

[ n;

_(ZC” +Zc[z+u]) (ZC:J Z (iv1. 1)

Nitl

1+1 (S[z + Za [i, j] ) n; (S i+1], + ZQ[H_I ]])

n Niy)

If (s + a1/ 1 < (Spagy + D, Ay, )/ iy, we have F—F'<0. [
=1

J=1

Theorem 5 For the F2/M, > M,, class/ ZC . problem, where the jobs in the ith and

[i, j1
(i+k)th batches belong to the same job class, there exists an optimal schedule where ¢, ,, and
ag,. satisfy the following condition
k k=1 niyy k-1
Ay, < (Z [i+1],1 +Z Apiy, j])/ZnHl S gy (1)
I=1 =1 j=1 I=1

Proof. In a schedule S, we denote all the processed jobs between job [i, n;] and job [i+k, 1] as

a partial sequence 0. Let S’ be the sequence formed by moving job [i+k, 1] to the last of the ith

10



batch in S. Clearly, the completion times of the jobs sequenced before job [i, n;] or after job
[i+k, 1] are not changed. Let F' and F' denote the total flowtime of S and §’, respectively. In

schedule S, we have

i+ i+l-1 ny, J
Clont 1 = 28t + 22 gy T 2 sy + D e FOr I=12,0 k=1 j=12, 0 m,
h=1 h=1 g=1 g=1
i+k i+k—1 ny
Cliey = Zsm,l + Z Z“[h,g] + @y T D
h=1 h=1 g=l

In schedule S’, we have

i n
Cri e ZS + 202y + gy + by

h=l j=1
k— 1n+h
CH—kl (zzaﬁ-h ]]+Zsl+h]1)
h=l j=1
! _ _ ] —
C[Hu] = C[i+l,j] + A for I=1,2,---,k-1,j=12,---,n,,.
Then,
k=1 nyy, k=1 Misg k-1 k k=1 ny,
1
Z C,+1 a7t Cl n+1] z C[Hl,j] a2 i T C[i+k,1] _(zs[f+h],1 + Apisp, ,])
=1 j=1 =1 j=1 /=1 =1 h=1 j=1
Therefore,
k=1 n; it+h
- = 1+k 1] i+l i+h], i+h, j]
F' Z" <ZS 20
h=1 j=1

Therefore, if the right hand side of inequality (1) holds, i.e., F~ F' > 0, which means that job

[i+k,1] should not be moved to the last position of the ith batch to minimize the total flowtime.
Similar to the above, we can also prove that if the left hand side of inequality (1) holds, job [i,

n;] should not be moved to the beginning position of the (i+k)th batch to minimize the total

flowtime. [

34 F2/M,>M,class/ Y C, ;.
Theorem 6 For the F2/M, > M,,class/ Zc[i,j] problem, there exists an optimal

schedule where the jobs in a batch i are sequenced in ascending order of b, ;.

11



Proof Similar to the proof of Theorem 3. [

Theorem 7  For the F2/M, > M,,class/ ZCUJA/] problem, there exists an optimal

schedule where the batches are sequenced in ascending order of (s, + Zb[i’ /n;.
j=1

Proof Similar to the proof of Theorem 4. [

Theorem 8 For the F2/M, >~ M,, class/ ZC problem, where the jobs of the ith and

[i. j
(i+k)th batches belong to the same job class, there exists an optimal schedule where 5, ,, and
b,y satisfy the following condition

k k=1

2 [i+1],2 +Zzbl+1, )/an _bl+k1 .

I=1 =1 j=1

Proof Similar to the proof of Theorem 5. [

35 F2/s,=s,,a,=b,=1,

12’ ij i

class/ZC[ijj] :
For convenience, we set s;; = sp = s;, for i=1,2,---,¢, and a;; = b;=t;;, for i=1,2,---,c,

j=12,---,c,. For this special case, we can derive some optimal properties in the following.

Theorem 9 For the F2/s,=s,,a, =b, =t, class/ZC[i,j] problem, there exists an

ij ij i

optimal schedule where the jobs in a batch i are sequenced in ascending order of ¢, ;.

Proof Let o) denote a sequence where the jobs within a batch are sequenced in ascending
order of #; . Let o, denote a sequence that is obtained from o by swapping the jobs [7, j] and [,
j+1]. Obviously, the completion times of all jobs before job [i, j] are equal in o) and o,. In

schedule o1, we have

12



Clo))y, y =max{d, _, +1, 1, C iy} +1;
C(o, ),,+1 —maX{Az R TR TR C(Gl), /]}+t1 4]

=max (A, gy g Ao T s Cojogd gy 4

=max{d, ; +4; ;. Ci o T8y 1 s 2
C(U) 1+ Co) J+1] =max {4, o s G e i

+max{d, ; +1; oy, Gy ongd + 20, 0+ - 3)
In schedule 0>, we have

C(oy)y, jy =max{d; ; +1; ;p> Cp o+ s
C(oy)y, jog =max{A4, ., +1; .+, 5, CO)u i+

=maxid; ;o g Aot g Cuond T 4y

=maxid, ; +4; o Chyogd T4y Tl g (4)
C(o,)y y +C(0,)y oy =2max{A4, ;| +1; 0 Cpu b H 0+ 280 0y (%)

From (2) and (4), we have C(o,); ;.,,; = C(0,); ;.- And, obviously, swapping job [i, j] and

job [i, j+1] will not change the completion time of the last of these two jobs on machine 1. So

the completion times of all jobs after job [i, j+1] in o) are not changed in o,. From (3) and (5),

we have
C(Gl)[i, a7t C(O-l)[i, oy S C(O-Z)[i,j] + C(Gz)[i, j+] e

Then, the total flowtime of ) is no greater than the total flowtime of g,. [J

Theorem 10 For the F2/s, =s,,a,=b,=1,, class/ZC[[jj] problem, in a sequence where

batches i and k are adjacent, let the jobs within batch i (or k) be sequenced in ascending order

of their processing times on machine 1 or 2. In order to minimize the total flowtime, batch i

should precede batch £, if

Ty

t, <t, and (s, +Zty)/n <(Sk+Ztkj)/nk (6)

13



Proof We assume that batches i and k are in positions 2 and A+l in a sequence o,
respectively, and sequence o, is obtained by swapping batches i and k. Obviously, the
completion times of any job before the Ath batch are equal in ¢; and . For the Ath and (4+1)st

batches in sequence g;, we have

Clo)yy=max{d, , +s,+t;+-+t;,Cp,, (+8, +1,++1, }+1;

ij

J
= (s, +ztiz)+maX{Ah4,nh,l +1;, C[,H’nhil]}, for j=12,---,nm,

=1

C(al)[Mj] = max{Ah,nh S, H, ot C(O-l)[h,n,] +5, +1,, +---+tk’j71}+tkj

J
=(s; + Ztkl) + maX{Ah,nk +1y, C(O'1)[h,n,.]}
=)

J n, "
=(s, + Ztk,) +max{d,_, +(s, + Zti,) tlg, Ay, + (s + Ztﬂ) +1,,
=1 =1 I1=1
n;
C[h—l,nh,l] + (Si + Ztil)}
I=1
n[ ]
=(s, + Ztﬂ) + (s, + Ztkl ytmax{d,,, +t, A, i, Cha, )
=1 =1
forj=1,2,---,n,, (7)

Ty

n; n; n;
ZC(O'1)[;,,/] + ZC(O'1)[h+1,j] =(n;, +n,)s; +n.s, + nkztil + 2(’71 -1+,
=1 j=1 =1 I=1

n,( n,-
+ Z(nk —1+1y,, + ZmaX{A,H w s Cotn o)
I=1 1=1

Ty
+y max{d, ,, +t, A, 1, Chl, ) (8)

I=1

For the Ath and (4+1)st batches in sequence o, similar to the above, we can derive

J
C(o )y = (5 + D ty)+maxi{d, +1,,C,,, |}, for j=12,-n,
=1

1y J
C(O-z)[hﬂ,j] = (s, + Ztu) +(s, + Ztil) + maX{Ah—l,nh_l +1;, Ah—l,n,,_l L, > C[h71,n,,_l]}-
=1 =1

for j=1,2,---,n,, 9)

i

14



ny n; ny

T
ZC(GZ)[h,j] + ZC(GZ)[hH,j] =(n, +n)s, +ns,; + niztkl +Z(nk —I+Dty,
=l = I=1

J=1 = =

n 73
+ Z(n, =1+, + Zmax {Ah—l,n,,,l +lys C[hq,nh,l]}
=1 =1

n;
+ Zmax {Ah—l,nh,l + til > Ah—l,nh,l + tknk > C[h—l,n,H ] } (1 0)

=1

From (7) and (9), we have
C(O-l)[h+1,nk] = C(Jz)[h+1,n,.] .

Then, the completion times of any job after the (4+1)st batch in ¢, and o, are equal.
From (6), (8) and (10), we have
Z C(o)p +z C(O) ) < 2,C0) gy + Z C(o),1 -
J=1 J=l J=l j=1

Thus, if the condition of the theorem holds, then the conclusion is valid. [

Theorem 11 For the F2/s,=s,,a, =b :tij,class/ZC[i,j] problem, jobs within any

i =%

batches are sequenced in ascending order of their processing times on machine 1 or 2, and the
jobs in the ith and (i+k)th batches belong to the same job class. In order to minimize the total
flowtime,

i) job [itk, 1] should move to the last position of the ith batch, if ¢, <¢,,,,, for

ii) job [i,n,] should move to the first position of the (i+k)th batch, if 7, ,>1¢ for

li+l,n ]2

Proof 1) Let o; denote the original schedule, and o, a schedule obtained from o; by moving
the first job in the (i+k)th batch to the last position of the ith batch. Obviously, the completion
times of all the jobs from the first job up to job [i, n;] in o, and o, are equal. Under the

assumptions of the theorem, in schedule |, we have
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J

C(O )i, ) = Sy T Zt[m,z] +max{d,, +4, 5, Cts for j=1,2,--n

i+1°
=1
C(o, )z+l 7l maX{Aini ity 4, n; +t[i+l—1,n,+,,1]’Ai n; +t[i+l,j]’c[i,n,]}
/ /-1 Nip
+ 2 S+ 2 Dt +Zrm L for 1=2,0k, j =12, (1)
h=1 h=1 j=1

In schedule o,, we have

C(O_z)[i,n,.u] = max{4, T i1 C[i, n,.]} MLV
C(O'z)[m,‘/] C(o )y, 7 T ik Jfor j=1,2,-,n,,,
C(Jz) i+l /1 maX{Ain,. F L, Ain,. +t[i+lfl,ni+,_|]7Aini + 1, ]]aA + 1k, 1]’C[i,n,]}
/-1 Nivp j
Z [i+h] +z Livh. j1 +Zt[i+l,h] gy, for 1=2,- k=1, j=12,,n,,
=l h=l j=1 A=l
k-1 n;y k=1 1y
C(O-Z)[i,n,Jrl + C(O'z Li+], j] = =C(0)) [i+k, 1] +Z C(O-l)[Hl,j] +(maX{Ami ML TRID C[i,n,]}
=1 j=l = j=l
_maX{Ain,. T litn, 0 Ain,. T livk—ton., 10 Ain, +t[i+k,1]ac[i,n,.]})
k-l k1 gy k
Dy 2 s Livn, 1 ZS[[Jrh]’ (12)
I=1 A=l j=1 h=l

C(O_z)[nk,l] = maX{Ain[ +t[i+k,l]’ Ain[ +t[i+1,ni+l]’“" Ai n, +t[i+k71,ni+,{_]]’Ain» +t[i+k,2]7C[i, n,.]}

i

k k=1 1y
+ zs[mq + Z Zt[i+h,_j] + t[Hk,l] + t[i+k,2]' (13)
h=1 h=1 j=1

From (11) and (13), considering that ¢, <{., ,, Wwe have C(c,),; 2y = C(0,)14.1)- SO, the

completion times of all the jobs after job [i+k, 1] in schedule o, are the same as those in
schedule o>.

Furthermore, from (12), taking into account that Lk 1 [=1,2,---,k—1, we have

i+l,1]°
k-1 Miyg k-1 Miyg
C(o, )[i, ney T Zz C(o, )[Hl, 1< C(o, )[[+k,1] + Z z C(o, )[m,_/] .
=1 j=1 =1 j=1

Therefore, the total flowtime of o, is less than the total flowtime of o;.

i) Similar to the proof ofi). [J
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4. Algorithms

In the previous section, we have derived some properties of the optimal solutions for several
special cases. Since Theorems 1 and 2 state the conditions for the optimal solutions for cases
3.1 and 3.2, respectively, it is easy to develop polynomial time solution algorithms for these
two cases. In this section, we develop some heuristics and branch-and-bound algorithms for

cases 3.3, 3.4 and 3.5.

4.1 Heuristic algorithms
Our heuristic algorithms use a construction procedure to find an initial schedule, and then
improve the performance of the solutions according to the optimal properties stated in the

various theorems in the previous section.

For F2/M, ~M,,class/ ZCU, i1 » we construct the following algorithms.

Heuristic algorithm A1(HAA1L)

Step 1. Let o, =[job(i,1), job(i, 2),---, job(i, c;)] be the sequence in ascending order of
their processing times on machine 1, i=1,2,---, ¢, and set § = ® (empty set).

Step 2. Select a job (i, 1) such that s, +a,, =min{s,, +a,, |k=1,2,---,c}. Remove job (i, 1)
fromo; and place it in the first position of £, and set & = i.

Step3.If o, V0o, U---Uo, =D, go to step 4, else

If 0,#® and a,, <s, +a,,remove job (h, m) from o, and place it in the last position
of S . Otherwise, remove job (i, k) from o, and place it in the last position of £, and set &
= I, where job (4, m) is the first job in &, and job (i, k) satisfies s;; + ajx= min{sy+ ag; | job

(g, ) is the first jobin o, ,g # h}. Go to step 3.

17



Step 4. For sequence S, calculate (s, +Za[i~j])/ n,for its batches, and sequence all
j=1

batches of S in ascending order of (s, + Za[iq D/n;.
j=1

Step 5. For the two batches containing the jobs of the same class, move their jobs that satisfy

the conditions for the optimal solution given in Theorem 5. Denote the obtained sequence as S .

Step 6. Repeat step 4 if necessary. Stop.

Heuristic algorithm A2 (HAA2)

This heuristic is similar to HAA1 except step 3. We rewrite step 3 as follows.

Step3.If o,vo,U---Uo, =D, go to step 4, else

If 0,#® and (a,, +a,,.)/ 2<s, +a,, remove jobs (h, m) and (h, m+1) from o, and
place them in the last two positions of /. Otherwise, remove job (i, k) from o, and place it
in the last position of £, and set 4 = I, where jobs (4, m) and (h, m+1) are the first two jobs in
o, and job (i, k) satisfies s;1 + ax= min{sgt ag/ | job (g, /) is the first job in o, ,g# h}. Go

to step 3.

For F2/M, >~ M,, class/ZC[i’ ;1 » we have the following algorithms.

Heuristic algorithm B1 (HAB1)

Step 1. Let o, =[job(i, 1), job(i,2),---, job(i,c,)] be the sequence in ascending order of
their processing times on machine 2, i=1,2,---,c,andset f=.

Step 2. Select a job (i, 1) such that s, +b, =min{s,, +b,, |k=1,2,---, c}. Remove job (i,
1) from o, and place it in the first position of £, and set & =i.

Step3.If o, vo,U---Uo, =D, go to step 4, else
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If o,#®and b,, <s,,+b,, remove job (h, m) from o, and place it in the last position
of S . Otherwise, remove job (i, k) from o, and place it in the last position of £, and set &
= [, where job (h, m) 1s the first job in o, and job (i, k) satisfies s, + b= min{sgx+ bg;|job (g,

[) is the first job ino, , g # & }. Go to step 3.

Step 4. For sequence g, calculate (s, +Zb[l., )/, for its batches, and sequence all
Jj=1

batches of S in ascending order of (s, + Zb[i, D/ n;.
j=1

Step 5. For the two batches containing jobs of the same class, move their jobs that satisfy the

conditions for the optimal solution given in Theorem 8. Denote the obtained sequence as [ .

Step 6. Repeat step 4 if necessary. Stop.

Heuristic algorithm B2 (HAB2)

This heuristic is similar to HAB1 except step 3. We rewrite step 3 as follows.

Step3.If o, vo,U---Uo, =D, go to step 4, else

If o, #®and (b

hm

+b,,,.)/2<s;, +b,, remove jobs (h, m) and (h, m+1) from o, and
place them in the last two positions of £ . Otherwise, remove job (i, k) from o, and place it
in the last position of £, and set 4 = I, where jobs (4, m) and (h, m+1) are the first two jobs in
o, and job (i, k) satisfies sp + by= min{set bg/ | job (g, /) is the first job in o, ,g# h}. Go

to step 3.

For F2/s, =s,,a, =b, =tij,class/ZC[

i =b; we construct the following algorithms.

i,j]°

Heuristic algorithm C1 (HAC1)

Step 1. Let o, =[job(i, 1), job(i,2),---, job(i,c,)] be a sequence in ascending order of
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their processing times on machine 1 or 2, i=1,2,---,c,andset f=.

Step 2. Select a job (i, 1) such that s, +¢, =min{s, +¢,, |k =1,2,---, c}. Remove job (i, 1)
from o, and place it in the first position of £, and set 4 =1i.

Step3.1If o, V0o, U---Uo, =D, go to step 4, else

If o,#®and ¢, <s,+t,, remove job (h, m) from o, and place it in the last position of
S . Otherwise, remove job (i, k) from o, and place it in the last position of £, and set & = 1,
where job (4, m) is the first job in o, and job (i, k) satisfies s; + #x= min{sg+ #,; | job (g, ) 1s
the first jobin o,,g # h}. Go to step 3.

Step 4. For sequence /, interchange the adjacent pairs of batches to improve the objective

function.
Step 5. For the two batches containing jobs of the same class, move their jobs that satisfy the

conditions for the optimal solution given in Theorem 11. Stop.

Heuristic algorithm C2 (HAC2)

This heuristic is similar to HAC1 except step 3. We rewrite step 3 as follows.

Step3.If o, V0o, U---Uc, =D, go to step 4, else

If o, #®and (tym + th,mt1) / 2 < s; + ti, remove jobs (h, m) and (h, m+1) from o, and
place them in the last two positions of . Otherwise, remove job (i, k) from o, and place it
in the last position of £, and set 4 = I, where jobs (h, m) and (h, m+1) are the first two jobs in
o, and job (i, k) satisfies s; + 1= min{sg+ fz; | job (g, /) is the first jobin o,,g# h}. Go to

step 3.

4.2 Branch-and-bound algorithms
For each of the above cases, we derive a lower bound that can be used to reduce the size of

the search tree generated by the branch-and-bound procedure.
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We assume that a partial sequence o; has been determined, in which job (p, g) is the last job,

and o is the complement of ¢}, which include « unscheduled jobs.

For case 3.3, in set oy, let a['; (k=1,2,---, @) denote the processing time of job (i, j) on
machine 1, where job (7, j) is the kth job when being sequenced among these o jobs in
increasing order of their processing times on machine 1. Let n/ >0 (I =1, 2,---, 8) denote the
job number of class 7 in o, (excluding class p), where / denotes the /th position in increasing

order of si-l / n,-l, and sill denotes the setup time of these nl,v jobs on machine 1. A lower bound

for the case 3.3 can be expressed as follows:

B B a
LBl= )’ Cij+2(sill;nik)+a(Cpq—bpq)+;(a—k+1)a§+ b, . (14)

(i, ))eay I=1 (i, j)eor
For case 3.4, in set oy, let b; (k=1,2,---,¢) denote the processing time of job (i, j) on
machine 2, where job (7, j) is the kth job when being sequenced among these « jobs in
increasing order of their processing times on machine 2. Let n/ >0 (/ =1,2,---, 8) denote the
job number of class 7 in o, (excluding class p), where / denotes the /th position in increasing

order of s,-lg / n,-l and silz denotes the setup time of these nil jobs on machine 2. A lower bound for

the case 3.4 can be expressed as follows:

B B a
LB2= Y Ci/+Z(sfzkz;nf)+anq+;(a—k+l)b§. (15)

(i, ))eoy =1
For case 3.5, in set oy, let t;f (k=1,2,---, @) denote the processing time of job (i, j) on
machine 1 or 2, where job (i, /) is the kth job when being sequenced among these « jobs in
increasing order of their processing times on machine 1 or 2. Let n/ >0 (I =1, 2,---, 8 ) denote
the job number of class i in o, (excluding class p), where / denotes the /th position in increasing

order of s; / n/ and s/ denotes the setup time of these nil jobs on machine 1 or 2. A lower bound

for the case 3.5 can be expressed as follows:

B B a a

LB3= Y C,+Y (s;>.nf)+aC, +> (@—k+i; +> max{d, +1; —C, ,0}.(16)
(i, j)eo; =1 k=l k=1 k=1

The branch-and-bound algorithm for case 3.3 can be described as follows: At the root node

of the branch-and-bound search tree, the best result generated by HAA1 and HAA?2 is applied
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as an initial upper bound. At each node of the branch-and-bound search tree, the optimal
properties of Theorems 3 to 5 are used as pruning devices, and if the current lower bound is
greater than the upper bound, this node is pruned.

The branch-and-bound algorithm for case 3.4 can be described as follows: At the root node
of the branch-and-bound search tree, the best result generated by HAB1 and HAB?2 is applied
as an initial upper bound. At each node of the branch-and-bound search tree, the optimal
properties of Theorems 6 to 8 are used as pruning devices, and if the current lower bound is
greater than the upper bound, this node is pruned.

The branch-and-bound algorithm for case 3.5 can be described as follows: At the root node
of the branch-and-bound search tree, the best result generated by HAC1 and HAC?2 is applied
as an initial upper bound. At each node of the branch-and-bound search tree, the optimal
properties of Theorems 9 to 11 are used as pruning devices, and if the current lower bound is

greater than the upper bound, this node is pruned.

5. Computational results

The measures of the effectiveness of the heuristic algorithms are the average relative error
and maximal relative error from the optimal total flowtime, where the relative error is defined
as: relative error (%) = [(heuristic total flowtime — optimal total flowtime) x 100]/[optimal total
flowtime]. The branch-and-bound algorithms are evaluated with respect to the average CPU
time in seconds and the average number of nodes searched. The procedures were coded in VB
5.0 and run on a Celeron 300 PC.

Fifty random instances were generated for each of feasible combinations of » = 20, 30 jobs
and different numbers of job classes. The job processing times for case 3.3 on machines 1 and
2 were uniformly distributed integers between 50 and 100 and between 1 and 50, respectively.
The job processing times for case 3.4 on machines 1 and 2 were uniformly distributed integers
between 1 and 50, and between 50 and 100, respectively. The job processing times for case 3.5
were uniformly distributed integers between 1 and 100. The class setup times for case 3.3 on
machine 1, and case 3.5 on machines 1 and 2 were uniformly distributed integers between 1

and 100. The class setup times for case 3.4 on machine 2 were uniformly distributed integers
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between 50 and 100. The class setup times for case 3.3 on machine 2, and for case 3.4 on
machine 1 were randomly generated integers according to the definitions of cases 3.3 and 3.4,
respectively. We present a summary of our findings in Tables 1, 2 and 3.

Table 1 reports the performance of HAA1 and HAA?2 of case 3.3. It is obvious that HAAT is
better than HAA2 except that for 30 jobs divided into 3 classes. We notice that the flowtime is
made up of the job processing times and the job class setups. In general, the optimal objective
is obtained through balancing these two items. Since HAA2 tends to produce more batches
than HAA1, HAA?2 is more likely to produce a better solution for the scheduling problem with
fewer job classes. It seems that the mean relative errors for the two heuristics are independent
of the number of jobs. The mean relative error for HAA1 decreases as the number of class
decreases.

Table 1 also reveals that the branch-and-bound algorithm can find the optimal solutions for
all the problems generated. Both the searched nodes and CPU time tend to decrease as the
number of classes increases, which is indicated by the expression of the lower bound (14) as
the more the jobs are divided into job classes, the tighter the lower bound becomes.

Table 2 reports the performance of HAB1 and HAB2 and the branch-and-bound algorithm
for case 3.4, and Table 3 the performance of HAC1 and HAC2 and the branch-and-bound
algorithm for case 3.5. The algorithms for cases 3.4 and 3.5 have similar characters as those of
the algorithms for case 3.3.

Since the conditions for the optimal solution for case 3.5 are stricter than those for cases 3.3
and 3.4, it is evident that the branch-and-bound algorithm for case 3.5 searches more nodes and

requires more CPU time than those for cases 3.3 and 3.4.

6. Conclusions

In this paper we have considered several special cases of the two-machine flowshop
scheduling with job class setups and derived some optimal solution properties for these
problems to minimize the total flowtime. We have discussed the use of these optimal properties
to develop heuristic algorithms. We have also developed branch-and-bound algorithms for

cases 3.3, 3.4 and 3.5, in which the best solution of two heuristic algorithms is used as an initial
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upper bound, and the derived lower bounds and optimal properties are used to reduce the size
of the search tree. We have conducted computational experiments to test these algorithms and
the results demonstrate that all of the algorithms are very efficient and effective in solving the

special cases under study.
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Table 1. Performance evaluation of HAA1, HAA2 and the branch-and-bound algorithm.

No.of No. of HAA1 HAA2 Branch-and-bound
jobs classes  Mean(%) Max(%) Mean(%) Max(%) Nodes Times
20 2 0.050 0.573 0.092 0.869 4179 25.95
4 0.000 0.000 0.046 0.919 968 5.97
5 0.000 0.000 0.000 0.000 30 0.22
10 0.000 0.000 0.000 0.000 17 0.284
30 3 0.838 3.426 0.497 3.426 65945 1181.52
0.017 0.330 0.060 0.129 2646 44.658
6 0.000 0.000 0.284 4.947 37 0.759
10 0.006 0.366 0.024 0.146 29 0.832

Table 2. Performance evaluation of HAB1, HAB2 and the branch-and-bound algorithm.

No.of No. of HABI1 HAB2 Branch-and-bound
jobs classes  Mean(%) Max(%) Mean(%) Max(%) Nodes Times
20 2 0.923 3.766 0.922 3.716 5614 36.227
4 0.499 4.428 0.055 4.428 3481 19.538
5 0.000 0.000 0.002 0.045 37 0.2265
10 0.000 0.000 0.000 0.000 18 0.291
30 3 0.941 2.137 0.542 4.221 58723 1102.12
0.018 0.356 0.044 0.701 9675 130.06
6 0.004 0.078 0.948 6.221 613 8.192
10 0.000 0.000 0.018 0.066 30 0.789

Table 3. Performance evaluation of HAC1, HAC2 and the branch-and-bound algorithm.

No.of  No. of HAC1 HAC2 Branch-and-bound
jobs classes  Mean(%) Max(%) Mean(%) Max(%) Nodes Times
20 2 0.947 1.392 0.787 1.351 7042 57.45
4 0.108 2.153 0.985 9.038 5433 44.45
5 0.066 1.257 1.351 6.761 228 1.6185
10 0.000 0.000 0.000 0.000 117 0.897
30 3 1.796 3.969 1.395 3.462 96536 1326.70
0.534 4.900 0.476 2.980 14759 443.45
6 0.000 0.000 0.532 1.432 110 2.861
10 0.048 0.894 1.669 5.339 89 0914
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