
Service Adaptation Using Fuzzy Theory in Context-aware Mobile

Computing Middleware*

Jiannong Cao
1
, Na Xing

1,2
, Alvin T.S Chan

1
, Yulin Feng

2
, Beihong Jin

2

 1
Internet and Mobile Computing Lab

Dept. of Computing, Hong Kong Polytechnic University

{csjcao, cstschan}@comp.polyu.edu.hk
2
Technology Center of Software Engineering

Institute of Software Chinese Academy of Sciences

{nxing, feng, jbh}@otcaix.iscas.ac.cn

Abstract

Context-aware mobile computing middleware is
designed to automatically adapt its behavior to

changing environment. To achieve this, an important

issue to be addressed is how to effectively select

services for adaptation according to the user’s current

context. Existing work does not adequately address this

issue. In this paper, we propose a Fuzzy-based Service
Adaptation Model (FSAM) that can be used in context-

aware middleware. We formulate the service

adaptation process by using fuzzy linguistic variables

and membership degrees to define the context

situations and the rules for adopting the policies of

implementing a service. We propose three fitness
functions to calculate the fitness degree for each policy

based on the distance of fuzzy status between the policy

and the current context situation. The decision for

service adaptation is achieved by selecting the policy

with the largest fitness degree. A context-aware

application scenario called Campus Assistant is used to
exemplify the proposed service adaptation process and

demonstrate its effectiveness.

1. Introduction

Mobile computing imposes new challenges in

designing computer hardware and software due to user

mobility, the diverse types of devices used, resource

constraints, and the dynamic nature in execution

context. Context-aware mobile computing middleware

 * This work is supported by Hong Kong Polytechnic Univ. under

HK PolyU Research Grants G-YD63 and 4-Z073, and National

Grand Fundamental Research Program of China under Grant

No.2002CB312005, the Chinese National “863” High-Tech Program
under Grant No.2004AA112010.

[1,2] provides abstraction and support for application

programmers to ease the task of developing mobile

applications, ensuring acceptable QoS and allowing for

adaptation to changes in the operating environment.

An important issue to address in designing a context-

aware middleware is how to effectively select services

for adaptation according to the user’s current context.

However, this issue has not been adequately addressed

in existing work which has been focused either on the

software realization of services configuration or on a

specific scenario or domain [2, 8].

 This paper is concerned with the formulization and

development of a Service Adaptation Model for

context-aware mobile computing middleware. We

propose the design of a Fuzzy-based Service

Adaptation Model (FSAM) using fuzzy theory [9]. As

we will show in this paper, context information is

largely uncertain and vague, and introducing fuzzy

theory into the adaptation process would make the

process more flexible and adaptive.

The remainder of the paper is structured as follows.

Section 2 describes related work. Section 3 presents an

example scenario to illustrate the service adaptation

problem. Section 4 describes the design of the fuzzy-

based service adaptation model. Section 5 illustrates

how the model works with the example application and

evaluates its effectiveness. Section 6 concludes the

paper and discusses our future work.

2. Related Work

To provide support for building high performance

mobile computing applications, research in the field of

middleware systems has proliferated in the recent years

[10]. Most context-aware middleware uses reflective

architecture with mechanisms for the dynamic

deployment and re-configuration of the underlying

services [1,2]. In this section, we briefly describe

Proceedings of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’05)

1533-2306/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:37 from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyU Institutional Repository

https://core.ac.uk/display/61008198?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

existing works on context-aware middleware and

system related to service adaptation.

The CARISMA project [2] is a context-aware

middleware system made up from adaptable services. It

uses context-aware application-specific semantic

information in an “Application Profile” encoded in

XML. When used, the middleware checks the

application profile document and compares with the

current execution context to evaluate which behavior or

policy the service component should use. CARISMA

proposed a microeconomic approach that relies on a

particular type of sealed-bid auction to resolve the

service policy confliction at execution time.

Systems have also been developed to directly

address adaptation issues. The Chisel system [3]

introduced a dynamic services adaptation framework

which decomposes the particular aspects of a service

object into multiple possible behaviors. Whenever the

context information changes, the service object will be

adapted to use the different behaviors according to the

adaptation policy. The Functionality Adaptation

method in [4] describes proxy-based context-aware

adaptation of service code modules, by which the

functionality of a service is adapted based on the

estimation of the resource usage required for the

execution. Policy-driven Mobile Agents [5] and Case-

Based Situation Assessment [6] are also proposed for

adaptation in context-ware system.

Compared with the above works, our service

adaptation model aims at formulating and designing a

policy selection mechanism, and we employ the fuzzy

theory to solve the general problem of developing a

generic service adaptation model. Existing works either

work on a specific problem or focus on the software

realization of services and policy rules.

Also relevant to our work is the research on using

fuzzy-based method for control and adaptation. A

survey of techniques for using fuzzy theory to adapt

QoS requirements in communication networks can be

found in [7]. An example as described in [8] uses fuzzy

control theory for QoS adaptation in distributed

multimedia applications. The QoS-related approaches

are usually developed for a specific domain (e.g.,

multimedia applications), and the related QoS

parameters just constitute a subset of context

information (e.g., bandwidth, CPU). Again, they are

not targeted at a generic service adaptation model.

3. An Example

Before we proceed to describe the proposed FSAM

model, in this section we first illustrate the service

adaptation problem by describing a hypothetic example

application. The example will also be used in Section 5

to illustrate how the FSAM approach can be applied.

Let us imagine a university student, Alice, roaming

around campus, and using a PDA installed with a

context-aware Campus Assistant application. We will

assume that the application runs two services Chat

Service and Email Service. Alice uses the PDA to send

and receive email through the school’s email server,

and to chat with classmates.

The services provided by the Campus Assistant

application have alternative policies according to the

real-time context. For example, in order to distribute

messages among chatting participants, FSAM helps

applications make a suitable choice from among three

policies: textChat, which allows the delivery of text

messages; voiceChat, which allows the exchange of

voice messages; and videoChat, which allows the

exchange of video messages. The email service

operates in a similar fashion. Students can check their

emails by using one of the following five policies:

headMail: which delivers only the mail header and a

sign indicating that the receiving process is not finished

and will continue when a higher network bandwidth

and other resource are available; fullMail: which

delivers mail in full-text; encryptedMail: which sends

encrypted mail; bigMail: which delivers mail in full-

text and attachments; and encryptedBigMail, which

delivers encrypted big-mails.

Based on the modeling and assessment of the

current contextual information of Alice, the policies of

a service should be automatically selected to adapt the

service to the prevailing conditions.

4. The FSAM Framework

As shown in Figure1, a context-aware middleware is

composed of five parts. These parts collaborate with

each other to fulfill middleware function. To monitor

the contextual changes, Context Manager checks the

sensor network as well as the user profile regularly, and

then abstracts the context information into a FSAM-

practicable form. Resource Manager inspects the

system resource usage and informs FSAM. When a

service adaptation decision is made by FSAM,

Configuration Manager will be triggered to re-

configure the Service Space, which is the organization

of all the on-the-job services. Configuration Manager

maintains the metadata of all the alternative service

implementations, and provides the metadata as the rule

for service selection process.

As the core component, FSAM takes as input the

context information, service policy definition, and

intervention from users and system. These are obtained

from other components such as context manager,

resource manager and configuration manager. The

output of FSAM is the adaptation decision which will

be used by the configuration manger for re-configuring

the services. In this paper, we focus on the adaptation

process used by FSAM, called Fuzzy-based Service

Adaptation Process (FSAP).

Proceedings of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’05)

1533-2306/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:37 from IEEE Xplore. Restrictions apply.

Figure1. Reference Architecture of Context-aware

Middleware

4.1. The Fuzzy Service Adaptation Process

The traditional fuzzy control process [9], as shown in

Figure2, consists of three stages: fuzzification,

reasoning by inference engine, and defuzzification.

During fuzzification, predefined membership functions

for each linguistic variable are used to determine the

degree of membership of a crisp value for the linguistic

variable. Then, the inference engine refers to

the predefined fuzzy rule base to derive the linguistic

values for the intermediate and output linguistic

variables. Once the output linguistic values are

available, in defuzzification, the final crisp values are

produced from the output linguistic values.

Figure2. Fuzzy Control Process

The proposed FSAP is similar to the traditional

fuzzy control process in that it is in the following three

steps:

Step_1: Fuzzification. Each context information is

represented by a linguistic variable, which may be

associated with several linguistic values. Each

linguistic value is represented by a predefined

application-related membership function (e.g.

highxRateNetwork_maµ (x) and lowxRateNetwork_maµ (x),

where x is the crisp value of the corresponding

linguistic variable). By using the membership functions

we translate the input context crisp value into a set of

pairs, each consisting of a linguistic value and a

membership degree for that value. The fuzzified

context information is then combined into a fuzzified

context situation (see definition in Section 4.2).

Step_2: Calculation of fitness degree for each

policy. In context-aware mobile middleware, a service

can be delivered using several policies and each policy

is associated with a particular context situation. We

assume that a service can be delivered using only one

policy at any time. During the inference process in

FSAP, each policy will be assigned a fitness degree

indicating to what degree the policy is suitable for

being used under the current context situation. The

fitness degree is assigned by using a fitness function,

which calculates the fuzzy distance between the

policy’s most suitable context situation and the current

context situation. The fitness degree will decrease as

the fuzzy distance increases. The most suitable context

situations and some additional intervention rules (e.g.

application profile, user preference and system

feedback) form the rule base of FSAP.

Step_3: Adaptation. For a requested service, the

policy with the largest fitness degree will be selected as

the best policy for delivering the service under the

current context situation.

4.2. Formulized Solution

To introduce the proposed formulized solution, we

first give the definition of the concepts and

terminologies used in FASP, and then design fitness

functions base on the concepts.

Definition 1 (Service): A service represents a function

that is provided by the middleware and invoked by a

mobile application. Let S={s1 s2 s3, …, sq} be the

set of services provided by the middleware, where, si

(1 i q) represents the i-th service, q is the number of

services. We use Sneed to denote the set of services

requested by the mobile application.

Definition 2 (Policy): A policy represents a method

used to deliver a service with a certain resource

requirement and quality-of-service condition. Let Pi =

{pi
1
, pi

2
, …,pi

mi
 | i [1, q]} be a set of policies which

can be adopted for delivering the i-th service si (si S),

where, pi
j
(1 j mi) represents the j-th policy of si, mi

is the number of all policies for si.

Definition 3 (Context): Let C = {c1, c2, …, cn} be a set

of context which are monitored by the middleware,

where, ci (1 i n) represents the i-th context

information, k is the number of all monitored context.

Definition 4 (Context Situation): A context situation

is a combination of context information. Let LV = {lv1,

lv2, …, lvk} be a set of linguistic values. The context

situation at time t is denoted by SI(t) and represented

by a set of 3-element tuples:

 SI(t)={(ca,lvb, ba lvcµ (value_of(ca,t)) |ca C, a [1,n],

lvb LV, b [1,k]} (1)

where, ca(1 a n) is a certain context information (eg.

c1 = Network_maxRate); lvb(1 b k) is a linguistic

value (eg. lv2 = high); value_of(ca,t) represents the

value of context ca at time t;
ba lvcµ (x) [0,1] is the

Proceedings of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’05)

1533-2306/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:37 from IEEE Xplore. Restrictions apply.

pre-defined membership function of “ca is lvb”, which

indicates when ca = x, to what degree ca is lvb, (eg, if c1

= Network_maxRate, lv2 = high, t=current, value_of(c1,

t) = value_of(Network_maxRate,current) = 10M bps,

then a possible value of
21 lvcµ (value_of(c1,t)) can be

21 lvcµ (value_of(c1,t)) =µNetwork_maxRate high(10M bps) =

0.5, the value 0.5 means that Network_maxRate is high

with degree of 0.5, when Network_maxRate is 10M

bps.)

Given a service si (si Sneed), each policy pi
j
 in Pi is

associated with a context situation that is most suitable

for pi
j
. Here, by “most suitable” we mean the best

balance of the tradeoff between resource consumption

and QoS. Such a best-suitable context situation is

referred to as the Standard Reference for pi
j
 (denoted

by SR(pi
j)). If the actual context situation is better than

SR(pi
j
), (e.g. actual Network_maxRate is higher than

the defined value in SR(pi
j
)), then there is waste of

resource if pi
j
is used to deliver the service; similarly if

the actual context situation is worse than SR(pi
j
), using

pi
j
 will not obtain the expected QoS.

Definition 5 (SR(pi
j
)): Given a set of linguistic values

LV = {lv1, lv2,…, lvk}, SR(pi
j
) can be represented by a

set of 3-element tuples:

SR(pi
j
)={(ca, lvb, ba lvcµ (best_value_of(ca)) | ca C, a

[1,n], lvb LV, b [1,k]} (2)

Equation (2) is almost the same as equation (1)

except that the function value_of (ca, t) is replaced by

best_value_of(ca), which represents the most suitable

value of context ca when we use policy pi
j
 to deliver

service si. For a given set Pi, we call the aggregation

{SR(pi
1
), SR(pi

2
), … , SR(pi

mi
)}, pi

j
 Pi, as the

Standard Reference Depositary of Pi and denote it by

SRD(Pi).

Definition 6 (FSAP): A FSAP is a mapping process

from the current context situation SI(current) to a set of

suitable policies Psuitable, where each element of Psuitable

is the most suitable policy for a certain service si

Sneed, The number of elements in Psuitable is equal to

the number of elements in Sneed.

Now we are ready to define the fitness functions.

Although the aim of FSAP is to obtain Psuitable, the

selection processes for elements in Psuitable are similar

and irrelevant from each other, thus the key point of

FSAP is how to select the most suitable policy for a

given service with making the best use of current

resource and enhancing the user’s satisfaction. In

practice, a context situation may not be exactly

matched with any SR(pi
j
). In order to select the most

suitable policy from Pi, we should use proper fitness

function to evaluate all the policies in Pi, so as to make

the best choice.

Definition 7 (Fitness Function): Let FD(pi
j
) be the

fitness degree for policy pi
j
 under current context

situation. Given a service si Sneed, the Fitness Function

(FF): SI(current)×SR(pi
j
) FD(pi

j
), is a mapping from

the current context situation and Standard Reference pi
j

to the fitness degree of policy pi
j
.

Here, we propose three different fitness functions:

Function_1:FF(SI(current),SR(pi
j
))=

=
−

))SR(p(size_of

1

j
i

)),(_())(__(

1

i

currenticofvalueicofvaluebest µµ

Function_2:FF(SI(current),SR(pi
j
))=

()
=

−
))SR(p(size_of

1

2

j
i

)),(_())(__(

1

i

ii currentcofvaluecofvaluebest µµ

 Function_3:FF(SI(current),SR(pi
j
))=

=
−

))SR(p(size_of

1

j
i

)),(_())(__(

1

i

l
ii

icurrentcofvaluecofvaluebest µµ

 where, size_of(SR(pi
j)) represents the number of tuples

in SR(pi
j
), µ(x) is the membership function appears in i-

th vector, li is a natural number.

The concept of fitness function is inspired by the

membership function in classical fuzzy logic theory.

But the two are different, in that the value of fitness

degree is a positive number but not limited into [0,1],

and the sum of fitness degree for all the policies for one

service is not 1. The value of fitness degree only

indicates that to what degree one policy is suitable for

the current environment. In the above three functions,

the denominators are for the calculation of the distance

between SI(current) and SP(pi
j
). After obtaining the

fuzzy distance, we calculate its reciprocal to get the

fitness degree, i.e. when the distance between

SI(current) and SR(pi
j
) is 0, which means SI(current)

and SP(pi
j
) are completely consistent, then the fitness

degree is infinity. Otherwise, the fitness degree will

decrease with the increment of the distance.

5. Example and Discussion

In this section, we use the Campus Assistant

application example to illustrate how FSAP can be

used and evaluate the effectiveness of three fitness

functions.

5.1. Service Adaptation in Campus Assistant

We use Function_3, and let all ls in Function_3 take

the value of 2 for chat service. For the email service,

we let ls for Network_maxRate and CPU_clockRate

take the value of 2 and l for RAM_freeSpace take the

value of 3, i.e., we assume that Network_maxRate and

CPU_clockRate are more important than

RAM_freeSpace in making the decision for service

adaptation.

Proceedings of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’05)

1533-2306/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:37 from IEEE Xplore. Restrictions apply.

Figure3. Predefined Membership Functions

We assume that before carrying out service adaptation

the middleware has obtained the following information:

S = {chat, email};

P1={textChat(p1
1
), voiceChat(p1

2
), videoChat(p1

3
)};

P2={headMail(p2
1
),fullMail(p2

2
),encryptedMail(p2

3
),

bigMail(p2
4
), encryptedBigMail(p2

5
)};

C={Network_maxRate(c1),CPU_clockRate(c2),

Network_delay(c3),RAM_freeSpace(c4)};

LV = {high, low}

SI(t)={(Network_maxRate, high, µNetwork_maxRate high

(value_of(Network_maxRate, t))), (CPU_clockRate,

high, µCPU_clockRate high (value_of (CPU_clockRate,

t))),(Network_delay, low, µNetwork_delay low (value_of

(Network_delay, t))),(RAM_freeSpace, high,

µRAM_freeSpace high (value_of (RAM_freeSpace, t)))}

where, the predefined membership functions given by

a certain application are shown in Figure3.

User Privacy Intervention (IUPI): If user want to

protect its privacy then P1’ = {p1
1
, p1

2
} and P2’ = { p2

1
,

p2
3
, p2

5
}, else P1’ = P1 and P2’ = P2.

Application Power Intervention (IAPI): If

Power_batteryLevel is less than 5%, then P1’ = P1 and

P2’ = {p2
1
}.

The most suitable context values for policies in P1 and

P2 as shown by Table 1.

Table1. Most Suitable Context Values for Policies

 C1(kbps) C2(MHz) C3(ms) C4(MB)

p1
1
 4 20 500 0.2

p1
2
 200 300 10 4

p1
3
 10000 1000 0.2 200

p2
1
 2 4 --- 0.2

p2
2
 10 10 --- 0.4

p2
3
 10 100 --- 10

p2
4
 500 50 --- 2

p2
5
 500 1000 --- 100

Given the current context as shown in Figure4, the

FSAP performs the following steps for achieving service

adaptation:

Figure4. Current Context Information

Step_1: Use the predefined membership functions to

translates current context information into

SI(current) = {(Network_maxRate, high,

0.20), (CPU_clockRate, high,

0.23),(Network_delay, low, 0.25),

(RAM_freeSpace, high, 0.58)}.

Step_2: Use IUPI and IAPI to filter P1 and P2, and get

P1’ = P1 and P2’ = P2.

Step_3: According to the values given in Table 1, use

predefined membership functions to calculate

SRD(P1’) and SRD(P2’) shown in Table 2.

Table 2 SRD(P1’) and SRD(P2’)

 C1 High C2 High C3 Low C4 High

SR(p1
1
) 0.12 0.33 0.08 0.15

SR(p1
2
) 0.46 0.72 0.50 0.48 SRD(P’1)

SR(p1
3
) 0.80 0.90 0.92 0.90

SR(p2
1
) 0.06 0.10 --- 0.15

SR(p2
2
) 0.20 0.23 --- 0.23

SR(p2
3
) 0.20 0.57 --- 0.58

SR(p2
4
) 0.54 0.47 --- 0.40

SRD(P’2)

SR(p2
5
) 0.54 0.90 --- 0.83

Setp_4: Use Function_3 to calculate fitness degree for

each policy and get the results shown in

Figure5.

Figure5. Fitness Degree for Policies

Step_5: According to the fitness degrees of policies,

derive the set Psuitable = { textChat ,fullMai, }

as the current adaptation strategy.

5.2. l Value Discussion

In this section, we will show how the service

adaptation decision is effected by the l value. The

same example is used, except that during the

adaptation process in Step 4 all the three fitness

functions are used to respectively calculate the fitness

Proceedings of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’05)

1533-2306/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:37 from IEEE Xplore. Restrictions apply.

degrees of the policies for email service. The fitness

degrees are shown in Figure 6.

Table3. Comparison between Current Context and

Best Values for Two Policies

 C1(kbps) C2(MHz) C4(MB)

p2
2
 10 10 0.4

p2
3
 10 100 10

current 10 10 10

Figure6. Fitness Degrees for EmailChecker Policies

Calculate by Three Functions

From Figure6, we can see that by using Function_1

and Function_2 encryptedMail is selected as the most

suitable policy, but Function_3 tells us fullMail is the

best. As listed in Table3 the current context values for

Network_maxRate and CPU_clockRate are consistent

with the best values of fullMail; and the current context

value for RAM_freeSpace is consistent with the best

value for encryptedMail. Since we have assumed in

section 5.1 that RAM_freeSpace is less important than

the other two contexts for the final choice, the most

suitable policy here should be fullMail, which is same as

the choice made by Function_3. So, we get the

conclusion that properly assigning l values will make

Function_3 much better to response to the current

context. In current FASM, the l values are predefined in

the application profile base on the developer’s

experience. Actually, a systematic solution for

automatically choosing the right l values will lead to a

non-linear optimization problem, which may be

discussed in our future paper.

6. Conclusion and future work

In this paper, we addressed an important problem of

designing context-aware mobile computing middleware,

namely service adaptation control. We presented the

design of a fuzzy-based service adaptation model, called

FSAM, for context-aware mobile middleware. FSAM

gears its adaptation based on the changing contextual

information and the requirements of users, applications

and execution environment. FSAM is the core part of a

context-aware middleware, which is designed towards

providing strategies to implementing a service re-

configuration mechanism. We focused on the

development of the fuzzy service adaptation process

used in FSAM. By formulating the service adaptation

process and introducing the fitness functions we

proposed a flexible mathematical method to assign

fitness degrees for service policies.

Currently, besides finding systematic manner to

optimize the l weight value, we are investigating on

factors that affect the adaptation quality and

performing further evaluations of the context

adaptation methods. As future work, we will

implement a prototype of the proposed framework. We

will also investigate efficient methods for predicting

context changes according to the current settings and

user mobility patterns to achieve pro-active service

adaptation.

References

[1] Chan,A.T.S.; Siu-Nam Chuang; “MobiPADs: A

Reflective Middleware for Context-Aware Mobile

Computing”; IEEE Transactions on Software

Engineering, Volume: 29, Issue: 12 pp.1072 – 1085,

Dec 2003

[2] Capra, L.; Emmerich,W.; Mascolo,C.;"CARISMA:

context-aware reflective middleware system for mobile

applications"; IEEE Transactions on Software

Engineering, Volume:29, Issue:10, pp.929 – 945, Oct.

2003

[3] Keeney, J.; Cahill, V. “Chisel: a policy-driven, context-

aware, dynamic adaptation framework”; Proceedings of

IEEE 4th International Workshop on Policies for

Distributed Systems and Networks, pp.3 – 14, 4-6 June

2003

[4] Vivien Wai-Man Kwan; Francis Chi-Moon Lau; Cho-

Li Wang; "Functionality adaptation: a context-aware

service code adaptation for pervasive computing

environments" Proceedings of IEEE/WIC International

Conference on Web Intelligence, pp. 358 – 364, 13-17

Oct. 2003

[5] Kun Yang; Alex Galis; Chris Todd, "Policy-driven

Mobile Agents for Context-aware Service in Next

Generation Networks" MATA 2003- IFIP 5th

International Conference on Mobile Agents for

Telecommunications, 8-10.10.2003

[6] Anders Kofod-Petersen, Angar Aamodt, "Case-Based

Situation Assessment in a Mobile Context-Aware

System" Proceedings of Workshop Artificial

Intelligence in Mobile System 2003(AIMS2003)at

Ubicomp 2003,October 12

[7] Koliver, C., Farines, J.-M., and Nahrstedt, K. O. “QoS

Adaptation Based on Fuzzy Theory” Soft Computing

for Communications, L. Wang, Ed. Springer-Verlag, pp.

245–267, 2004

[8] Baochun Li; Nahrstedt, K.;"A control-based

middleware framework for quality-of-service

adaptations" IEEE Journal on Selected Areas in

Communications, Volume: 17 , Issue: 9 pp. 1632 –

1650 , Sept. 1999

[9] Constantin Von Altrock; Fuzzy Logic and Neuro-Fuzzy

Applications Explained ”, Prentice Hall, 1995

[10] Capra, L.; “Mobile Computing Middleware for

Context-Aware Applications” Proceedings of the 24th

International Conference on Software Engineering,

pp.723–724,2002

Proceedings of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’05)

1533-2306/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:37 from IEEE Xplore. Restrictions apply.

