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Abstract. Genetic algorithms (GA) have been widely used to solve water resources system 
optimization. However, when applying GAs to solve large-scale and complex water reservoir 
system problems, premature convergence is one of the most frequently encountered difficulties 
and takes a large number of iterations to reach the global optimal solution and the optimization 
may get stuck at a local optimum. Therefore, a novel chaos genetic algorithm (CGA) based on the 
chaos optimization algorithm (COA) and genetic algorithm (GA), which makes use of the 
ergodicity and internal randomness of chaos iterations, is presented to overcome premature local 
optimum and increase the convergence speed of genetic algorithm. CGA integrates powerful 
global searching capability of the GA with that of powerful local searching capability of the COA. 
Two measures are adopted in order to improve the performance of the GA. The first one is the 
adoption of chaos optimization of the initialization to improve species quality and to maintain the 
population diversity. The second is the utilization of annealing chaotic mutation operation to 
replace standard mutation operator in order to avoid the search being trapped in local optimum. 
The global optimum of the Rosenbrock function is employed to examine the performance of the 
GA. The result indicates that it can improve convergence speed and solution accuracy. A series of 
monthly inflow of 38 years is employed to simulate the hydropower reservoir optimization 
operation. The results show that the long term average annual energy based CGA is the best and its 
convergent speed not only is faster than dynamic programming largely, but also overpasses the 
standard GA. Thus, the proposed approach is feasible and effective in optimal operations of 
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complex reservoir systems. 
 
Key words: chaos; genetic algorithm; optimization; hydropower system. 

1. Introduction 

Optimization techniques have become increasingly important over the last four decades in 
management and operations of complex reservoir systems. The use of these techniques has 
greatly aided in providing a good insight into the intricacies of various aspects of problems in 
water management. Yeh (1985), Wurbs (1993) and, more recently, Labadie (2004) have provided 
an extensive literature review, evaluation of various optimization methods and the intensive 
research on the optimization of reservoir system operation. As can be seen from the literature, 
numerous researchers have developed reservoir optimal operation during the past four decades 
using dynamic programming (DP), linear programming (LP), nonlinear programming (NLP), etc. 
Among different optimization techniques for reservoir operation, DP has enjoyed the much 
popularity. DP is popular in reservoir operation studies because DP can offer convenient and 
efficient solutions for developing complex operational strategies in the determination of optimum 
operating policies for hydropower station reservoir scheduling.  
 
GA is one of the global optimization schemes that have gained popularity as a means to attain 
water resources optimization. Oliveira and Loucks (1997) used GA to evaluate operating rules for 
multireservoir systems and demonstrated that GAs can be used to identify effective operating 
policies. Wardlaw and Sharif (1999) employed GA to a deterministic finite horizon multi-reservoir 
system operation and concluded that the approach can be easily applied to non-linear and complex 
systems. Sharif and Wardlaw (2000) applied GA approach to optimize a three-reservoir 
multipurpose system over a 36 ten-day periods in the second. Chang and Chang (2001) used 
GAs to search the optimal reservoir operating schedule, and show that this has produced 
superior results compared to traditional methods. Cheng et al. (2002 & 2006) combined a 
fuzzy optimal model with GAs to solve multiobjective rainfall-runoff model calibration. 
Furthermore, Cheng et al. (2005) proposed a hybrid method that combines a parallel genetic 
algorithm with a fuzzy optimal model in a cluster of computers. The new method is used to 
improve the calibration quality and efficiency through parallelization. Chang et al. (2003) 
demonstrated that the optimization of rule curves through GA is effective for flushing 
schedules in a reservoir. Recently, in order to derive multipurpose reservoir operating rule 
curves, Chang et al. (2005b) investigate the efficiency and effectiveness of two algorithms. 
Chang et al. (2005a) applied GA for optimal reservoir dispatching. Reis et al. (2005) used 
hybrid genetic algorithm and linear programming to determine operational decisions for 
reservoirs of a hydro system throughout a planning period. However, when applying GAs to 
solve large-scale and complex real-world problems, premature convergence is one of the most 
frequently encountered difficulties and takes a large number of iterations to reach the global 
optimal solution and the optimization may get stuck at a local optimum. In order to overcome 
these flaws, it is a significant task to find some effective approaches and improvements on GA to 
speed up the convergence and heighten the effectiveness of GA. 
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The chaos is a general phenomenon in nonlinear system and has some special characteristics such 
as ergodicity, regularity, randomicity, and acquiring all kinds of states in a self-rule in a certain 
range. It has such sensitivity that a tiny change of initial condition can lead to a big change of the 
system. Based on the two advantages of the chaos, a chaos optimization algorithm (COA) was 
proposed that can solve complex function optimization and have a high efficiency of calculation 
(Li et al., 1998). The basic idea of the algorithm is to transform the variable of problems from the 
solution space to chaos space and then perform search to find out the solution by virtue of the 
randomicity, orderliness and ergodicity of the chaos variable. Although the chaos optimization 
method has many advantages such as sensitive to the initial value, easy to skip out of the locally 
minimum value, speeding up search because of reducing the search space by carrier wave, it 
makes no use of the experiential information previously acquired. As a result, search effect of 
chaos optimization has its own limitation.  
 
In order to overcome the shortcomings of both chaotic optimization method and GA, a method is 
to integrate the COA with GA to fully apply their respective searching advantages. Yuan et al. 
(2002) employed the integration of chaotic sequence and GA with a new self-adaptive error back 
propagation mutation operator to solve the short-term generation scheduling of hydro system. 
After studying the nature of the chaotic process, Yan et al. (2003) defined a uniform mutation 
operation process in which each chromosome vector has exactly equal chance and proposed a 
chaos genetic algorithm (CGA), which integrates GA with chaotic variable to search the 
optimization of the operational conditions based on RBF-PLS model. Lü et al. (2003) applied a 
chaotic approach to maintain the population diversity of genetic algorithm in network training. 
Liao (2006) combined chaos search genetic algorithm and meta-heuristics method for short-term 
load forecasting. However, most of these algorithms just make use of the randomicity of chaos 
sequences to generate individuals and do not effectively combine the spatial search advantage of 
these two methods. Taking account of the search efficiency of the GA and the application of chaos 
sequences can preferably simulate chaotic evolutionary process of biology. This paper presents a 
novel CGA on the basis of integrating the respective characteristic of the COA and GA. The novel 
CGA adopts chaos optimization of the initialization to improve species quality and maintain the 
population diversity. Annealing chaotic mutation operation is utilized to replace standard mutation 
operator in order to avoid the search being trapped in local optimum. The main characteristic of 
this new method is that the mechanism of the GA is not changed but the search space and the 
coefficient of adjustment are reduced continually. This can facilitate the evolution of the next 
generation in order to produce better optimization individuals, which can in turn improve the 
performance of the GA and overcome the disadvantages of the GA. The correlative examination 
indicates that the CGA has fast convergent velocity and powerful search capabilities while at the 
same time maintaining the population diversity of the conventional GA to generate satisfactory 
results. 

 
2. Mathematical model for hydropower system scheduling 
 
Suppose the object studied is mainly on the power generation of a hydropower system in order to 
compromise other synthetic utilization demand of the reservoir. The objective is to maximize 
generation output from the power station over 12 months operating periods according to historical 
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monthly inflows of the reservoir. 
 
The objective function to be maximized can be written as 

tt

T

i
t MHAqF ∑

=

=
1

max                                                      (1) 

subject to the following constraints. 
1) Reservoir storage volumes limits. 

max,min, ttt VVV ≤≤                                                            (2) 

2) Reservoir discharge limits. 

max,min, ttt QQQ ≤≤                                                           (3) 

3) Hydropower station power generation limits.  

maxmin NHAqN tt ≤≤                                                         (4) 

4) Water balance equation. 

ttttt QFVV ∆−+=+ )(1                                                        (5) 

where 
   T — total period count within a year, T = 12; 
   A — coefficient of hydropower station power generation; 
   Qt — water discharge for power generation, m3/s; 
   Ft — reservoir inflow, m3/s; 
   Ht — average head at time period t, m; 
   St — release water discharge, m3/s; 
   Mt — amount of hour at time period t; 
   Vt — volume of reservoir storages at the beginning of period t, m3； 
   Vt＋1 — volume of reservoir storages at the end of period t, m3； 
   Vt,max — maximum consent water volume of reservoir, m3; 
   Vt,min — minimum consent water volume of reservoir, m3; 
   Qt,min — minimum water discharge for synthetic utilization of downstream, m3/s; 

Qt — water discharge of reservoir, m3/s; 
   Qt,max — maximum water discharge for power station, m3/s; 
   Nmax — installed plant capacity, kW; 
   Nmin — hydro plant minimum power generation constraint, kW; 
 
Suppose inflow sequence Ft,, t = 1, 2, …, T has been obtained by historical monthly inflows of 
the reservoir or hydrological forecasting. The problem is a dynamic optimization problem that 
includes linear and nonlinear, equality and inequality constraint, and the objective function is 
non-linear.  
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3. Chaos-genetic algorithm 

3.1 Chaotic sequence 

Chaos is a universal non-linear phenomenon in natural world and is the highly unstable motion of 
deterministic systems in finite phase space. Roughly speaking, a nonlinear system is said to be 
chaotic if it exhibits sensitive dependence on initial conditions and has an infinite number of 
different periodic responses. This sensitive dependence on initial conditions is generally exhibited 
by systems containing multiple elements with nonlinear interactions, particularly when the system 
is forced and dissipative. Sensitive dependence on initial conditions is not only observed in 
complex systems, but even in the simplest logistic equation.  
 
The chaotic sequence can usually be produced by the following well-known one-dimensional 
logistic map defined by May (1976):  

);1(1 kkk xxx −=+ µ         )1,0(∈kx ,   k= 0, 1, 2, …                      (6) 

In which µ  is a control parameter, 40 ≤≤ µ . It can be observed that Eq. (6) is a deterministic 
dynamic system without any stochastic disturbance. It seems that its long-time behavior of the 
system in Eq. (6) varies significantly with µ . The value of the control parameter µ  determines 
whether x stabilizes at a constant size, oscillates between a limited sequences of sizes, or whether 
x behaves chaotically in an unpredictable pattern. For certain values of the parameterµ , of which 
µ  = 4 is one, the above system exhibits chaotic behavior. Fig. 1 shows its chaotic dynamics 
characteristic, where xk = 0.01, k = 300. A very small difference in the initial value of x causes a 
large difference in its long-time behavior, which is the basic characteristic of chaos. The variable x 
is called a chaotic variable. The track of chaotic variable can travel ergodically over the whole 
space of interest. The variation of the chaotic variable has a delicate inherent rule in spite of the 
fact that its variation looks like in disorder. In general, there are three main characteristics of the 
variation of the chaotic variable, i.e. pseudo-randomness, ergodicity and irregularity (Li and Jiang, 
1998; Ohya, 1998). 

3.2 Chaotic optimization operator 

Assume that the working vector of independent variables is denoted by x and consists of n 
elements. The elements of the working vector x are named working parameters denoted by x1, 
x2, …, xn.Thus, an optimization problem of searching minimum could be described as: 

)(min ixf     i = 1, 2, …, n                                             (7) 

s.t. iii bxa ≤≤  

 
The optimization process of the chaotic variables could be defined through the Eq. (6) when µ  = 
4 and the system exhibits chaotic behavior (Li and Jiang, 1998; Ohya, 1998). The equation 
becomes 
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Then it can be used to optimize these problems. First, using the “carrier wave” method, make 
optimization variables vary to chaos variables. Second, “amplify” the ergodic area of chaotic 
motion to the variation ranges of every variable, because the chaos system we selected has a 
certain ergodic area of 0-1. Finally, use the chaos search method to optimize problems. The main 
procedures of the algorithm are shown as follows: 
 
Step 1. Initialization: Give i initial values which have very small differences to x(n) of Eq. (8); 
then i chaotic states can be obtained by Eq. (8). 
 
Step 2. Carrier way: By the carrier wave method, change i optimization variables to chaos 
variables. Furthermore, “amplify” the ergodic areas of the i chaotic variables to the variance 
ranges of optimization variables by the following equation: 

)1()()1(' +−+=+ nxabanx iiiii                                             (9) 

 
where xi(n+1) are i chaotic states generated by Eq. (8), ai and bi are variance ranges of 
optimization variables. Equation (9) is an algebraic sum, )1(' +nxi are i chaotic search variables 
of the optimization problem. 
 
Step 3. Iteration search by use of chaotic variables: let 0

*
ii xx = , and calculate the value of the 

objective function f, f* = f. 
Do 
n = n +1, 
xi =x’

i(n+1) 
calculate the value of objective function f. 
if *ff ≤ then f* =f, ii xx =* . 
Else if *ff ≥ then give up the solution. 
Loop f* does not improve after k searches where k is a integer. 

3.3 Chaos genetic algorithm 

GA has aroused intense interest, due to the flexibility, versatility and robustness in solving 
optimization problems, which conventional optimization methods find difficult. However, there 
exist some flaws on GA, with slow convergence and premature local optimum. Difficulty lies in 
that it is a state-of-the-art to well balance the population diversity and selective pressure 
simultaneously. The following are several reasons on this difficulty. 
 
Most important of all, diversities of an initial population are far from realized. Generally speaking, 
the initial individuals are taken for granted to be diversified and, in other words, distributed 
uniformly. Thus, conventional initialization methods such as random approach can bring problems. 
Even if they can guarantee that the initial population is evenly distributed in the search space, they 
cannot guarantee the qualities of initial population are also uniformly arranged. Indeed, an 
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overwhelming majority of the initial chromosomes are banal and far from the global optimum 
which cause the slow convergence of GA. 
 
Moreover, the diversity of population cannot be maintained under selective pressure, to say the 
least, the initial individuals are supposed to be fully diversified in the search space. That is why, if 
not well designed, the GA’s searches always are found to be stuck by local traps. 
 
Finally, conventional GA and its improvements have a common defect — complete ignorance of 
the individuals’ experiences during their lifetime. Due to the almost randomized searches, there 
are no necessary connections between the current and next generations except for some controlling 
parameters such as crossover and mutation probabilities. In other words, the feedback information 
from former populations is discarded. However, many experiments show that an improved GA 
with resource to domain-specific heuristics information always has a good performance in 
evolution (Goldberg, 1989). Essentially, such good performance is attributed to the feedback 
information from the evolutionary system. From the viewpoint of chaos, the scheme of biological 
evolution can be well described as “random evolution + feedback”, where randomicity is an 
intrinsic property of biological society and feedback part contains sufficient information for 
species to evolve. Only those who can successfully deal with the feedback information from 
evolution can survive well and keep evolving from low to higher classes. 
 
Aiming at the above the problem, two measures are adopted to improve the GA’s performance. 
one is the adoption of chaos optimization of the initialization to improve species quality, maintain 
the population diversity and finally realize the global optimization; Another is the utilization of 
annealing chaotic mutation operation to replace standard mutation operator in order to avoid the 
search being trapped in local optimum. 
(1). Generating initial population by chaotic optimization: The convergence problem is relevant to 

initial population, because the numerous initial populations generated by random approach are 
far from optimal solution, which restrict algorithmic efficiency in solving the problem. The 
coarse-grained global search by chaotic ergodictity usually will acquire better effect than 
randomized search. This will improve the quality of individual of initial population and 
calculated efficiency. 

 
   The m initial values of punily difference xk (0≤xk≤1,i＝1，2，3，…m） )are endowed in 

Eq. (8) and xk ∉(0.25,0.5,0.75) to assure the evolution process going on properly. it will 
generate m chaotic variable xk,i (xk,i ，i＝ 1，2，…m) of different contrail. The m chaotic 
variable are mapped to variable space of optimization and translated into chaotic variable x*

k,i 

according to Eq. (10).  
 x*

k,i ＝ ai + (bi-ai)xk,i                                                   （10） 

 
For fixed k, x*

k = (x
*
k,i ，x*

k,i ，…x*
k,m) represents a feasible solution. The fitness value of 

every feasible solution is calculated and n individuals of the highest fitness value are sought to 
become initial population. In order to guarantee that chaotic variable can be fully ergodic, the 
chaotic sequence ought to take adequate iterated time (i.e. 400- 500) in the process of chaos 
generation of initial population. 
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(2). Annealing chaotic mutation operation: Mutation is an effective operator to increase and retain 

the population diversity, and is meanwhile an efficient method to escape the local optimum 
solution and to overcome the premature convergence. The purpose of mutation can ceaselessly 
bring the individual of higher fitness value and guide evolution of the whole population. The 
GA is good at generating populations which have the high average fitness value, but it is short 
of the means which can generate the optimum individual of higher fitness value. A large scale 
of mutation is good for acquiring the optimum solution in extensive search, but the search is 
rough and the solution precision is poor. On the other hand, if the precision is satisfactory, the 
solution will be got stuck at a local optimum or take too long time to converge. In view of 
overcoming these flaws, this paper adopts the annealing chaotic mutation operation. It can 
preferably simulate chaotic evolutionary process of biology. Simultaneously, it is quite easy to 
find another more excellent solution in the current neighborhood area of optimum solution 
and let GA possess ongoing motivity all along. It directly adopts chaotic variable to carry 
through ergodic search of solution space and the process of search go along according to 
oneself rule of chaos movement. Accordingly, it effectively overcomes the default that speed 
obviously become slow by feedback information when search is close to the global optimum. 
The main process as follow: 

   
The nth generation population ( yn1 , yn2 ,…, ymm) of current solution space (a,b) are mapped 

to chaotic variable interval [0,1] and formed chaotic variable space Y*
n ,Yn

*
 = ( y*

n1 , y
*
n2 ,…, 

y*
nm) 

 

ab
ayy mi

ni −
−

=* , i = 1, 2, …,m. n = 1, 2, …, Gmax                               (11) 

where, Gmax is the maximum evolutional generation of the population. 
   

The ith chaotic variable xk, is degenerated and summed up to individual mapped y*
mi, and the 

chaotic mutation individual are mapped to interval [0, 1] (Wang et al., 1999). 
Z*

mi = y
*
mi + ∂ xk,i                                                         (12) 

 
in which ∂  is the annealing operation 

        

k

n
n 11 −

−=∂                                                       (13) 

where, n is iterative time and k is an integer.  
 
At last, the chaotic mutation individual obtained in interval [0,1] is mapped to the solution 

interval (a, b) by definite probability, and completes a mutative operation, 
        Zni = a + (b – a)Z*

ni                                                   (14) 
 
As we can see from Eq. (13) and (14), the annealing mutation operation simulates process of 

species evolution of nature. Usually appearing with more evolutionary attempt because of 
higher mutative probability, it results in diversity of population in the initial stage of the 
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evolution. However, with the increase of evolutionary generation, the population gradually 
becomes stable as the function of mutation operation becomes slower and the function of 
crossover operation becomes increasingly important. Integrating crossover operation with 
selection operation can perform accurate search in local solution space.  

3.4 Implementation steps of chaotic genetic algorithm 

(1) Encoding & parameter selected. 
Since the hydropower station optimization operation is a complex nonlinear constrained 
optimization problem, the application of the floating point numbers encoding technique is 
appropriate. In this representation method, each chromosome vector is coded as a vector of 
floating point number of the same length as the solution vector. Each element is initially 
selected to be within the desired domain. In addition, the floating-point numbers 
representation is capable of representing quite a large domain. Also, it is easier to handle 
constraints. To implement the chaos genetic algorithm technique, parameters such as the 
population size Psize, the probability of crossover Pc, the probability of mutation Pm, the 
chaos iteration time Tmax and the evolution number of generation Gmax  etc. need to be 
selected. 
 

(2) Generating initial population by chaos optimization. 
 
(3) Calculating fitness value. According to the objective function or the properly transformed 

objective function, the fitness value of individual will be determined. 
 
(4) Selection. The fitness value selection adopts weighted roulette wheel approach, in which 

the probability Pi of an individual i being selected is given by  

   
∑ =

= n

i i

i
i

f
f

p
1

                                                         (15) 

    In order to ensure that good chromosomes have higher chance of being selected for the 
next generation, ranking schemes are always used. Ranking schemes operate by sorting 
the population on the basis of fitness values and then assigning a probability of selection 
based upon the rank. So string with higher fitness has a higher probability of being 
selected. 

 
(5) Crossover. New parent individual are produced by crossover operation. Uniform 

arithmetical crossover is usually used for the floating-point numbers encoding individuals, 
i.e. the offspring individuals are produced by the linear combination of the parent 
individuals. Suppose two parent individuals that have been selected from the ith 
generation population are xiv =( v1, v2, …, vn),xiw = (w1, w2, …, wn ), respectively, 
offspring individuals that are produced by parent individuals are 

,)1()1( iwivvi xxx ∂−+∂=+  iviwwi xxx )1()1( ∂−+∂=+                          (16) 

where ∂  is a constant between 0 and 1. 
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(6) Mutation. According to Eq. (12) and Eq. (13), annealing chaos mutation operation is 

processed according as definitive probability of mutation and generates offspring 
generation. 

 
(7) Termination condition. The algorithm will be stopped, if it arrives at a total generation of 

evolution or the optimum individual does not improve after n iterative search. Or else, 
return to step 3 and go on next time iterative operation. The framework flow chart of 
CGA is described in Fig. 2. 

4. Case study 

Two examples are used to test the performance of the proposed algorithms in this paper. Example 
1 is a famous benchmark test function, example 2 is a case study about hydropower optimization 
scheduling with long term historical inflow.  

4.1 Example 1 

This example investigates the convergence speed and solution accuracy of the proposed approach 
and its performance is compared with that of GA. The optimum searching of the test function does 
not depend on any knowledge of special domain and can be used to illustrate the performance of 
approach clearly. The Rosenbrock function is employed in Eq. (17), 

2
1

2
21 )1()(100min xxxf −+−= ;   048.2048.2 ≤≤− ix , 2,1=i .           (17) 

The global optimum of the Rosenbrock function resides inside a long, narrow, and 
parabolic-shaped flat valley, which is difficult to follow. 
Fig. 3 shows the evolutionary process of iteration. It can be seen that the CGA converges to the 
global optimum speed faster than the classical GA. Its objective function value is better than that 
of the GA.  

4.2 Example 2 

The Chaishitan reservoir, which is located upstream of Nanpan River in the Yunnan province of 
China and the first reservoir of series of power stations of Nanpan River (Fig. 4), with a total 
reservoir storage of 4.37×10

8
 m3 and watershed area of 4556 km2, is selected as a case study. The 

normal and dead levels of the reservoir are 1640.5 m. and 1605.5 m, respectively. Efficiencies 
range from 80% to 90%, and for this study, an average value is chosen, i.e. 85%. The installed 
capacity of the hydropower is 60 MW, with an average annual energy of 1.83×10

8 kWh. 
 

The simulation was done on a monthly basis, with a series of monthly inflow of 38 years. The 
long term average annual energy is calculated by annual power generation maximum, Table 1 lists 
the optimal results of three methods: DP, GA and CGA. The results indicate that the long term 
average annual energy based on CGA is the best and its convergence speed is not only faster than 
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DP largely but also overpasses the standard GA. Results indicate that using chaotic optimization 
improves the quality of individual of initial population and the annealing chaos mutation operation 
can preferably simulate chaotic evolutionary process of biology to improve performance. 

5. Conclusions 

The CGA presented in the paper integrates the advantages of the powerful global searching 
capability of the GA with that of the powerful local searching capability of the COA. Chaos 
optimization of the initialization is adopted to improve species quality, maintain the population 
diversity and finally realize the global optimization. The current optimum value obtained by 
annealing chaotic mutation operation of each generation in the CGA converges to a certain 
individual of the current generation. An exact solution exists in the neighborhood of this individual, 
which brings powerful searching capability of CGA for small space domain into full play, thus 
resulting in a better overall searching capability. The proposed CGA is applied to the global 
optimum of the Rosenbrock function and the optimal operation of hydropower station reservoir. 
The experimental results indicate that the proposed algorithm not only retains the virtue of GA, 
but also can improve the computational efficiency and produce more satisfactory output. 

 
A new annealing chaotic mutation operation is employed in the evolutionary process of GA, and it 
not only avoid the search being easily trapped in a local optimum, but also overcomes the problem 
of slow convergence speed. The proposed CGA is applied to optimal operation of hydropower 
station reservoir. Simulation results demonstrate that the proposed CGA is more feasible and 
effective in searching optimum than the traditional GA.  
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Fig. 1. Dynamics of logistic map 
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Fig. 2. The framework flow chart of CGA 



 15 

Objective value 

40 80 120 160 2000
1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

GA CGA

 

Fig.3. Evolutionary process of iteration. 
 

 
Fig. 4. Location of the Chaishitan Hydropower 

 
Table 1. The results from different optimal methods 

Methods  Design DP  GA  CGA  
The long term average annual energy（108 1.83 kWh） 1.893 1.928 2.039 

 Average execution time（second）  175 14 10 
 

 




