
Journal of Hydrology, Vol. 316, No. 1-4, 2006, pp. 129-140 
 

Using genetic algorithm and TOPSIS for Xinanjing model calibration with a single 
procedure 

Chun-Tian Cheng*,1, Ming-Yan Zhao1, K.W. Chau2, Xin-Yu Wu1 

1Department of Civil Engineering, Dalian University of Technology, Dalian, 116024, P.R. China 
2Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, 

Kowloon, Hong Kong 

 
Abstract 
Genetic Algorithm (GA) is globally oriented in searching and thus useful in optimizing 
multiobjective problems, especially where the objective functions are ill-defined. 
Conceptual rainfall-runoff models that aim at predicting streamflow from the knowledge of 
precipitation over a catchment have become a basic tool for flood forecasting. The 
parameter calibration of a conceptual model usually involves the multiple criteria for 
judging the performances of observed data. However, it is often difficult to derive all 
objective functions for the parameter calibration problem of a conceptual model. Thus, a 
new framework to the multiple criteria parameter calibration problem, which combines GA 
with TOPSIS (technique for order performance by similarity to ideal solution) for 
Xinanjiang model, is presented. The current method integrates the two parts of Xinanjiang 
rainfall-runoff model calibration together, simplifying the procedures of model calibration 
and validation and easily demonstrating the intrinsic phenomenon of observed data in 
integrity. Comparing results with two-step procedure show that the current methodology is 
also feasible and robust, but simpler and easier to be applied in practice. 
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Introduction  

Every system, even the most complicated one, can be modeled if its behavior is fully 
known and understood. However the current knowledge of the flood is still not sufficient to 
create a full model of its behavior. The rainfall-runoff process is very complex considering 
the space-time variability of rainfall, soil moisture, and evapotranspiration. Other relevant 
factors involved include land use, vegetation cover, land and channel slopes, and soil 
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drainage properties. The lack of adequate data and model imperfections has been found to 
limit the application of models for flood forecast. Conceptual rainfall-runoff models 
(CRRMS) aiming at predicting streamflow from the knowledge of precipitation over a 
catchment have become basic tools for flood forecasting. These models permit calculation 
of the runoff generated by precipitation events by simulating the physical processes that 
affect the movement of water over and through the soil. The accuracy of these calculations 
depends both on the structure of the model and on how the relevant parameters are defined. 
CRRMS generally have a large number of parameters, which cannot be directly obtained 
from measurable quantities of catchment characteristics, and hence model calibration is 
entailed. The ultimate purpose of the calibration is to determine the values of the 
parameters of the CRRM so that the model simulates the hydrological behavior of the 
catchment as closely as possible. 

The process of model calibration is normally performed either manually or by using 
computer-based automatic procedures. The process of manual calibration is a very tedious 
and time consuming task. In this method, because of the involved subjectivity, it is difficult 
to explicitly assess the confidence of the model simulations. Due to this, a great deal of 
research has been directed to development of automatic calibration procedures (e.g., Gupta 
and Sorooshian, 1985). Research into optimization methods had led to the use of 
population-evolution based optimization algorithms such as genetic algorithms (Wang, 
1991, 1997), shuffled complex evolution algorithm (Duan et al., 1992, 1994) and simulated 
annealing (Sumner et al., 1997). 

On the other hand, calibration based on a single objective function is often inadequate 
to simulate all the important characteristics of the observed data. Recently, automatic 
routines that use a multi-objective formulation of the calibration problem have been 
introduced in rainfall-runoff modeling (Lindström, 1997; Liong et al., 1996, 1998; Gupta et 
al., 1998; Yapo et al., 1998; Madsen, 2000; Boyle et al., 2000; Cheng et al., 2002). 

Genetic algorithm is a global search technique, modeled after the process of natural 
selection, which can be used to find near optimal solutions to highly nonlinear optimization 
problems. It has become one of the most widely used techniques for solving a number of 
hydrology and water resources problems (Wang, 1997; Ritzel and Wayland Eheart, 1994; 
Franchini, 1996; Franchini and Galeati, 1997; Savic et al., 1999; Vasques et al., 2000; 
Sharif and Wardlaw, 2000; Khu et al., 2001; Cheng et al., 2002). Recently, Cheng et al. 
(2002) presented a new methodology that calibrates the Xinanjiang model parameters with 
multiple objectives through dealing with water balance and runoff routing respectively. The 
method adopts a two-step procedure to calibrate parameters, especially requiring 
preprocessing and adjustment of the pure precipitation values in each time interval in order 
to eliminate the errors between the observed and simulated water balance for each flood 
event before the runoff routing calibration procedure. Its obvious disadvantages are to split 
the whole procedure into two parts and difficult to grasp the best behaviors of model during 
calibration procedure in integrity.  

In this paper we propose a new framework for automatic calibration of a conceptual 
rainfall-runoff model. In comparison with the previous method presented in the paper 
(Cheng et al., 2002), the parameter calibration and validation in the current methodology is 
an integral procedure without splitting into two parts:  the water balance and runoff 



routing. TOPSIS (technique evaluation adopts for order performance by similarity to ideal 
solution), which was first developed by Hwang and Yoon (1981) for solving a multiple 
criteria decision making problem, was adopted to evaluate and select the most-fit 
chromosomes to mate and reproduce according to the ranking order of all chromosomes. 
Except of initial set of parameter values, integral calibration and validation procedures are 
automatically performed. This paper is organized as follows. The steps in the estimation 
process, including model parameterisation and choice of calibration parameters, the 
calibration criteria and the optimization algorithm are first presented. A test example is 
presented and comparison is made with the two-step procedure. 
The model parameterisation and choice of calibration parameters 

Conceptual rainfall-runoff models are used for river flow simulation and flood 
forecast. The model used in this study is the Xinanjiang rainfall-runoff model, which is 
developed by Zhao et al. (Zhao et al. 1980; Zhao, 1992). The original Xinanjiang model 
consists of a runoff generating component and a runoff routing component. The basin is 
divided into a set of sub-areas and runoff is first transformed into discharge by a linear 
system calculated from the water balance component. The outflow hydrograph from each 
sub-area is finally routed down the channels to the main basin outlet by the Muskingum 
method. In this study, the runoff generating and runoff routing components are combined 
together. It includes seven runoff generating component parameters: Um, Lm, Dm, B, Im, K, 
C; and 10 runoff routing component parameters: Sm, Ex, Kg, Ki, Cg, Ci, Cs, Ke, Xe, L. The 
model parameters are listed in Table 1. During the calibration, the parameter must satisfy 
the constraints of the Muskingum method for each channel of sub-basin. 

 2 2 2KeXe t Ke KeXe     
 INSERT Table 1 NEAR HERE 

In the initial model parameterisation process sensitivity analysis can be conducted to 
investigate the sensitivity of the model responses to its parameters, and hence to identify 
those which should be further refined via calibration. 

The sensitivities depend on the parameter values, and the parameters that seem to be 
insensitive may have important correlations with other parameters that are essential for the 
model behavior. The last runoff routing parameter L, the lag time of routing for each 
sub-area, is an empirical value which is mainly dependent on the length and slope of a 
stream. It is insensitive to the model response. So it can be determined before the 
calibration.  

The parameter space is usually defined by specifying lower and upper limits on each 
parameter. These limits are chosen according to physical and mathematical constraints, 
information about physical characteristics of the system, and from modeling experiences.  

The model parameterisation and model calibration is an iterative process. If the 
calibration results in poorly defined parameter values, we should reconsider the model 
parameterisation and define a simpler conceptual model that includes fewer calibration 
parameters. On the other hand, if the model is not able to sufficiently describe the response 
of the system, we should reconsider key model parameters or include other process 
descriptions in the calibration. 
Calibration criteria and Choice of optimisation algorithm 

According to the national criteria for flood forecasting in China, the percentage error 



of peak discharge, peak time and total runoff volume are important performance measures 
to evaluate real-time flood forecasting and flood simulation. The result of forecasting is 
qualificatory relative to peak value, peak time and total runoff volume for this flood if the 
absolute percentage error of peak discharge between the simulated and observed floods is 
less than 20%, if the difference in peak time is within a routing period and if the total 
runoff volume error is less than 3 mm or absolute percentage error less than 20%, 
respectively. The evaluation of parameter calibration is counting the three ratios of 
qualificatory criteria relative to the peak discharge, peak time and total runoff volume, 
respectively. So, the parameter calibration of the model is a multiple objective optimization 
problem with constraints.  

The flood forecasting is a highly non-linear problem. For calibration of the conceptual 
hydrological models, the global population-evolution-based algorithms are more effective 
than local search procedures. So in this paper, the genetic algorithm (GA) is adopted. 
Unlike the standard search techniques, genetic algorithms search among a population of 
points, work with a coding of the parameter set and use probabilistic transition rules. There 
are four GA parameters: crossover probability parameter Pc, mutation probability parameter 
Pm, population size parameter Psize and the maximum number of generation Tmax. 

In this study, arithmetic crossover operation is selected which is simple and effective 
to real code. The crossover operation is not always applied to selected chromosomes. The 
application of crossover is governed by a crossover probability, denoted by Pc. This 
parameter controls the frequency of the crossover operation. If Pc is too large, then the 
structure of a high quality solution could be prematurely destroyed; if Pc is too small, then 
the searching efficiency can be very low. Generally, Pc is chosen between 0.5 and 0.8.  

A non-uniform mutation is selected and designed to the mutation operation in this 
paper. The mutation operator is used as a means to escape from local minima in that the 
mutated chromosome, which may have a worse quality, can possibly lead to new search 
direction in the solution space. This parameter is a critical factor in extending the diversity 
of the population. If Pm is too small, then new gene segment could not be induced; if Pm is 
too big, then the genetic evolution degenerates into a random local search. Generally, Pm is 
often chosen between 0.001 and 0.1.  

The parameter Psize critically affects the efficiency and solution quality of the genetic 
algorithm. If Psize is too small, and thus, insufficient samples are provided, then the genetic 
evolution will be degenerated or no useful result can be obtained; if Psize is too large, then 
the amount of computation time needed may exceed a tolerable limit, and, more 
importantly, time of convergence could be prolonged. Generally, Psize is set to be a value 
between 150 and 300. 

In order to select the most-fit chromosomes to mate and reproduce, a ( )   

selection method is used to produce offspring for the next generation in this study. The 

method first generates   children chromosomes from   parent chromosomes by 

crossover and mutation operations, then selects strong chromosomes as a new population 
but keeps a mating pool as large as the selected original population. The procedure 
mentioned above is in fact a multiple criteria decision making (MCDM) problem with 



limited alternatives (Cheng et al., 2002). The problem herein is to find the ranking order of 
all chromosomes and select the better ones as next generation whose total number is Psize.  

Fitness calculation is a problem-oriented process. Here, TOPSIS, which is a 
well-known MCDM method and can give the ranking order of all alternatives, is employed. 
Alternatives here are chromosomes and the attributes of multiple criteria are the flood 
characteristics such as peak value, peak time and total runoff volume.  

It is supposed that the total number of attributes for a chromosome evaluation is m , 
and the total number of chromosomes through crossover and mutation operation is n . In 
determining the ranking order of all n  chromosomes, a MCDM problem for the 
parameter calibration of a conceptual model can be concisely expressed in matrix as  
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where 1A , 2A ,， nA  are the chromosomes with the performance measure criteria: 

1C , 2C , , mC . ijx  is the ith rating of chromosome jA ( njmi  ,2,1;,,2,1  ). iw  is 

the weight of criterion iC . 

The decision matrix D  should be normalized. In general, attributes can be classified 
into two types: benefit and cost.  In this paper, we choose the following normalization 
formula. For benefit criteria, the equation becomes 

max/i j i j ir x x                                     (1) 

Otherwise, the following equation should be used 

 max(1 ) /ij ij ir x x                                   (2) 

where max 1
n

i j i jx x  . After the transformation, the normalized decision making matrix is 

represented as  

( )i j m nR r                                           (3) 

Considering the different importance of each criterion, we can construct the weighted 
normalized fuzzy decision matrix as: 

nmijvV  )(                                                  (4) 

The positive-ideal solution and negative-ideal solution (Hwang and Yoon, 1981) are 
defined as  
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The distance of each alternative (chromosome) from *A and A can be calculated as 
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The closeness coefficient of each alternative is calculated as 

njdddCC jjjj ,,2,1),/( *                                (5) 

By sorting the values of jCC , the ranking order of all alternatives can be obtained. 

When compared with the procedure reproducing offspring in GA for the next generation, 

jCC  can be defined as the fitness of jth chromosome.  

Generally, the weights of attributes are determined from experience depending on the 
individual problem. In this study, the weights of three attributes are 0.3, 0.4, and 0.3 for 
peak value, peak time and total runoff volume, respectively.  

The stopping criterion for the optimization algorithm is the maximum number of 
model evaluations. For a model calibration that includes all 16 parameters, a maximum 
number of model evaluations in the range 2000~4000 normally ensures an efficient 
calibration. 

The steps of the methodology used in this study which combining GA and TOPSIS 
can be summarized as Figs. 1 and 2. When the calibration procedure for model parameters 
has been performed, the software system will proceed with the validation procedure as 
shown in Figure 2. The dash boxes in Fig.1 and Fig.2 are the perquisite basic data, which 
are based on the databases.  
 

INSERT FIGURE 1 NEAR HERE 

INSERT FIGURE 2 NEAR HERE 

 
Application example 

Shuangpai Reservoir in Hunan province is used in this study. The reservoir, with a 
drainage area of 10,594 km2 and a water holding capacity of up to 373.8 million cubic 
meters, is used for power generation, flood control, as well as for irrigation purposes. The 
details of model calibration data and the reservoir are referred to the paper (Cheng et al., 
2002). 

A total of 34 historical floods of 12 years data were used for calibration whilst 11 
floods between 1999 and 2000 are used for parameter validation. The initial parameter 
values and the GA parameters are preseted as follows: pc=0.8, pm=0.1, Psize=150, and 



Tmax=1500. Table 2 shows the results of parameter calibration. Table 3 lists performances 
of the calibrated parameters. Table 4 lists performances of the validated parameters. Table 5 
depicts the comparisons about calibration and validation between the current method and 
previous one (Cheng et al., 2002). 

INSERT Table 2 NEAR HERE 

INSERT Table 3 NEAR HERE 

INSERT Table 4 NEAR HERE 

INSERT Table 5 NEAR HERE 

 
It can be seen from Table 5 that when using the current method, the ratios of 

qualifying peak discharge, peak time and total runoff volume for the calibrated results are 
82.35 %, 91.18% and 97.06% respectively and those for the validated results are 90.91%, 
100% and 90.91%. When the previous method is used, the calibrated results are 88.24%, 
88.24% and 100% and the validated results are 90.91%, 100% and 100%. The results of 
two methods are basically similar, which demonstrates the single procedure is also feasible 
and robust, but simpler and more objective through the removal of error adjustment in the 
two-step procedure. 

Conclusions 

A general framework for automatic calibration of the Xinanjiang model has been 
presented. The framework includes model parameterisation and choice of calibration 
parameters, the calibration criteria and the optimization algorithm. The automatic 
optimisation procedure based on the current methodology is an integral procedure without 
splitting into two parts: the water balance and runoff routing, simplifying calibration steps 
and easily describing the intrinsic phenomenon of model in integrity.  

An application example has been presented that illustrates the use of the proposed 
calibration framework. Compared with previous work, the results of the calibration are 
basically similar. This illustrates that this procedure is also feasible and robust. Since the 
calibration in this paper is an integral procedure without splitting into two parts, it is better 
employed in practice and without the rich experiences and specific training.   
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Figure 1 Flowchart of the calibration procedure for the Xianjinag model parameters 
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Figure 2. Flowchart of the validation procedure for the Xianjiang model parameters 
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 Table 1. Parameters of Xinanjiang model 

Notation Definition 

Um (mm) Averaged soil moisture storage capacity of the upper layer 

Lm (mm) Averaged soil moisture storage capacity of the lower layer 

Dm (mm) Averaged soil moisture storage capacity of the deep layer 

B Exponential parameter with a single parabolic curve, which represents the 

non-uniformity of the spatial distribution of the soil moisture storage capacity 

over the catchment 

Im (%) Percentage of impervious and saturated areas in the catchment 

K Ratio of potential evapotranspiration to pan evaporation 

C Coefficient of the deep layer, that depends on the proportion of the basin area 

covered by vegetation with deep roots 

Sm (mm) Areal mean free water capacity of the surface soil layer, which represents the 

maximum possible deficit of free water storage 

Ex Exponent of the free water capacity curve influencing the development of the 

saturated area 

Kg Outflow coefficients of the free water storage to groundwater relationships 

Ki Outflow coefficients of the free water storage to interflow relationships 

Cg Recession constants of the groundwater storage 

Ci Recession constants of the lower interflow storage 

Cs Recession constants in the lag and route method for routing through the channel 

system within each sub-basin 

Ke Parameter of the Muskingum method 

Xe Parameter of the Muskingum method  

L Lag in time 

 
 

Table 2. Results of calibrated model parameters 

Parameter B Im K C Um Lm Dm Sm 

Value 0.58 0.03 0.66 0.11 29.84 89.31 49.96 12.34 

 

 

 

 

Parameter Ex Kg Ki Ci Cg Cs Ke Xe 

Value 1.09 0.29 0.45 0.14 0.87 0.27 1.75 0.11 



 

Table 3. Performance of calibrated parameters. 

Floods Flood discharge Peak time Total 
runoff 

volume 
 Observed 

(m3/s) 
Simulated 

(m3/s) 
Percentage 
error (%) 

Observed 
(yyyy-mm-dd hh:mm)

Simulated 
(yyyy-mm-dd 

hh:mm) 

Error 
(number) 

Percentage 
error (%)

19840416 1130 1519 －34.45 1984-04-17 14:00:00 1984-04-17 11:00:00 －1 2.60 
19840530 4310 4411 －2.34 1984-06-01 17:00:00 1984-06-01 14:00:00 －1 4.00 
19850411 1200 1729 －44.13 1985-04-12 23:00:00 1985-04-12 23:00:00 0 －9.43 
19850527 5770 4827 16.34 1985-05-27 23:00:00 1985-05-27 23:00:00 0 9.82 
19850610 1370 1104 19.42 1985-06-11 23:00:00 1985-06-11 17:00:00 －2 10.13 
19860706 2560 2206 13.82 1986-07-06 20:00:00 1986-07-06 20:00:00 0 －3.56 
19870404 1790 2046 －14.29 1987-04-05 20:00:00 1987-04-05 23:00:00 1 －14.74 
19870515 1720 1412 17.89 1987-05-16 05:00:00 1987-05-16 05:00:00 0 0.86 
19870521 1840 1702 7.50 1987-05-22 02:00:00 1987-05-22 02:00:00 0 6.08 
19870606 1080 986 8.69 1987-06-07 11:00:00 1987-06-07 14:00:00 1 5.78 
19870614 1350 1367 －1.23 1987-06-14 23:00:00 1987-06-14 20:00:00 －1 －4.13 
19870722 1740 1098 36.90 1987-07-23 11:00:00 1987-07-23 14:00:00 1 9.32 
19870729 2170 1073 50.55 1987-07-29 20:00:00 1987-07-29 20:00:00 0 43.32 
19880903 1960 2305 －17.58 1988-09-05 08:00:00 1988-09-04 20:00:00 －4 0.97 
19890511 2870 2612 8.99 1989-05-13 14:00:00 1989-05-13 11:00:00 －1 －4.17 
19890522 1890 1769 6.40 1989-05-22 23:00:00 1985-05-22 23:00:00 0 1.40 
19890529 1880 1669 11.22 1989-05-31 05:00:00 1989-05-31 02:00:00 －1 17.12 
19900530 2770 2484 10.31 1990-06-01 02:00:00 1990-06-01 02:00:00 0 －5.64 
19900607 2110 2254 －6.82 1990-06-08 11:00:00 1990-06-08 11:00:00 0 3.20 
19910616 1010 887 12.18 1991-06-16 23:00:00 1991-06-16 20:00:00 －1 12.87 
19920423 2320 2530 －9.07 1992-04-24 11:00:00 1992-04-24 14:00:00 1 －12.89 
19920516 3020 2870 4.98 1992-05-17 17:00:00 1992-05-17 14:00:00 －1 12.45 
19920705 3760 5262 －39.95 1992-07-06 20:00:00 1992-07-06 17:00:00 －1 －17.76 
19930513 2560 2674 －4.44 1993-05-14 14:00:00 1993-05-14 14:00:00 0 －9.80 
19930607 2010 1856 7.69 1993-06-09 11:00:00 1993-06-09 14:00:00 1 －2.99 
19930615 1940 2206 －13.71 1993-06-16 02:00:00 1993-06-15 23:00:00 －1 －12.11 
19940421 5070 4321 14.77 1994-04-23 20:00:00 1994-04-23 17:00:00 －1 7.11 
19940525 2700 2614 3.19 1994-05-26 14:00:00 1994-05-26 17:00:00 1 3.26 
19940614 3330 2722 18.26 1994-06-18 08:00:00 1994-06-17 17:00:00 －5 3.07 
19940723 5810 5239 9.83 1994-07-24 05:00:00 1994-07-24 05:00:00 0 2.88 
19940805 2660 2967 －11.54 1994-08-06 11:00:00 1994-08-06 14:00:00 1 －4.14 
19950425 2040 2132 －4.51 1995-04-26 11:00:00 1995-04-26 08:00:00 －1 －19.50 
19950526 1400 1871 －33.64 1995-05-26 17:00:00 1995-05-26 20:00:00 1 －16.55 
19950614 3880 3948 －1.75 1995-06-17 02:00:00 1995-06-17 02:00:00 0 9.36 

 

Notes. (1) The total number of floods, which are qualificatory relative to the error of peak discharge, is 28 and the ratio of 

qualifying simulation is 82.35 %. (2) The total number of floods, which are qualificatory relative to the error of peak time, 

is 31 and the ratio of qualifying simulation is 91.18%. (3) The total number of floods, which are qualificatory relative to 

the error of total runoff volume, is 33 and the ratio of qualifying simulation is 97.06%. 



 

Table 4. Performance of validated parameter 

 

Notes. (1) The total number of floods, which are qualificatory relative to the error of peak discharge, is 10 and 

the ratio of qualifying simulation is 90.91%. 

 (2) The total number of floods, which are qualificatory relative to the error of peak time, is 11 and the ratio 

of qualifying simulation is 100%. 

 (3) The total number of floods, which are qualificatory relative to the error of total runoff volume, is 9 and 

the ratio of qualifying simulation is 90.91 %. 

 

 

 

Table 5. Result comparisons of the current method and previous one [Cheng et al., 2002] 

Calibration 

method 

Ratio of qualifying  

peak discharge (%) 

Ratio of qualifying  

peak time (%) 

Ratio of qualifying total 

runoff volume (%) 

Calibration Validation Calibration Validation Calibration Validation  

Previous method 88.24% 90.91% 88.24% 100% 100% 100% 

Current method 82.35 % 90.91% 91.18% 100% 97.06% 90.91% 

 

 

Floods Peak discharge Peak time total runoff 
volume 

 Observ
ed 

(m3/s) 

Simulated
(m3/s) 

Percentage 
error(%) 

Observed 
(yyyy-mm-dd 

hh:mm) 

Simulated 
(yyyy-mm-dd hh:mm) 

Error 
(number) 

Percentage 
error (%) 

19990426 2550 1847 27.56 1999-04-25 20:00:00 1999-04-25 23:00:00 1 31.22 
19990526 4893. 3934 19.60 1999-05-26 17:00:00 1999-05-26 17:00:00 0 13.67 
19990618 1690 1636 3.23 1999-06-18 20:00:00 1999-06-18 23:00:00 1 6.32 
19990627 1111 1107 0.40 1999-06-25 17:00:00 1999-06-25 17:00:00 0 4.32 
19990831 1965 1617 17.69 1999-08-31 23:00:00 1999-08-31 23:00:00 0 13.40 
20000403 1628 1894 －16.40 2000-04-02 23:00:00 2000-04-02 23:00:00 0 －9.95 
20000410 1798 1965 －9.28 2000-04-09 20:00:00 2000-04-09 17:00:00 －1 －10.85 
20000426 909 848 6.71 2000-04-26 20:00:00 2000-04-26 20:00:00 0 －9.76 
20000510 1039 1071 －3.12 2000-05-10 02:00:00 2000-05-10 02:00:00 0 1.93 
20000528 3163 3113 1.56 2000-05-28 14:00:00 2000-05-28 17:00:00 1 －7.96 
20000611 1096 1265 －15.43 2000-06-12 05:00:00 2000-06-12 02:00:00 －1 8.52 




