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ABSTRACT 
With the development of computing technology, numerical models are often employed to 
simulate flow and water quality processes in coastal environments. However, the emphasis 
has conventionally been placed on algorithmic procedures to solve specific problems. These 
numerical models, being insufficiently user-friendly, lack knowledge transfers in model 
interpretation. This results in significant constraints on model uses and large gaps between 
model developers and practitioners. It is a difficult task for novice application users to select 
an appropriate numerical model. It is desirable to incorporate the existing heuristic 
knowledge about model manipulation and to furnish intelligent manipulation of calibration 
parameters. The advancement in artificial intelligence (AI) during the past decade rendered it 
possible to integrate the technologies into numerical modelling systems in order to bridge the 
gaps. The objective of this paper is to review the current state-of-the-art of the integration of 
AI into water quality modelling. Algorithms and methods studied include knowledge-based 
system, genetic algorithm, artificial neural network, and fuzzy inference system. These 
techniques can contribute to the integrated model in different aspects and may not be 
mutually exclusive to one another. Some future directions for further development and their 
potentials are explored and presented. 
 
INTRODUCTION 
 
In the analysis of the coastal water process, numerical models are frequently used to simulate 
the flow and water quality problems. The rapid development of numerical models provides a 
large number of models to be used in engineering problems or environmental problems. Up 
to now, a variety of flow and water quality models are available and the techniques become 
quite mature. The numerical technique can be based on finite element method, finite 
difference method, boundary element method, and Eulerian-Lagrangian method. The time-
stepping algorithm can be implicit, explicit or characteristic-based. The shape function can be 
of first order, second order or higher order. The modelling can be simplified into different 
spatial dimensions, i.e., 1-dimensional model, 2-dimensional depth-averaged model, 2-
dimensional layered model, 3-dimensional model, etc [1-8]. The analysis of coastal 
hydraulics and water quality generally involves heuristics and empirical experience and it is 
effected through some simplifications and modelling techniques on the basis of the 
experience of specialists [9]. However, the accuracy of the prediction is to a great extent 
dependent on the accuracy of the open boundary conditions, model parameters used, and the 
numerical scheme adopted [10].  
 
Usually, selecting a suitable numerical model to solve a practical water quality problem is a 
highly specialised task, requiring detailed knowledge on the application and limitation of 
models. Ragas et al. [11] have compared eleven UK and USA water quality models used in 
discharge permitting and found that model selection is a complicated process of matching 
model features with the particular situation. Yet, conventionally, the emphasis has been 
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placed on algorithmic procedures to solve specific coastal problems. These numerical models, 
being insufficiently user-friendly, lack knowledge transfers in model interpretation. This 
results in significant constraints on model uses and large gaps between model developers and 
practitioners. It is a difficult task for novice application users to select an appropriate 
numerical model due to varying factors, such as the water depth, water velocity, grid spacing, 
etc. It is usual that, especially for non-expert users, the length of procedures for model 
manipulation depends largely on their experience. As a result, it is desirable to establish the 
bridge between model developers and application users. Therefore as the design aid or 
training tool for engineers or students, it is necessary to include some features to provide help 
for selections of models. Due to the complexity of the numerical simulation of flow and/or 
water quality, there is an increasing demand to integrate artificial intelligence (AI) with these 
mathematical models in order to assist selection and manipulation. Moreover, the 
development of numerical modelling system reinforces the trend to incorporate more and 
more features based on the advanced computer technology.  
 
Over the past decade, there has been a widespread interest in the field of AI [12-15]. AI 
techniques have rendered it possible to simulate human expertise in narrowly defined domain 
during the problem-solving by integrating descriptive knowledge, procedural knowledge, and 
reasoning knowledge. The advance in AI techniques allow the development of these 
intelligent management systems by employing some shells under the established development 
platforms such as MathLab, Visual Basic, C++, etc. Hence it is extremely important and 
timely to review and evaluate the state-of-the-art on its application to water quality modelling. 
In this paper, the development and current progress of integration of AI into water quality 
modelling are reviewed. 
 
NEED TO INTEGRATE WITH ARTIFICIAL INTELLIGENCE 
 
In the following section, the need for the integration of artificial intelligence into 
hydrodynamic and water quality modelling is explained in terms of the existing problems, 
reasons and tendency. 
 
Problems in Numerical Modelling 
 
Numerical modelling can be delineated as a process that transforms knowledge regarding 
physical phenomena into digital formats, simulates for the behaviours, and translates the 
numerical results back to a comprehensible knowledge format [16]. However, an inherent 
problem in modelling is the requirement of model manipulation, particularly during the set-
up of the model, since a slight change of the parameters may lead to quite different results. 
Knowledge of model manipulation includes real physical observations, the mathematical 
description of water movement or water quality, the discretization of governing equations for 
physical and chemical processes, schemes to solve the discretized equations effectively and 
accurately, and output analysis. Experienced modellers can determine a model failure based 
on the comparison of the simulated results with real data as well as a heuristic judgement of 
the key environmental behaviour. The knowledge mentioned above may be used 
unconsciously. However, many model users do not possess the requisite knowledge to glean 
their input data, build algorithmic models and evaluate their results. This may produce 
inferior design and cause under-utilization, or even total failure, of these models. 
 
Reasons for Integration with AI 
 



 3

The ultimate goal of model manipulation in coastal engineering is to acquire satisfactory 
simulation. However, since a computer is used and the memory and speed of a computer are 
often limited, a balance should be struck between the modelling accuracy and speed. It is 
noticeable that modellers usually keep certain fundamental parameters unchanged during the 
manipulation process. For instance, when researchers were used to two-dimensional coastal 
modelling, they varied only the bottom friction coefficient [17]. In water quality modelling, 
Baird and Whitelaw [18] reported that the algal behaviour was related intimately to both its 
respiration rate and the water temperature. Model users will consider sunlight intensity 
variation within the water column when simulating the eutrophication phenomenon [19]. 
These examples reflect that human intelligence uses existing knowledge to reduce the number 
of choices in order to raise the effectiveness of model manipulation. Each time, they tend to 
alter merely one or two parameters. This is because if they modify many parameters at the 
same time, they may easily get lost in the manipulation direction. To this end, AI techniques 
are capable to mimic this behaviour as well as to complement the deficiency.  
 
Tendency in Modelling 
 
Abbott [20] and Cunge [21] introduced the notion of “generations” of modelling to describe 
the trend of development. The third generation modelling, being a system to solve specific 
domain problems, can only be apprehended by the modeller and special users well trained 
over a long period. It has incorporated very few features to facilitate other users and for other 
problems. Typical examples are some sophisticated 2-dimensional or 3-dimensional finite 
difference numerical models on tidal flow and on a particular water quality phenomenon 
[4,17,19]. The fourth generation modelling has become much more useful to a much wider 
range of end-users, by furnishing menu of parameter specification, automatic grid formation, 
pre-processing and post-processing features, and features of management of real collected 
data for modelling, etc. These tools act as intelligent front-ends to support the handling of the 
simulation models for specific hydrological or water quality problems [22-23]. Yet they do 
not address the core problem of knowledge elicitation and transfer [24]. Ragas et al. [11] 
suggested, though they did not actually implement, the development of an expert system for 
model selection in order to deal with uncertainty in model predictions, after compared a 
number of UK and USA models. Nowadays, the fifth generation modelling system [20,24,25] 
is acknowledged to have the features of integrating AI technology and computational 
hydrodynamics into a single system to furnish assistance for non-experienced user.  
 
INTEGRATION WITH ARTIFICIAL INTELLIGENCE 
 
The information revolution during the last decade has fundamentally altered the traditional 
water quality planning, modelling, and decision-making methodologies. Furthermore, the 
general availability of sophisticated personal computers with ever-expanding capabilities has 
given rise to an increasing complexity in terms of computational ability in the storage, 
retrieval, and manipulation of information flows. With the recent advancements in AI 
technology, there is an increasing demand for a more integrated approach in addition to the 
need for better models. Justification for this claim comes from relatively low utilization of 
models in the industry when compared to the number of reported and improved models. It is 
expected that this enhanced capability will both increase the value of the decision-making 
tool to the users and expedite the water quality planning and control process. Table 1 lists the 
categorization and application of the algorithms studied here including knowledge-based 
system, genetic algorithm, artificial neural network, and fuzzy inference system. It can be 
observed that these techniques can contribute to the integrated model in different aspects and 
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may not be mutually exclusive to one another. 
 
Knowledge-based systems (KBSs) 
 
KBSs are interactive computer programs that mimic and automate the decision making and 
reasoning processes of human experts in solving a specific domain problem, through 
delivering expert advice, answering questions, and justifying their conclusions. The 
schematic view of a typical KBS is shown in Figure 1. The knowledge base is a collection of 
general facts, rules of thumb, and causal models of the behaviour specific to the problem 
domain. The inference mechanism guides the decision making process by using the 
knowledge base to manipulate the context. The context contains facts that reflect the current 
state of the problem, constructed dynamically by the inference mechanism from the 
information provided by the user and the knowledge base. The knowledge acquisition module 
serves as an interface between the experts and the KBS and provides a means for entering 
domain specific knowledge into the knowledge base. The user interface is responsible for 
translating the interactive input as specified by the user to the form used by the KBS. The 
explanation module provides explanations of the inferences used by the KBS, namely, why a 
certain fact is requested and how a conclusion was reached. During the past decade, the 
potential of AI techniques for providing assistance in the solution of engineering problems 
has been recognized. KBSs are considered suitable for solving problems that demand 
considerable expertise, judgment or rules of thumb. KBSs have widespread applications in 
different fields and are able to accomplish a level of performance comparable to that of a 
human expert [26,27]. 
 
Recently, some literatures about study into the feasibility of integrating KBS with the 
numerical modelling can be found [28-29]. Most of this kind of the fifth generation numerical 
modelling system in coastal area only refers to a one-dimensional modelling system for river 
network or river planning due to the simplicity of knowledge and selection procedure. Chau 
and Yang [13] implemented an integrated expert system for fluvial hydrodynamics. Jamieson 
and Fedra [30] developed a decision-support system for efficient river basin planning and 
management. Ghosh Bobba et al. [31] applied environmental models through an intelligent 
system to different hydrological systems. Booty et al. [32] presented the design and 
implementation of an environmental decision support system for toxic chemicals in the Great 
Lakes using spatial algorithms, models, statistics, KBSs, and other information technologies. 
These works are, however, limited to one-dimensional modelling systems, and represent only 
a minute portion of knowledge in this field. Their knowledge bases include heuristic rules for 
model selection but not for model manipulation. However, even for that simplest case, the 
symbolic programming for the knowledge representation and selection procedure required 
enormous effort. For two or three-dimensional modelling, the integration of KBS and 
problem solution in a single system will become much more complex. The basic requirement 
is that the system should be able to provide expert advice on selection of the most appropriate 
model as well as the entailed model parameters under that particular scenario. Since the 
numerical modelling programs have often been developed in some traditional programming 
languages such as Fortran, Pascal, C, etc., it is considered not cost-effective to re-write and 
replace these well-proven and validated programs whose development involved long hours of 
concerted effort. 
 
To introduce the KBS technology into the modelling system is a method to make the system 
capable of providing advice to parameter selection or model selection, and to make the 
system to have the intelligent features of “usage wizard” if the program is written in some 
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embedded forms of code. The architecture of a prototype integrated system [33] is shown in 
Figure 2. The expert system shell, Visual Rule Studio [34], which runs as an ActiveX 
Designer under the windows-based programming language environment Microsoft Visual 
Basic 6.0, was employed. Visual Rule Studio is a hybrid expert system shell that couples the 
advantage of both production rules and objected programming paradigm. All the usual 
control objects of the common interface under Windows environments such as command 
button, picture box, etc., are furnished. 
 
Genetic algorithms (GAs) 
 
GAs belong to the class of stochastic search procedures known as evolutionary algorithms 
that use computational models of natural evolutionary processes in developing computer-
based problem solving systems [35]. This form of search evolves throughout generations by 
improving the features of potential solutions. GAs, being search techniques based on the 
mechanism of natural genetics and biologically-inspired operations, can be employed as an 
optimization method so as to minimize or maximize an objective function. They apply the 
concept on the artificial survival of the fittest coupled with a structured information exchange 
using randomized genetic operators taken from the nature to compose an efficient search 
mechanism. GAs work in an iterative fashion to generate and test a population of strings. 
This process mimics a natural population of biological creatures where successive 
generations of creatures are conceived, born, and raised until they are ready to reproduce.  
 
GAs are not limited by assumptions about search space, such as continuity or existence of 
derivatives. Through a variety of operations to generate an enhanced population of strings 
from an old population, GAs exploit useful information subsumed in a population of 
solutions. Various genetic operators that have been identified and used in GAs include, 
namely, crossover, deletion, dominance, intra-chromosomal duplication, inversion, migration, 
mutation, selection, segregation, sharing, and translocation. A variety of applications has 
been presented since the early works and GAs have clearly demonstrated their capability to 
yield good solutions even in cases of highly complex, multiple-parameter problems [36-37].  
 
In mathematical simulation for flow prediction and water quality management, the 
inappropriate use of any model parameters, which cannot be directly acquired from 
measurements, may introduce large errors or result in numerical instability. GA can be used 
to determine an appropriate combination of parameter values in this domain. The percentage 
error of peak value, peak time, and total volume of flow and water quality constituents are 
important performance measures for model prediction. The parameter calibration is based on 
field data of tidal as well as water quality constituents collected over several years’ span with 
other years’ records to verify these parameters. Sensitivity analysis on crossover probability, 
mutation probability, population size, and maximum number of generations can be performed 
to determine the most befitting algorithm parameters. Moreover, GAs can be applied to the 
evolution of models with more transparent knowledge representations, which facilitates 
understanding of model predictions and model behaviour. It may also help in determining the 
patterns, regularities and relationships, which exist and drive a certain phenomenon, such as 
algal abundance. Bobbin and Recknagel [38] established inducing explanatory rules for the 
prediction of algal blooms by GA. Ng and Perera [39] employed GA for calibration of river 
water quality model. Cho et al. [40] used GA to optimize regional wastewater treatment in a 
river water quality management model. Chau [41] implemented GA to calibrate flow and 
water quality modelling and the results demonstrated that its application was able to mimic 
the key features of the flow and water quality process and that the calibration of models was 
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efficient and robust. Yet, up to now, a comprehensive investigation on the application of GA 
on flow and water quality modeling is still outstanding. 
 
Artificial neural networks (ANNs) 
 
ANNs are based on our present understanding of the brain and its associated nervous systems. 
They use highly simplified models composed of many processing elements connected by 
links of variable weights to form black box representations of systems [42]. Figure 3 shows 
the architecture of a typical ANN comprising three layers of interconnected nodes or neurons, 
each of which is connected to all the neurons in the ensuing layer. An input layer is the layer 
where data are presented to the neural network whilst an output layer holds the response of 
the network to the input. One or more intermediate layers, termed hidden layers, may exist 
between the input layer and the output layer, in order to enable these networks to represent 
and compute complicated associations between patterns. All hidden and output neurons 
process their inputs by multiplying each input by its weight, summing the product, and then 
processing the sum using a nonlinear transfer function to generate a result. Amongst others, 
the S-shaped sigmoid curve is one of the most commonly used transfer functions [43].  
 
These models have the ability to deal with a great deal of information and to learn complex 
model functions from examples, i.e. by training using sets of input and output data. The 
greatest advantage of ANNs over other modelling techniques is their capability to model 
complex, non-linear processes without having to assume the form of the relationship between 
input and output variables. Learning in ANNs involves adjusting the weights of 
interconnections. Areas addressed by ANN techniques include pattern matching, 
combinatorial optimization, data compression, and function optimization. As a developing 
and promising technology, the capability of an ANN to cope with uncertainty in complex 
situations has been seized upon for wide ranging applications in recent years [44-45].  
 
ANNs have found application in water quality modelling [46, 47]. Kralisch et al. [48] 
employed an ANN approach for the optimization of watershed management to maintain a 
reasonable balance between water quality demand and consequent restrictions for the farming 
industry. Maier et al. [49] used ANNs to predict optimal alum doses and treated water quality 
parameters. However, most of the studies were undertaken for limnological systems [50-53] 
or riverine systems [54-55] whilst report on ANN modelling of a coastal system has been 
very scarce [56]. Moreover, in most of the studies, the effectiveness of ANN as a predictive 
tool has not been fully addressed. For example, the water quality dynamics at the current time 
were often linked via the model with other environmental variables at the same time, which 
rendered them useless in real prediction. Most of them employed almost all possible 
environmental parameters as input variables without considering the optimal choice amongst 
them. Moreover, insufficient attention has been given to extract some knowledge from the 
learning process. Thus, a lot of works can be further pursued in the application of this 
technique to this domain problem. 
 
Fuzzy inference systems 
 
Zadeh et al. [57] pioneered the development of fuzzy logic, which is very useful in modelling 
complex and imprecise systems. Under the fuzzy set theory, elements of a fuzzy set are 
mapped to a universe of membership values using a function-theoretic form belonging to the 
close interval from 0 to 1. An important step in applying fuzzy methods is the assessment of 
the membership function of a variable, which parallels the estimation of probability in 
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stochastic models. Membership functions in fuzzy set theory, which are appropriate for 
modelling preferences of the decision maker, can be obtained on the basis of the actual 
statistical surveys. The fuzzy logic based modelling is a simple approach, which operates on 
an ‘if-then’ principle, where ‘if’ is a vector of fuzzy explanatory variables or premises in the 
form of fuzzy sets with membership functions and the ‘then’ is a consequence also in the 
form of fuzzy set.  
 
An optimization problem, in general, is expressed as a formulation maximizing or 
minimizing an objective under a set of constraints. If the objective or the constraints are 
vague, then the problem can be referred to as a fuzzy optimization problem. Fuzzy logic has 
been used in a number of applications but generally as a refinement to conventional 
optimization techniques in which the usual crisp objective and some or all of the constraints 
are replaced by the fuzzy constraints [36,58].  
 
Fuzzy set theory concepts can be useful in water quality modelling, as they can provide an 
alternative approach to deal with those problems in which the objectives and constraints are 
not well defined or information about them is not precise. Chang et al. [59] used the fuzzy 
synthetic evaluation approach to identify river water quality. Chen and Mynett [60] employed 
data mining techniques and heuristic knowledge in modelling the fuzzy logic of 
eutrophication in Taihu Lake. Liou et al. [61] applied two-stage fuzzy set theory to river 
quality evaluation in Taiwan. Marsili-Libelli [62] described the design of a bloom predictor 
based on the daily fluctuations of simple water quality parameters such as dissolved oxygen, 
oxidation–reduction potential, pH and temperature. Individual applications of this technique 
have been recorded in an isolated manner. Moreover, most of the studies were undertaken for 
fresh water riverine systems whilst application to a coastal system has been very scarce. 
Much more efforts can be performed in order to stretch its full application in this area. 
 
FUTURE DIRECTIONS 
 
One of the promising directions is the hybrid combinations of two or more of the above 
methods to produce an even more versatile water quality modelling system. Moreover, 
progresses in AI are made in parallel in two areas: basic capabilities of tools; and, real 
applications in solving water quality problems. Research is currently underway in developing 
better AI tools, which may have capabilities to furnish better knowledge representational 
schemes, alternative inference techniques, and alternative mechanisms for addressing 
uncertain or incomplete data. Better and more user-friendly interfaces to database 
management systems, graphical displays, and knowledge acquisition modules will enhance 
the applicability of modelling systems in real practice. Since prototype systems are being 
developed under this context, demands for better AI tools will be increased, which may in 
turn lead to better techniques for applying AI technology. More importantly, the prototype 
systems will be moving out of the laboratory and into real practice. Continued work will 
enhance the technology and applications of AI in water quality modelling. 
 
CONCLUSIONS 
 
Existing water quality models are insufficiently user-friendly and often result in significant 
constraints on their uses. It is a difficult task for novice application users to select an 
appropriate numerical model. As such, it is instrumental to incorporate the existing heuristic 
knowledge of model manipulation and to furnish intelligent manipulation of calibration 
parameters. The recent advancement in AI technologies provides a way to bridge the existing 
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gap between the model developer and practitioner. This study has reviewed the current state-
of-the-art and progress on the integration of AI into water quality modelling. Attempts on the 
integration of various AI technologies, including KBS, GA, ANN, and fuzzy inference 
system, into numerical modelling systems have been found. These techniques can contribute 
to the integrated model in different aspects and may not be mutually exclusive to one another. 
This can provide substantial assistance to novice users of these algorithmic models to 
determine whether or not digital sets generated by numerical modelling represent real 
phenomena. Some future directions for further development and their potentials are explored 
and presented. It is believed, with the ever heightening capability of AI technologies, that 
further development of numerical modelling in this direction will be promising. 
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Figure 1. Schematic view of a typical KBS 
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Figure 2 Architecture of a prototype KBS on manipulation of numerical flow and water 

quality model [32] 
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Table 1. Categorization of various AI techniques 

 

Technique Algorithm Domain Applications in water 
quality/hydrodynamics 

Knowledge-
based systems 

symbolic and logical 
reasoning 

mimic and automate 
the decision making 
and reasoning 
processes of human 
experts in solving 
problem 

selection and 
manipulation of 
various numerical 
models on 
hydrodynamics/water 
quality 

Genetic 
algorithms 

evolutionary algorithm 
using selection, 
reproduction, 
crossover, mutation 

use computational 
models of natural 
evolutionary processes 
in developing 
computer-based 
problem solving 
systems 

optimization of  
calibration of the 
parameters of 
numerical models on 
hydrodynamics/water 
quality 

Artificial neural 
networks 

data driven modelling 
approach with highly 
interconnected 
processing elements 

constitute an 
information-processing 
paradigm that is 
inspired by biological 
nervous systems in 
simulating underlying 
relationships that are 
not fully understood 

1. determination of 
underlying physical/ 
biological relationships 
that are not fully 
understood 
2. optimized 
calibration of the 
parameters of 
numerical models on 
hydrodynamics/water 
quality 

Fuzzy inference 
systems 

map elements of a 
fuzzy set to a universe 
of membership values  

modelling complex 
and imprecise systems 
when objective or the 
constraints are vague 
using a function-
theoretic membership 
form belonging to the 
close interval from 0 to 
1 

quantification of the 
semantemes of the 
expertise and 
determine the 
confidence factors of 
the semantemes 

 




