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Abstract 
An accurate water stage prediction allows the pertinent authority to issue a forewarning of the 
impending flood and to implement early evacuation measures when required. Existing 
methods including rainfall-runoff modeling or statistical techniques entail exogenous input 
together with a number of assumptions. The use of artificial neural networks (ANN) has been 
shown to be a cost-effective technique. But their training, usually with back-propagation 
algorithm or other gradient algorithms, is featured with certain drawbacks such as very slow 
convergence and easy entrapment in a local minimum. In this paper, a particle swarm 
optimization model is adopted to train perceptrons. The approach is applied to predict water 
levels in Shing Mun River of Hong Kong with different lead times on the basis of the 
upstream gauging stations or stage/time history at the specific station. It is shown that the 
PSO technique can act as an alternative training algorithm for ANNs. 
 
Introduction 
 
Flooding is a type of natural disaster that has been occurring, but can only be mitigated rather 
than completely solved. Prediction of river stages becomes an important research topic in 
hydrologic engineering. An accurate water stage prediction allows the pertinent authority to 
issue a forewarning of the impending flood and to implement early evacuation measures 
when required. Currently, environmental prediction and modeling includes a variety of 
approaches, such as rainfall-runoff modeling or statistical techniques such as autoregressive 
moving-average models (Box et al., 1976), which entail exogenous input together with a 
number of assumptions. Conventional numerical modeling addresses the physical problem by 
solving a highly coupled, non-linear, partial differential equation set. However, physical 
processes affecting flooding occurrence are highly complex and uncertain, and are difficult to 
be captured in some form of deterministic or statistical model. 
 
During the past decade, artificial neural networks (ANNs), and in particular, feed forward 
backward propagation perceptrons, were widely applied in different fields (Chau and Cheng, 
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2002). It was claimed that the multi-layer perceptrons can be trained with non-linear transfers 
to approximate and accurately generalize virtually any smooth, measurable function whilst 
taking no prior assumptions concerning the data distribution (Rumelhart et al., 1986). Several 
characteristics, including built-in dynamism in forecasting, data-error tolerance, and lack of 
requirements of any exogenous input, render ANNs attractive for use in river stage prediction 
in hydrologic engineering. Thirumalaiah and Deo (1998) depicted the use of a conjugate 
gradient ANN in real-time forecasting of water levels, with verification of untrained data. 
Liong et al. (2000) demonstrated that a feed forward ANN is a highly suitable flow prediction 
tool yielding a very high degree of water level prediction accuracy in Bangladesh. Luk et al. 
(2000) studied optimal model lag and spatial inputs to artificial neural network for rainfall 
forecasting. Lekkas et al. (2001) compared ANNs with transfer functions in a flow routing 
application. Balkhair (2002) determined aquifer parameters for large diameter wells using 
neural network approach. Bazartseren et al. (2003) showed that both ANN and neuro-fuzzy 
systems outperformed the linear statistical models for short-term water level predictions on 
two different river reaches in Germany. Riad et al. (2004) developed and used a multilayer 
perceptron ANN to model the rainfall-runoff relationship, in a catchment located in a 
semiarid climate in Morocco. Sarangi and Bhattacharya (2005) compared several ANN and 
regression models for sediment loss prediction from Banha watershed in India. Although the 
back propagation (BP) algorithm is commonly used in recent years to perform the training 
task, some drawbacks are often encountered in the use of this gradient-based method. They 
include: the training convergence speed is very slow and easy entrapment in a local minimum. 
Haykin (1999) discussed several data-driven optimization training algorithms, such as 
Levenberg-Marquardt algorithm and scaled conjugate gradient algorithm, which may 
overcome these drawbacks. Rogers et al. (1995) used the genetic algorithm for optimal 
field-scale groundwater remediation together with ANN. Kumar et al. (2004) employed the 
Bayesian regularization for neural network training in order to improve the performance in 
pulse radar detection. The PSO technique can act as an alternative training algorithm for 
ANNs that can be used for hydrologic applications. 
 
Particle swarm optimization (PSO) algorithm, with capability to optimize complex numerical 
functions, is initially developed as a tool for modeling social behavior (Kennedy and Eberhart, 
1995 and Kennedy, 1997). Moreover, it is recognized as an evolutionary technique under the 
domain of computational intelligence (Clerc and Kennedy, 2002). In this paper, a PSO-based 
neural network approach for river stage prediction is developed by adopting PSO to train 
multi-layer perceptrons. It is then used to predict real-time water levels in the Shing Mun 
River of Hong Kong with different lead times on the basis of the upstream gauging stations or 
stage/time history at the specific station. 
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A multi-layer feed-forward perceptron represents a nonlinear mapping between input vector 
and output vector through a system of simple interconnected neurons to every node in the 
next and previous layer (Rumelhart et al., 1986). The output of a neuron is scaled by the 
connecting weight and fed forward to become an input through a nonlinear activation 
function to the neurons in the next layer of network. In the course of training, the perceptron 
is repeatedly presented with the training data. The weights in the network are then adjusted 
until the errors between the target and the predicted outputs are small enough, or a 
pre-determined number of epochs is passed. The perceptron is then validated by an input 
vector not belonging to the training pairs. The training processes of ANN are usually 
complex and high dimensional problems.  
 
Particle Swarm Optimization (PSO) 
 
Lying somewhere between evolutionary programming and genetic algorithms, PSO is an 
optimization paradigm that mimics the ability of human societies to process knowledge. It 
has roots in two main component methodologies: artificial life (such as bird flocking, fish 
schooling and swarming); and, evolutionary computation (Clerc and Kennedy, 2002). 
 
PSO Algorithm 
The principle of PSO algorithm is founded on the assumption that potential solutions will be 
flown through hyperspace with acceleration towards more optimum solutions. It is a 
populated search method for optimization of nonlinear functions resembling the movement of 
organisms in a bird flock or fish school. Candidate solutions to the problem are termed 
particles or individuals. Instead of employing genetic operators, the evolution of generations 
of a population of these individuals in such a system is by cooperation and competition 
among the individuals themselves. In essence, each particle adjusts its flying based on the 
flying experiences of both itself and its companions. During the process, it keeps track of its 
coordinates in hyperspace which are associated with its previous best fitness solution, and 
also of its counterpart corresponding to the overall best value acquired thus far by any other 
particle in the population.  
 
In the algorithm, vectors are taken as representation of particles since most optimization 
problems are convenient for such variable presentations. The population is responding to the 
quality factors of the previous best individual values and the previous best group values. The 
allocation of responses between the individual and group values ensures a diversity of 
response. Its major advantages are the relatively simple and computationally inexpensive 
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coding and its adaptability corresponding to the change of the best group value. The 
stochastic PSO algorithm has been found to be able to find the global optimum with a large 
probability and high convergence rate (Clerc and Kennedy, 2002). Hence, it is adopted to 
train the multi-layer perceptrons, within which matrices learning problems are dealt with. 
 
Adaptation to Network Training 
A three-layered preceptron is chosen for this application case. Here, W[1] and W[2] represent 
the connection weight matrix between the input layer and the hidden layer, and that between 
the hidden layer and the output layer, respectively. When a PSO is employed to train the 
multi-layer preceptrons, the i-th particle is denoted by 

},{ ]2[]1[
iii WWW =  

(1)

 
The position representing the previous best fitness value of any particle is recorded and 
denoted by 

},{ ]2[]1[
iii PPP =  

(2)

 
If, among all the particles in the current population, the index of the best particle is 
represented by the symbol b, then the best matrix is denoted by 

},{ ]2[]1[
bbb PPP =  

(3)

 
The velocity of particle i is denoted by 

},{ ]2[]1[
iii VVV =  

(4)

 
If m and n represent the index of matrix row and column, respectively, the manipulation of 
the particles are as follows 
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where j = 1, 2; m = 1, …, Mj; n= 1, …, Nj; Mj and Nj are the row and column sizes of the 
matrices W, P, and V; r and s are positive constants; α and β are random numbers in the 
range from 0 to 1; t is the time step between observations and is often taken as unity; V” and 
W” represent the new values. Equation (5) is employed to compute the new velocity of the 
particle based on its previous velocity and the distances of its current position from the best 
experiences both in its own and as a group. In the context of the social behavior, the 
cognition part, i.e., the second element on the right hand side of equation (5), represents the 
private thinking of the particle itself whilst the social part, i.e., the third element on the right 
hand side of equation (5), denotes the collaboration among the particles as a group. Equation 
(6) then determines the new position according to the new velocity. 
 
The fitness of the i-th particle is expressed in term of an output mean squared error of the 
neural networks as follows 

∑ ∑
= =
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where f is the fitness value, tkl is the target output; pkl is the predicted output based on Wi; S is 
the number of training set samples; and, O is the number of output neurons. 
 
The Study Area 
 
The model is applied to study the potential flood hazards in the Shing Mun River network, 
Hong Kong. Details regarding the location map of the Shing Mun River and its tributary 
nullahs can be found in Chau and Lee (1991a and 1991b) and Chau and Chen (2001). The 
main conveyance channel is of trapezoidal shape with side slope of 1 in 1.5 along most length. 
The three minor streams, i.e., the Tin Sam, Fo Tan and Siu Lek Yuen nullahs, form tributaries 
of the river. Surface water from an extensive catchment with an area of approximately 5200 
ha flows into Sha Tin Hoi via the Shing Mun River. The maximum daily runoff as a 
percentage of the annual flow is typically less than 5% (Chau and Lee, 1991a & 1991b).  
 
In this study, water levels at Fo Tan are forecasted with a lead time of 1 and 2 days based on 
the measured daily levels there and at the upstream station (Tin Sam) with a distance about 2 
km apart. The data available at these locations pertain to continuous stages from 1999 to 2002, 
in the form of daily water levels. The first two years’ data are used for training whilst the 
final year data are used to validate the network results. It is ensured that the data series 
chosen for training and validation comprised both high and low discharge periods of the year 
and also rapid changes in water stages. 
 
Two separate models are developed. The perceptron has an input layer with one neuron, a 
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hidden layer with three neurons, and output layer with one neuron. Similar to Thirumalaiah 
and Deo (1998), the input neuron represents the water stage at the current day whilst the 
output node denotes the water stage after 1 day or 2 days. This approach is found to improve 
the results than its counterpart when the output layer has two neurons with both 1-day and 
2-days ahead forecast. During the training stage, the single input neuron represents time 
series information of water stages. The number of nodes in the hidden layer is set by trial and 
error during the course of training to whatever size leads to the most accurate predictions.  
 
20,000 training epochs are adopted as the stopping criteria. The sigmoid function is adopted 
at the hidden and output nodes. All source data are normalized into the range between 0 and 1, 
by using the maximum and minimum values of the variable over the whole data sets. In the 
PSO-based perceptron, the number of population is set to be 40 whilst the maximum and 
minimum velocity values are 0.25 and -0.25 respectively. These values are obtained by trial 
and error. In order to evaluate the performance of the model in longer-term forecast, a third 
model with 7-days ahead forecast is also tried. 
 
Results and Discussions 
 
The PSO-based multi-layer ANN is evaluated along with a commonly used standard 
BP-based network. In order to furnish a comparable initial state, the training process of the 
BP-based perceptron commences from the best initial population of the corresponding 
PSO-based perceptron. Three goodness-of-fit measures, namely, the coefficient of efficiency 
(R2), which is 1 – the sum of squared errors divided by the total sum of squares, root mean 
squared error (RMSE) and mean relative error (MRE) are adopted to evaluate the model 
performance. Table 1 and Table 2 show comparisons of the results of network for the two 
different perceptrons based on data at the same station and at different station, respectively. It 
can be observed that the PSO-based perceptron exhibits better performance in the training 
process as well as better prediction ability in the validation process than those by the 
BP-based perceptron. Moreover, forecasting at Fo Tan made by using the data collected at the 
upstream station (Tin Sam) is generally better compared to the data collected at the same 
location. This can possibly be explained by the lead time required for the flow to travel from 
upstream section to downstream section and the correlation between the water stages at the 
two locations. 
 
Conclusions 
 
This paper presents a PSO-based perceptron approach for real-time prediction of water stage 
in a river with different lead times on the basis of the upstream gauging stations or stage/time 
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history at the specific station. It is shown from the training and verification simulation that 
the water stage prediction results are more accurate when compared with the commonly used 
BP-based perceptron. Moreover, forecasting at Fo Tan made by using the data collected at the 
upstream station is generally better compared to the data collected at the same location. The 
initial result shows that the PSO technique can act as an alternative training algorithm for 
ANNs that can be used for hydrologic applications. Since it might not be able to draw 
concrete conclusions from this pilot study, more rigorous testing on more complex problems 
will be performed in future works. 
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Table 1. Results for forecasting at Fo Tan based on data at the same station 

 

Training Validation 
Goodness-of-fit Measure 

 
Algorithm 

Lead 
time 

(days) R2 RMSE MRE R2 RMSE MRE 
 1 0.96 0.16 0.09 0.96 0.21 0.12 
BP-based 2 0.93 0.24 0.15 0.92 0.29 0.24 
 7 0.89 0.35 0.27 0.88 0.43 0.38 
 1 0.99 0.08 0.04 0.99 0.12 0.06 
PSO-based 2 0.99 0.14 0.07 0.98 0.16 0.09 
 7 0.95 0.25 0.18 0.92 0.32 0.21 
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Table 2. Results for forecasting at Fo Tan based on data at Tin Sam (upstream of Fo Tan) 

 

Training Validation 
Goodness-of-fit Measure  

 
Algorithm 

Lead 
time 

(days) R2 RMSE MRE R2 RMSE MRE 
 1 0.97 0.14 0.07 0.96 0.16 0.10 
BP-based 2 0.94 0.21 0.12 0.93 0.24 0.20 
 7 0.91 0.30 0.22 0.89 0.41 0.32 
 1 0.99 0.07 0.04 0.99 0.09 0.05 
PSO-based 2 0.99 0.11 0.06 0.98 0.14 0.08 
 7 0.96 0.22 0.16 0.93 0.29 0.18 
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