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Abstract 

  An automatic calibration framework and methodology for the Xinanjiang model that has been 
successfully and widely applied in China is presented. The automatic calibration of the model 
consists of two parts: runoff parameter and runoff routing parameter calibration. The former is 
based on a simple genetic algorithm (GA). The latter is based on a new method which combines a 
fuzzy optimal model (FOM) with a GA for solving the multiple objective runoff routing parameters 
calibration problem. Except for the specific fitness where the membership degree of alternative 
obtained by FOM with limited alternatives and multi-objectives is employed, the multiple objective 
GA developed in this paper is otherwise the same as the simple GA. The parameter calibration 
includes optimization of multiple objectives: (1) peak discharge, (2) peak time and (3) total runoff 
volume. 34 historical floods from 12 years in the Shuangpai Reservoir are applied to calibrate the 
model parameters whilst 11 floods in recent two years are utilized to verify these parameters. 
Results of this study and application show that GAs not only can improve forecast accuracy but are 
also efficient and robust means. 

Keywords: rainfall-runoff model; calibration; genetic algorithms; fuzzy optimal model; multiple 
objectives 

1. Introduction 
  Conceptual rainfall-runoff models(CRRS) have become a basic tool for flood forecasting and for 
catchment basin management (Franchini and Galeati, 1997 ). CRRS generally have a large number 
of parameters, which cannot be directly obtained from measurable quantities of catchment 
characteristics, and hence model calibration is entailed. In order to calibrate a model, values of the 
model parameters are selected so that the model stimulates the hydrological behavior of the 
catchment as closely as possible(Madsen, 2000). 
  The successful application of CRRS largely depends on how well the model is calibrated (Duan, et 
al, 1992), i.e., the reliability of operational conceptual rainfall-runoff models used in forecasting is 

                                                        
*   Corresponding author. Tel.: +86-411-4708517; Fax: +86-411-4674141 

Email address: ctcheng@dlut.edu.cn 
 

This is the Pre-Published Version.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyU Institutional Repository

https://core.ac.uk/display/61007726?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2

highly dependent on the adequacy of the calibration procedure employed (Sorooshian et al., 1983). 
The parameter calibration has been one of the important topics in CRRS (e.g., Sorooshian and 
Dracup, 1980;Wang, 1991; Yu and Yang, 2000; Khu et al., 2001). The process of model calibration 
is normally performed either manually or by using computer-based automatic procedures. Manual 
calibration is not only difficult to assess explicitly the confidence of the model simulation due to the 
subjective judgement involved and the need of an experienced hydrologist, but also is a very time 
consuming task. Thus, automated approaches to calibration have received much attention. There 
exists a large amount of literature related to the application of traditional optimization methods in 
solving the automatic calibration of rainfall-runoff model (herein only list part of them, Sorooshian 
et al., 1983; Gupa and Sorooshian, 1985;Duan et al., 1992; Madsen, 2000). However, none of the 
traditional optimization methods used for calibrating conceptual rainfall-runoff models, even for 
those with a moderate number of parameters, are robust and efficient in locating or nearly locating 
the global optima (Wang, 1991). Local searcher algorithms often encounter the convergence 
problems. It is not an easy task to get global optima using traditional optimization methods in which 
skill and experience of the developer are very important. On the other hand, calibration based on a 
single objective function is often inadequate to simulate all the important characteristics of the 
observed data. There is a need for effective and efficient multi-objective calibration procedures that 
are capable of exploiting all the useful information (Yapo et al., 1998; Madsen, 2000; Yu and Yang, 
2000). 
   The objective of the present study is to present a framework and methodology for the automatic 
calibration of Xinanjiang model (Zhao et al., 1980; Zhao, 1992) with multiple objectives. In section 
2, the applied rainfall-runoff model, which is the Xinanjiang model, is briefly described. In section 3, 
the general steps in the simple GA for the runoff parameter calibration are outlined. In section 4, the 
multi-objective GA developed in this paper is presented for solving the multi-objective runoff 
routing parameter calibration problem. In section 5, a case example is presented that illustrates in 
details the whole process for the calibration of the parameters in the Xinanjiang model. Finally, the 
conclusions are given in section 6. 

2 Xinanjiang rainfall-runoff model: structure and calibrated parameters 
   The hydrological model used in this study is the Xinanjiang rainfall-runoff model, which is a soil 
moisture accounting model developed by Zhao et al. (Zhao et al., 1980; Zhao, 1992). The model has 
been successfully and widely applied in humid and semi-humid regions of China since its initial 
development in the 1970s. The model structure is shown in Figure 1.It consists of two components, 
which deal with water balance and routing, respectively. The runoff generating component can be 
described in seven parameters: Um, Lm, Dm, B, Im, K, C whilst the runoff routing component can be 
described in nine parameters: Sm, Ex ,Kg, Ki, Cg, Ci, Cs, Ke , Xe. The Xinanjiang model uses a single 
parabolic curve to represent the spatial distribution of the soil moisture storage capacity over the 
catchment where the exponential parameter B represents the non-uniformity of this distribution and 
Wm describes the averaged soil moisture storage capacity. The storage depth is divided into three 
layers where Um ,Lm and Dm represent the averaged soil moisture storage capacity of the upper layer, 
the lower layer and the deep layer, respectively. Im is the percentage of impervious and saturated 
areas in the catchment. K is the ratio of potential evapotranspiration to pan evaporation whilst C 
denotes a coefficient of the deep layer. Sm is the areal mean free water capacity of the surface soil 
layer, which represents the maximum possible deficit of free water storage. Ex is the exponent of the 
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free water capacity curve influencing the development of the saturated area. Kg and Ki  are the 
outflow coefficients of the free water storage to groundwater and interflow relationships, 
respectively. Cg and Ci are the recession constants of groundwater storage and of the lower interflow 
storage, respectively. Cs is the recession constant in the lag and route method for routing through the 
channel system within each sub-basin. Ke  and Xe are  parameters of the Muskingum method. More 
details about the Xinanjiang model refer to the reference from Zhao(1992). 
  From Figure 1, the basin is divided into a set of sub-areas and the runoff is first calculated. Then 
the outflow hydrograph from each of the sub-area is simulated and finally routed down the channels 
to the main basin outlet. So, parameter calibration of the model can be divided into two parts: runoff 
parameter calibration and runoff routing parameter calibration. 

3 Parameter calibration of runoff generating component by a simple GA 
   In recent years, GAs have been shown to have advantages over classical optimization methods 
(Holland, 1975;Goldberg, 1989) and have become one of the most widely used techniques for 
solving a number of hydrology and water resources problems (Wang, 1991; Ritzel et al., 1994; 
Franchini, 1996, 1997;Savic et al., 1999;Vasquez et al., 2000; Sharif and Wardlaw, 2000; Khu et al., 
2001). GAs are heuristic iterative search techniques that attempt to find the best solution in a given 
decision space based on a search algorithm that mimics Darwinian evolution and survival of the 
fittest in a natural environment. They are distinct from other heuristic iterative search techniques in 
that they search in parallel, using many individuals in the population instead of a single point. This 
is a desirable property for many practical applications and is suitable for the runoff parameter 
calibration. Generally, the error or percentage error of total runoff volume between the simulated 
and observed runoffs is an important performance measure for the runoff parameter calibration. The 
runoff parameter calibration is a single objective optimization problem. Thus, a simple GA is 
sufficient for solving the runoff parameter calibration. 
  The general steps in the simple GA for the runoff parameter calibration are as follows. 
  Step 1. The initial parameters for runoff calibration and initial GA parameters are first pre-set. All 
the parameters of the Xinanjiang model have clear physical meanings. These parameters are to some 
extent within the same scope for a special basin (Zhao, 1992). Wm varies from 80 mm in South China 
to 170 mm in North China. Typical values for Um are from 5 to 20 mm for deforested to forested 
areas, respectively. Lm is within 60 to 90 mm. Experience indicates that B=0.1 for basins of area less 
than 10 km2 and B=0.4 for basins with thousands of square kilometers. For natural basins in humid 
regions Im is usually negligible, but in semi-humid or more arid regions the impervious area may be 
a large proportion of the runoff producing area in the basin. In the absence of the actual percentage 
of the impervious and saturated areas, Im is assumed to be the ratio of runoff to rainfall generated by 
a small event of short duration which occurs after a long dry period. C depends on the proportion of 
the basin area covered by vegetation with deep roots. It varies from 0.18 in South China to 0.08 in 
North China. The objective of presetting these initial parameters of the Xinanjiang model is to speed 
up the automatic calibration process.  
  Good genetic algorithm performance requires the choice of a high crossover probability, a low 
mutation probability and a moderate population size. There are four GA parameters: pc, pm, Psize and 
Tmax. pc   means the crossover probability parameter that is typically set so that crossover is 
performed on most, but not all, of the population. It varies from 0.3 to 0.9. pm, which is the mutation 
probability parameter that controls the probability of selecting a gene for mutation, varies usually 
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from 0.01 to 0.1. Psize, which is the population size parameter that provides sufficient sampling of 
the decision space while limiting the computational burden, varies from 10 to 100. Tmax, which is 
the maximum number of generation, varies from 10 to 500. 
  Step 2 An initial population of chromosomes is randomly generated. The total number of 
chromosomes is controlled by Psize

%100×=
N

M
f p

runoff

. Each chromosome is a finite-length string of numbers that 
represents the values of the decision variables for that chromosome. The decision variables may be 
coded using binary or real value. In the problem herein, decision variable is simply a vector of 
runoff parameters for the Xinanjiang model. The remaining steps described in this section are 
focused on GAs that use real value. A random function, f_random(a, b),  is coded to randomly 
generate an initial real value for each runoff parameter of the Xinanjiang model, where a and b are 
the lower and upper limits respectively, which vary with different runoff parameters. 
   Step 3.  For every chromosome in the population the fitness is computed. Fitness calculation is a 
problem-oriented process. It has to be overridden by the user according to the system requirement. 
The problem herein is a maximization problem with a single objective without any constraint. As 
mentioned above, the objective function in the runoff parameter calibration is taken as the ratio of 
floods that are qualificatory relative to the total runoff volume. The simulated flood is qualificatory 
if the absolute error of the total runoff volume between the simulated runoff and the observed one is 
less than 3mm or if the absolute percentage error of the total runoff volume is less than 20% 
(NCHI,1985). The objective function value is usually used as a measure of fitness. Equation 1 
shows the fitness calculation for maximizing the ratio of qualificatory floods relative to the total 
runoff volume. 

                                                                                                        (1) 

where frunoff is the fitness of this problem, Mp
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'
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 represents the total number of floods that satisfy the 
qualificatory criteria relative to the total runoff volume, and N is the total number of the calibrated 
floods. 
  Step 4. A crossover operation is applied in which two parent chromosomes exchange genetic 
information by interchanging portions of their strings, thereby generating either one, or more 
commonly two offspring per pair. The genetic operation of crossover is performed on each mated 
pair with a certain probability, referred to as crossover probability. The possible crossover operation 
is uniform, single point, two points and arithmetic crossover. An arithmetic crossover is designed to 
the crossover operation. 

                                                                                    (2) 
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where vi1 and vi2 are the parent chromosomes, v'
i1 and v'

i2 iα are the children strings, is a random 

number and ∈(0,1) , i=1,2, …,k. k is the total chromosome pairs for the crossover operation.  
  Step 5. A mutation operation is applied to avoid being trapped in local optima. Mutation 
probability controls the rate of mutation in the process of reproduction. Common mutation 
operation is simple, uniform, boundary, non-uniform and Gaussian mutation. A non-uniform 

mutation is designed to the mutation operation. If ),,,( 21 nvvvV =  is a chromosome and the 
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element kv  was selected for this mutation (the domain of kv  is ],[ kk ba ), the result is a vector 
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where the function ),( yt∆  returns a value in the range [0,y] such that the value for the probability 

of ),( yt∆  being close to 0 increases as t increases: 

      )1(),( )T/1( max
λtryyt −−•=∆                                            (5) 

where r is a random number in the interval[0,1]. Tmax is the maximum number of generations and λ 
is a parameter chosen by the user, which determines the degree of dependency with the number of 
iterations. This property causes this operator to make an uniform search in the initial space when t is 
small , and a very local one in later stages. 
  Step 6. The most-fit chromosomes are selected to mate and reproduce. Common selection methods 
include the biased roulette wheel, tournament selection, ranking and (μ+λ) selection methods. A  
(μ+λ) selection method is used to produce offspring for the next generation. The method first 
generates λ children chromosomes from μ parent chromosomes by crossover and mutation 
operation, then selectsμstrong chromosomes as a new population but keeps a mating pool as large 
as the selected original population. 
   Step 7. The processes described in Step 2 to 6 are repeated until a specified termination criterion, 
such as a limit on the maximum number of generation or no obvious change about fitness or pre-set 
fitness, is satisfied. 

4 Parameter calibration of runoff routing component by coupling a fuzzy 

optimal model with GA 
  The runoff routing of the Xinanjiang model is divided into two parts. The runoff generated from 
the water balance component is first transformed into discharge by a linear system. The outflow 
hydrograph from each sub-area is finally routed down the channels to the main basin outlet by the 
Muskingum method. The parameter calibration must satisfy the constraints of the Muskingum 
method for each channel of sub-basin. 
    2KeXe≤⊿t≤2Ke -2KeXe                                                                               (6) 
where Ke and Xe  are the Muskingum coefficients, Ke is a storage constant having the dimension of 
time, Xe is a dimensionless constant for the reach of the river and ⊿t is the routing period. 
  According to the national criteria for flood forecasting in China, the percentage error of peak 
discharge, peak time and total runoff volume are three important performance measures to evaluate 
real-time flood forecasting and flood simulation (NCHF, 1985). The result of simulation or 
forecasting is qualificatory relative to peak value for this flood if the absolute percentage error of 
peak discharge between the simulated and observed floods is less than 20%. The result is 
qualificatory relative to peak time if the difference in peak time is within a routing period and 
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relative to total runoff volume if absolute error between the simulated and observed floods is less 
than 3mm or absolute percentage error less than 20%, respectively. The evaluation of parameter 
calibration for runoff routing is counting the three ratios of qualificatory criteria relative to the peak 
discharge, peak time and total runoff volume, respectively. So, the parameter calibration of runoff 
routing component is a multiple objective optimization problem with constraints.  
  When solving the multiple objective calibration problem, the problem is usually transformed into a 
single objective optimization problem by defining a scalar that aggregates the various objective 
functions. However, it is often difficult to derive all objective functions for practical 
problems(Gupta and Sorooshian, 1985). Thus, it is worthy of exploring a direct optimization 
method without transformation of objectives.    
  The performance of a rainfall-runoff model heavily depends on choosing suitable model 
parameters, which are normally calibrated by using an objective function. Relevant literature mostly 
focused on selecting an appropriate objective function in the rainfall-runoff model when using 
classical optimization techniques (Gupta and Sorooshian, 1985;Yu et al., 2000). However, 
calibration based on a single performance measure is often inadequate to measure properly the 
simulation of all the important characteristics of the system that are reflected in the observations 
(Yapo et al., 1998; Madsen, 2000). There are various skills in selecting the best objective function. 
The complete and consistent application of these skills is still an art, depending on the 
problem-oriented process and the adopted optimization method.  Most of conventional methods for 
parameter calibration of a rainfall-runoff model only consider a single objective but hardly deal with 
multiple objectives at the same time due to the limitation of optimization techniques. Many 
optimization techniques require large computer resources and derivatives of the objective functions. 
GAs work with numerical values, and can also establish objective functions without difficulty. They 
are free from a particular model structure and thereby only require an estimate of the objective 
function value for each decision set in order to proceed, regardless of whether such information 
comes from a simple equation or a very complex model. Fitness information, instead of complex 
and difficult functions, is the only requirement for GAs. The advantages of GAs over conventional 
parameter optimization techniques are that they are appropriate for the ill-behaved problem, highly 
non-linear spaces for global optima and adaptive algorithm. As such, GAs are suitable for many 
practical application and desirable methods for optimization problem with multi-objectives. 
  The successful application of GAs in solving a given optimization problem greatly depends on the 
appropriate choice of the fitness. Thus the focus of the following will be on the definition of fitness 
for the parameter calibration about the runoff routing of the Xinanjiang model. 
  Except for the specific fitness detailed below, the multiple objective GA developed in this section 
is basically the same as the simple genetic algorithm described earlier. From the steps of GA 
mentioned in the previous section, the procedure, with the (μ+λ) selection method being used to 
produce offspring for the next generation, is in fact an evaluation problem with limited alternatives 
and multiple objectives. Alternatives herein are chromosomes whilst objectives are the flood 
characteristics such as peak value, peak time and total runoff volume. The above mentioned 
problem composing of selected alternatives with multi-objectives is a typical multi-objective 
evaluation with limited alternatives. Here a fuzzy optimal method, in which the optimal rank of 
alternatives can be obtained by the membership degree of alternative, is employed. (Chen, 1994; 
Cheng, 1999; Cheng and Chau, 2001). 
 It is supposed that the total number of objectives for a chromosome evaluation is m, and the total 
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number of chromosomes through crossover and mutation operation is n. The alternative set 
constituting of n alternatives is denoted by A＝{A1, A2，...，An }. The decision matrix is represented 

by X xij m n= ×( ) , where xij  is  the ith objective value of the alternative Aj（j=1,2,...,n）. In 

determining the relatively optimal decision among n alternatives, the decision matrix X should be 
transformed into the matrix of membership degree by the following equations 

     max/ iijij xxr =                                                          (7) 

  or max/)1( iijij xxr −=                                                      (8) 

where xi max = ij

n

j
x∨

=1
. If a larger objective represents more optimum membership degree, equation 

(7) should be adopted. Otherwise, equation (8) should be used. After the transformation, the matrix 
of membership degree is represented as 

   R＝ ( )rij m n×                                                               (9) 

Obviously, the ideal alternative is the vector 


m

T)1,...,1,1( . It is defined as 

   G＝


m

T)1,...,1,1(                                                            (10) 

According to the fuzzy sets theory, the non-ideal alternative, the counterpart of G, is defined as 
   B＝


m

T)0,...,0,0(                                                          (11) 

Conflicts often exist among objectives and the alternatives G and B are only “fictitious”. In order to 
acquire the optimal solution, it is natural to select an alternative closest to G and farthest away from 
B. The weighted distances are defined as 
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In equations (12) and (13), w is the weighting vector, w= ( , ,..., )w w wm
T

1 2 , wi
i

m

=
∑ =

1

1,  wi >0, 

i=1, 2, ..., m. 

   If the membership degree of alternative Aj  relative to G is denoted by u j , then its counterpart 

relative to B is 1- u j .The synthetically weighted distance is defined by 
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Then the solution is given by 

  Min )}({ jj uf   

  njuts j ,...,2,1,10.. =<<                                                                     (15)  

Let 0/)( =jj duudf (j=1,2,…,n), giving n equations: 
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where i=1,2,...,m; j=1,2,...,n.   

  From equations (16), when weighting vector w is known from the experience, ju  can be obtained. 

According to the maximization rules of membership degree, the optimal order of alternatives can be 
obtained. Comparing with the procedure reproducing offspring in GAs for the next generation, the 

membership degree of alternative ju  can be defined as the fitness of jth chromosome. The GA 

combining the fuzzy optimal model can be summarized as follows: 
   Step 1. The initial parameters for runoff routing calibration and GA parameters are first pre-set. 
   Step 2.  An initial population of chromosome is randomly generated. 
   Step 3.  The multiple objective values for each chromosome are assessed. 
   Step 4. The chromosome operators, selection, crossover and mutation are processed. 
   Step 5. The finesses for all chromosomes are evaluated based on the fuzzy optimal model with 
limited alternatives and multiple objectives. 
   S tep 6. The chromosomes with lower fitness values are eliminated and the new chromosomes with 
higher fitness values are added. 
   Step 7.  If the termination criterions are satisfied, the process stops; otherwise, it goes back to Step 
2. 

5 Application example    
  The model is applied to the Shuangpai Reservoir. The reservoir, with a drainage area of 10,594 km2 
and a water holding capacity of up to 373.8 million cubic meters, is situated in Hunan province of 
southern China and at the downstream of the Xiaoshui Stream, which is one of tributary rivers in the 
Xiangjiang River. The reservoir is used for power generation, flood control, as well as irrigation 
purposes. The temporal distribution of the rainfall during a given year is significantly heterogeneous 
in this area. The rainfall in this area is mainly due to the thunderstorms. 45.9% of the total rainfall 
falls between April and June, and 34% of the total rainfall between September and October, which 
are referred to as the high flow periods. The annual rainfall is 1,500mm; the averaged depth of 
runoff is 893mm and the averaged discharge is 300m3/s. Table 1 summarizes the stations used in this 
study, including the weighting and area for each rain-gauge. The data sets selected for modeling 
process are rainfall, streamflow and evaporation, as shown in Table 2. 34 historical floods between 
1984 and 1995 are used for the parameter calibration whilst 11 floods between 1999 and 2000 are 
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used for the parameter validation. 
 
5.1 Calibration of the parameters  

   There are no differences in the operation between the runoff parameter calibration and runoff 
routing parameter calibration except in presetting the initial parameters. Presetting initial 
parameters is a unique work by manual means. All presetting processes can be performed 
interactively based on the visual interfaces. After having entered the initial conditions, the model 
parameters will be automatically calibrated. Table 3 lists the initial parameter values for the 
Shuangpai reservoir. The four GA parameters are also preset, which are the same for the runoff 
parameter calibration and runoff routing parameter calibration, i.e., pc,=0.8,  pm=0.1, Psize =20,and 
Tmax =500. Table 4 shows the results of the runoff parameter calibration. Table 5 lists the 
performances of the calibrated runoff parameters whilst Table 6 presents the results of runoff 
routing parameter calibration. Table 7 gives the performances of the calibrated runoff routing 
parameters. Figure 2 to Figure 13 show the simulated and observed hydrographs from 1984 to 1995 
during the calibration. 
 

5.2 Validation of the parameters  
  A total number of 11 floods are used to validate the model parameters from 1999 to 2000. Table 8 
lists performances of the validated runoff parameters whilst Table 9 shows performances of the 
validated runoff routing parameters. Figure 14 to Figure 15 show the simulated and observed 
hydrographs from 1999 to 2000 during the validation. 
 

5.3 Analysis of results 

  All of the calibrated floods and the validated floods are qualificatory relative to the total runoff 
volume. The results clearly showed that the runoff parameters are able to provide reliable simulation 
and forecast. 30 floods among the total number 34 of the calibrated floods are qualificatory relative 
to the peak discharge and peak time, with the qualificatory ratios more than 85%. For the validated 
floods, all floods are qualificatory relative to peak time and total runoff volume whilst only one 
flood is not qualificatory relative to peak discharge, with the qualificatory ratios also more than 85%. 
Thus, the runoff routing parameters are also able to provide reliable simulation and forecasts. Figure 
3 to Figure 16 also show that the simulated hydrographs better fitted the observed hydrographs.  

6. Conclusions  

  The paper has addressed the solution in determining the optimal parameters for the Xinanjiang 
model. The methodology presented herein satisfies at the same time the demand of evaluating three 
important flood characteristics, such as peak discharge, peak time and total runoff volume. Our 
results indicate that attempts to calibrate the Xinanjiang model parameters through two procedures 
consisting of runoff and runoff routing parameter calibration, have been successful. It may be 
concluded that GA is a robust and efficient tool in solving a complex conceptual rainfall-runoff 
model parameter calibration problem for a large-scale basin with a drainage area more than of 
10,000 km2. 
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Table 1 Details of rain gauge stations in the study area 

Station Kind of station Station name Weighting Area(km2) 

01 Rainfall Jiangcun 0.0915 745 

02 Rainfall Daoxian 0.0846 691 

03 Rainfall Haofu 0.0689 562 

04 Rainfall Jiangyong 0.1134 926 

05 Rainfall Dalupu 0.1200 979 

06 Rainfall Qingtianhe 0.0326 266 

07 Rainfall Simaqiao 0.0651 531 

08 Rainfall Youxiang 0.0762 622 

09 Rainfall  Linyuan 0.0911 744 

10 Rainfall Shuishi 0.0651 532 

11 Rainfall Baijiaping 0.1210 988 

12 Rainfall/streamflow Shuangpai 0.0705 576 

Table 2 Data sets in this study 

Type Time period (year) Purpose Remarks 

Daily rainfall 1984-1995 

1999-2000 

Calibrate 

Validate 

For 12 rain gauges 

Daily evaporation 1984-1995 

1999-2000 

Calibrate 

Validate  

 

Rainfall of 3 hours duration 1984-1995 

1999-2000 

Calibrate 

Validate 

For 12 rain gauges 

Streamflow  1984-1995 

1999-2000 

Calibrate 

Validate 

For Shuangpai streamflow gauge 

Notes : Data between 1996-1998 are lacking because of problem on official right. The data between 1999-2000 are 

supplied directly by the user. 

 

Table 3 The initially preset parameters  

Parameter kind Parameter name Lower limit Upper limit 

Runoff B 0.1 0.6 

Im 0.01 0.03 

K 0.50 1.10 

C 0.10 0.20 

Um 10.0 30.0 

Lm 60.0 90.0 

Dm 10.0 50.0 

Runoff routing Sm 10.0 30.0 

Ex 1.0 1.5 
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Kg 0.25 0.35 

KI 0.35 0.45 

CI 0.10 0.90 

Cg 0.80 1.0 

Cs 0.01 0.50 

Ke 1.0 3.0 

Xe 0.1 0.5 

 

Table 4 Results of the calibrated runoff parameters 

parameter B Im K C Um Lm Dm 

Value 0.55 0.02 0.74 0.14 18.03 62.96 46.05 
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Table 5 Performances of the calibrated runoff parameters 

Floods 
Average 
rainfall 
 (mm) 

Observed 
Runoff 

(mm) 

Simulated 
runoff 
(mm) 

Absolute 
error 
(mm) 

Percentage 
error 
(%) 

Qualificatory 

19840416 27.5 24.9 26.2 -1.33 -5.34 Yes 
19840530 100.9 98.0 94.1 3.90 3.98 Yes 
19850411 29.5 24.1 28.4 -4.25 -17.63 Yes 
19850527 84.3 75.7 66.1 9.65 12.75 Yes 
19850610 35.8 30.6 26.4 4.18 13.66 Yes 
19860706 66.8 51.2 52.5 -1.28 -2.50 Yes 
19870404 28.4 24.0 28.4 -4.43 -18.46 Yes 
19870515 31.7 29.8 29.8 0.01 0.03 Yes 
19870521 30.7 28.8 27.1 1.66 5.76 Yes 
19870606 28.3 20.5 18.6 1.91 9.32 Yes 
19870614 41.8 22.8 25.4 -2.60 -11.4 Yes 
19870722 47.3 21.9 20.1 1.77 8.08 Yes 
19870729 40.9 33.7 28.6 5.11 15.16 Yes 
19880903 51.7 37.7 40.9 -3.18 -8.44 Yes 
19890511 71.0 54.4 56.5 -2.12 -3.90 Yes 
19890522 45.3 30.7 29.4 1.31 4.27 Yes 
19890529 44.8 38.1 33.2 4.88 12.81 Yes 
19900530 67.6 51.9 57.1 -5.21 -10.04 Yes 
19900607 49.3 35.5 33.7 1.83 5.15 Yes 
19910616 31.1 20.1 17.0 3.10 15.42 Yes 
19920423 50.4 36.5 39.0 -2.51 -6.88 Yes 
19920516 32.0 27.2 31.9 -4.74 -17.43 Yes 
19920705 86.5 72.5 86.3 -13.80 -19.03 Yes 
19930513 47.7 35.8 39.0 -3.19 -8.91 Yes 
19930607 59.4 45.2 44.3 0.89 1.97 Yes 
19930615 30.9 25.4 28.4 -3.04 -11.97 Yes 
19940421 90.6 80.7 75.1 5.63 6.98 Yes 
19940525 65.9 58.4 58.5 -0.12 -0.21 Yes 
19940614 82.5 77.8 77.8 -0.02 -0.03 Yes 
19940723 106.3 95.5 93.8 1.68 1.76 Yes 
19940805 76.9 62.2 64.6 -2.39 -3.84 Yes 
19950425 47.3 38.8 45.6 -6.80 -17.53 Yes 
19950526 57.1 24.1 26.8 -2.70 -11.20 Yes 
19950614 122.6 115.5 105.5 9.98 8.64 Yes 

Notes: 1. The simulated flood is qualificatory if absolute error is less than 3mm or if absolute percentage 

error is less than 20% 

2. The total number of floods is 34. All floods are qualificatory and the ratio of qualifying simulation 

is 100% 

 

Table 6 Results of the calibrated runoff routing parameters 
Parameter Sm Ex Kg Ki Ci Cg Cs Ke Xe 
Value 12.90 1.4 0.27 0.38 0.21 0.87 0.15 1.93 0.21 
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Table 7 Performances of the calibrated runoff routing parameters 

Floods 

Peak discharge Peak time Percentage 
error in 

total runoff 
volume 

(%) 
Observed 

 
(m3/s) 

Simulated 
 

(m3/s) 

Error 
 

 (m3/s) 

Percentage 
Error 
 (%) 

Observed 
(yyyy-mm-dd hh:mm) 

Simulated 
(yyyy-mm-dd hh:mm) 

Error 
 (Number) 

19840416 1130 1422 -292 -25.83 1984-04-17 14:00 1984-04-17 11:00 -1 -5.34 
19840530 4310 4890 -580 -13.45 1984-06-01 17:00 1984-06-01 14:00 -1 3.98 
19850411 1200 1596 -396 -32.98 1985-04-12 23:00 1985-04-12 20:00 -1 -17.63 
19850527 5770 6412 -642 -11.12 1985-05-27 23:00 1985-05-27 23:00 0 12.75 
19850610 1370 1195 175 12.74 1985-06-11 23:00 1985-06-11 17:00 -2 13.66 
19860706 2560 2052 508 19.83 1986-07-06 20:00 1986-07-06 23:00 1 -2.50 
19870404 1790 1463 327 18.24 1987-04-05 20:00 1987-04-05 23:00 1 -18.46 
19870515 1720 1377 343 19.95 1987-05-16 05:00 1987-05-16 05:00 0 0.03 
19870521 1840 1931 -91 -4.94 1987-05-22 02:00 1987-05-22 02:00 0 5.76 
19870606 1080 1073 7 0.61 1987-06-07 11:00 1987-06-07 14:00 1 9.32 
19870614 1350 1308 42 3.15 1987-06-14 23:00 1987-06-14 20:00 -1 -11.4 
19870722 1740 1181 559 32.11 1987-07-23 11:00 1987-07-23 14:00 1 8.08 
19870729 2170 1943 227 10.46 1987-07-29 20:00 1987-07-29 20:00 0 15.16 
19880903 1960 1891 69 3.53 1988-09-05 08:00 1988-09-04 23:00 -3 -8.44 
19890511 2870 2672 198 6.90 1989-05-13 14:00 1989-05-13 11:00 -1 -3.90 
19890522 1890 1885 5 0.28 1989-05-22 23:00 1989-05-22 23:00 0 4.27 
19890529 1880 2181 -301 -16.02 1989-05-31 05:00 1989-05-30 23:00 -2 12.81 
19900530 2770 2610 160 5.76 1990-06-01 02:00 1990-06-01 02:00 0 -10.04 
19900607 2110 2305 -195 -9.25 1990-06-08 11:00 1990-06-08 11:00 0 5.15 
19910616 1010 945 65 6.44 1991-06-16 23:00 1991-06-16 20:00 -1 15.42 
19920423 2320 2389 -69 -2.98 1992-04-24 11:00 1992-04-24 14:00 1 -6.88 
19920516 3020 2710 310 10.27 1992-05-17 17:00 1992-05-17 17:00 0 -17.43 
19920705 3760 4842 -1082 -28.78 1992-07-06 20:00 1992-07-06 17:00 -1 -19.03 
19930513 2560 2339 221 8.62 1993-05-14 14:00 1993-05-14 14:00 0 -8.91 
19930607 2010 1737 273 13.56 1993-06-09 11:00 1993-06-09 14:00 1 1.97 
19930615 1940 1940 0 -0.01 1993-06-16 02:00 1993-06-15 23:00 -1 -11.97 
19940421 5070 5443 -373 -7.35 1994-04-23 20:00 1994-04-23 17:00 -1 6.98 
19940525 2700 3055 -355 -13.17 1994-05-26 14:00 1994-05-26 17:00 1 -0.21 
19940614 3330 2870 460 13.81 1994-06-18 08:00 1994-06-17 17:00 -5 -0.03 
19940723 5810 5914 -104 -1.79 1994-07-24 05:00 1994-07-24 02:00 -1 1.76 
19940805 2660 2884 -224 -8.44 1994-08-06 11:00 1994-08-06 14:00 1 -3.84 
19950425 2040 1814 226 11.06 1995-04-26 11:00 1995-04-26 14:00 1 -17.53 
19950526 1400 1636 -236 -16.84 1995-05-26 17:00 1995-05-26 20:00 1 -11.20 
19950614 3880 4650 -770 -19.85 1995-06-17 02:00 1995-06-17 02:00 0 8.64 

Notes: 1. The total number of floods, which are qualificatory relative to the percentage error of peak discharge, is 

30 and the ratio of qualifying simulation is 88.24% 

2. The total number of floods, which are qualificatory relative to the error of peak time, is 30 and the ratio 

of qualifying simulation is 88.24% 

3. The total number of floods, which are qualificatory relative to the percentage error of total runoff 

volume, is 34 and the ratio of qualifying simulation is 100% 
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Table 8 Performances of the validated runoff parameters 

Floods 
Average 
rainfall 
 (mm) 

Observed 
Runoff 

(mm) 

Simulated 
runoff 
(mm) 

Absolute 
error 
(mm) 

Percentage 
error 
(%) 

qualificatory 

19990426 52.3 47.8 39.6 8.2 17.15 Yes 
19990526 99.9 82.9 74.8 8.11 9.78 Yes 
19990618 51.4 30 25.9 4.13 13.77 Yes 
19990627 53 32.9 34.6 1.66 5.05 Yes 
19990831 49.9 38.4 34.4 4.05 10.55 Yes 
20000403 37.3 25.1 28.5 3.4 13.55 Yes 
20000410 39.2 35.4 38.9 3.46 9.77 Yes 
20000426 26.4 14.5 14.7 0.22 1.52 Yes 
20000510 34.9 19.7 18.3 1.39 7.06 Yes 
20000528 88.5 62.6 72.5 9.94 15.88 Yes 
20000611 44.8 24.3 21.6 2.74 11.28 Yes 

Note: The total number of floods is 11. All floods are qualificatory and the ratio of qualifying 

simulation is 100% 

 

Table 9 Performances of the validated runoff routing parameters 

Floods 

Peak discharge Peak time Percentage 
error in 

total runoff 
volume 

(%) 
Observed 

 
(m3/s) 

Simulated 
 

(m3/s) 

Error 
 

 (m3/s) 

Percentage 
Error 
 (%) 

Observed 
(yyyy-mm-dd hh:mm) 

Simulated 
(yyyy-mm-dd hh:mm) 

Error 
 (Number) 

19990426 2550 2512 38 1.47 1999-04-25 20:00 1999-04-25 23:00 1 3.55 
19990526 4893 5083 -190 -3.88 1999-05-26 17:00 1999-05-26 17:00 0 0.33 
19990618 1690 1786 -96 -5.66 1999-06-18 20:00 1999-06-18 23:00 1 5.16 
19990627 1111 1144 -33 -3.01 1999-06-25 17:00 1999-06-25 17:00 0 4.83 
19990831 1965 1946 19 0.96 1999-08-31 23:00 1999-08-31 23:00 0 2.75 
20000403 1628 1928 -300 -18.43 2000-04-02 23:00 2000-04-03 02:00 1 -7.68 
20000410 1798 2044 -246 -13.70 2000-04-09 20:00 2000-04-09 17:00 -1 -12.23 
20000426 909 800 109 11.95 2000-04-26 20:00 2000-04-26 17:00 -1 -0.27 
20000510 1039 1080 -41 -3.90 2000-05-10 02:00 2000-05-10 02:00 0 7.13 
20000528 3163 3298 -135 -4.27 2000-05-28 14:00 2000-05-28 17:00 1 -6.03 
20000611 1096 1498 -402 -36.65 2000-06-12 05:00 2000-06-12 02:00 -1 5.33 

Notes: 1. The total number of floods, which are qualificatory relative to the percentage error of peak discharge, is 

10 and the ratio of qualifying simulation is 90.91% 

2. The total number of floods, which are qualificatory relative to the error of peak time, is 11 and the ratio 

of qualifying simulation is 100% 

3. The total number of floods, which are qualificatory relative to the percentage error of total runoff 

volume, is 11 and the ratio of qualifying simulation is 100% 
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Figure 1 Flow chart for the Xinanjiang model 
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Figure 2 The simulated and observed hydrographs for 1984 during calibration 

Figure 3 The simulated and observed hydrographs for 1985 during calibration  

Figure 4 The simulated and observed hydrographs for 1986 during calibration  
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Figure 5 The simulated and observed hydrographs for 1987 during calibration  

Figure 6 The simulated and observed hydrographs for 1988 during calibration 

Figure 7 The simulated and observed hydrographs for 1989 during calibration 
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Figure 8 The simulated and observed hydrographs for 1990 during calibration  

Figure 9 The simulated and observed hydrographs for 1991 during calibration 

Figure 10 The simulated and observed hydrographs for 1992 during calibration 
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Figure 11 The simulated and observed hydrographs for 1993 during calibration  
 

Figure 12 The simulated and observed hydrographs for 1994 during calibration 
 

Figure 13 The simulated and observed hydrographs for 1995 during calibration  
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Figure 14 The simulated and observed hydrographs for 1999 during validation 

Figure 15 The simulated and observed hydrographs for 2000 during validation 
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