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Abstract 
 
This paper presents the coupling of the recent advancements in artificial intelligence (AI) 
technology with existing numerical models to constitute an integrated knowledge-based 
system (KBS) on flow and water quality. A hybrid application of the latest AI technologies, 
namely, KBS, artificial neural network, and, fuzzy inference system, in this specific problem 
domain is adopted here. This prototype system, serving both as a design aid as well as a 
training tool, is able to allow hydraulic engineers and environmental engineers to become 
acquainted with up-to-date flow and water quality simulation tools, and fill the existing gaps 
between researchers and practitioners in the application of recent technology in solving real 
prototype problems in Hong Kong. Moreover, the system can meet the demand for an 
integrated system that can quickly assist policy-makers in reaching decisions and also furnish 
convenient and open information service on water quality for the general public. 
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Introduction 
 
It is essential to accurately and efficiently predict water levels, currents, and the transport and 
dispersal of pollutants in coastal waters. During the past decades, a variety of mathematical 
modelling tools employed as predictive tools in real prototype cases are developed. However, 
the emphasis on conventional computer-aided decision-making tools has been primarily 
placed on their algorithmic processes, in particular on the formulation of new models, 
improved solution techniques and effectiveness [1]. It should be noted that the selection of a 
suitable numerical technique and design parameters are influenced by many factors, such as 
water depth, water velocity, grid spacing, etc. The current technique for the numerical 
simulation of flow and water quality has become a highly specialized task, which can only be 
manipulated by experienced engineers. This has produced significant constraints on the use 
of models, thus generating a discrepancy between the developers and users of models.  
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The models are often not user-friendly enough. They lack the ability to transfer knowledge in 
the application and interpretation of the model, expert support for novice users, and effective 
developers-to-users communication. Many users of a model do not possess the requisite 
knowledge to glean their input data, build algorithmic models and evaluate the results of their 
model. The result may be the production of inferior designs and the under-utilization or even 
total failure of these models. Recently, as a result of the relatively low utilization of models in 
the industry, there has been an increasing demand for an integrated approach, which is also 
the current trend in the management of various systems.  
 
Thus, the problem is to represent the information, knowledge and experience in such a format 
as to facilitate comprehension by a broad range of users from novices to experts [2]. It is 
worth investigating how to systemize the decision-making procedures of experts in 
simulating flow and water quality in coastal waters. This need is reinforced by recent 
advances in artificial intelligence (AI) and information technologies, which have rendered it 
possible to incorporate the heuristic knowledge into conventional algorithmic models. The 
information revolution of the last few decades has fundamentally altered the traditional 
planning, modelling and decision-making methodologies of water-related sciences and 
technologies. Information technology now plays an essential role in the sustainable 
development of water resources and the responsible management of the aquatic environment. 
In addition, the general availability of sophisticated personal computers with ever-expanding 
capabilities has given rise to increasing complexity in terms of computational ability in the 
storage, retrieval and manipulation of information flows. 
 
This paper presents the coupling of the recent advancements in AI technology with existing 
numerical models to constitute an integrated knowledge-based system (KBS) on flow and 
water quality. An artificial neural network (ANN) for training of water quality parameters 
and a fuzzy rule base for the representation of heuristic knowledge are incorporated. This 
prototype system, serving both as a design aid as well as a training tool, is able to allow 
hydraulic engineers and environmental engineers to become acquainted with up-to-date flow 
and water quality simulation tools, and fill the existing gaps between researchers and 
practitioners in the application of recent technology in solving real prototype problems in 
Hong Kong.  
 
Hydroinformatics 
 
Hydroinformatics, which only received its proper name in 1991 [3], is a new and emerging 
technology and has since then become one of the most important branches of research and 
application in hydraulics and water resources. The new technologies with the widest 
applicability in the field include KBSs, ANNs, fuzzy systems, data mining, genetic 
algorithms and genetic programming [4]. Individual applications of these innovative 
techniques have recently been recorded in the literature. Chau and Chen [5] delineated an 
example of expert system on numerical modelling system in coastal processes. Zou et al. [6] 
applied an ANN embedding the Monte Carlo approach for modelling water quality under 
input information uncertainty. Chau [7] forecasted the river stage with particle swarm 
optimization ANN. Chen and Mynett [8] employed data mining techniques and heuristic 
knowledge in modelling the fuzzy logic of eutrophication in Taihu Lake. Cheng and Chau [9] 
devised a fuzzy iteration methodology for reservoir flood control operation. Mulligan and 
Brown [10] used genetic algorithms to calibrate water quality models. Chau [11] calibrated 
flow and water quality modeling by using genetic algorithm. Chen [12] evaluated the trophic 
state of reservoirs by applying genetic programming. However, these applications were only 



3 

adopted for a specific situation in an isolated manner. Thus, a user-friendly and integrated 
system has still to emerge that can incorporate a variety of computer-aided tools to facilitate 
decision-making by model users. 
 
Knowledge-Based Systems (KBSs) 
KBSs are considered suitable for solving problems that demand considerable expertise, 
judgment or rules of thumb. The system is often compiled and encrypted to create a run-only 
system, which is preferably installed on a microcomputer for office use. Areas of early 
applications of KBS technology include medical diagnosis, mineral exploration and chemical 
spectroscopy. In recent years, KBSs have been applied to simulate domain problems in a 
variety of fields [13-21].  
 
Artificial neural networks (ANNs) 
ANNs are based on our present understanding of the brain and its associated nervous systems 
[22]. They use processing elements connected by links of variable weights to form black box 
representations of systems. A typical ANN comprises several layers of interconnected 
neurons, each of which is connected to other neurons in the ensuing layer. Data are presented 
to the ANN via an input layer whilst an output layer holds the response of the network to the 
input. Some hidden layers may exist between the input layer and the output layer. All hidden 
and output neurons process their inputs by multiplying each input by its weight, summing the 
product, and then processing the sum using a nonlinear transfer function to generate a result. 
The data-driven models have the ability to learn complex model functions from examples. 
 
Fuzzy Inference Systems 
Fuzzy logic is particularly useful in modeling complex and imprecise behaviors [23]. Under 
the fuzzy set theory, elements of a fuzzy set are mapped to a universe of membership values 
using a function-theoretic form belonging to the close interval from 0 to 1. This step is 
analogous to the estimation of probability in stochastic models. Moreover, the fuzzy logic 
based modeling operates on an ‘if-then’ principle. Both the vector of fuzzy explanatory 
variables or premises in the ‘if’ clause and the consequence in the ‘then’ statement are in the 
form of fuzzy set with membership functions. 
 
The Prototype System 
 
Literature review has been undertaken to identify the most appropriate recent methodologies 
and algorithms involving the integrated KBS on flow and water quality in order to improve 
the usability and display of numerical models. It should be noted that the user can always 
overrule any options and recommendations provided by the system. However, a mechanism 
is built-in to ensure that the user’s overruled input is reasonable and consistent. In other 
words, it plays the role of a knowledgeable assistant only. In order to facilitate the 
development of the KBS, an expert system programming environment or shell available in 
the market will be employed. With rapid developments in recent years, many successful 
expert system shells are now available. For this study, the requirements are the latest 
microcomputer-based shell that combines KBS technology with object-oriented programming, 
a relational database, graphics capabilities and debugging tools under an internet client/server 
network.  
 
Expert System Shell 
The development environment adopted for this prototype integrated system is VISUAL 
RULE STUDIO (VRS), which acts as an ActiveX Designer under the Microsoft Visual Basic 
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programming environment [24]. It incorporates a variety of knowledge representation 
schemes, different inference mechanisms and capabilities to interface with external programs 
in the windows environment. VRS provides an interactive windows-based user interface that 
runs under the conventions of Microsoft Windows. Under this system, any types of display 
windows, such as form, checkbox group, list box, command button, textbox, option button, 
picture box, etc., can be represented as objects, and each of them possesses their own special 
properties. 
 
System Architecture 
Figure 1 shows the system architecture of the prototype system. Besides the usual 
components in a typical KBS, namely, knowledge base, inference mechanism, session 
context, user interface, knowledge acquisition and explanation modules, it also incorporates 
an ANN tool, fuzzy rule system, and a database.  
 
Knowledge acquisition and representation 
The domain knowledge used has been acquired from written documents such as journal 
articles, textbooks and manuals, and complemented by interviews with experts. In acquiring 
knowledge, it is found that the outcomes are better to work together with the expert in the 
context of solving particular actual problems, instead of directly posing questions about rules. 
In order to tailor for each type of domain knowledge in the knowledge base and to take 
advantages of the characteristics of each method, hybrid knowledge representation schemes, 
including object-oriented programming, procedural methods, and production rules are 
employed to express engineering heuristics and standard design knowledge. 
 
Object-oriented programming 
Figure 2 shows the details of the blackboard architecture, which are classified into knowledge 
modules and the blackboard. Knowledge modules corresponding to procedural expertise 
knowledge is divided into Decision Process and Process Control whilst objects in the 
blackboard are basically classified into Decision Stage and Decision Entities. The blackboard 
is partitioned into a number of hierarchical levels, corresponding to different stages of the 
decision process. Decision Stage only comprises a single object whereas there are several 
objects in the Decision Entities level. Data inside Decision Stage are employed by the 
Process Control knowledge modules to determine the next possible action, or to check the 
validity of the function triggered by the user. Forward chaining inference mechanism is 
employed here to derive the next process. After a specific decision stage has been satisfied, 
the pertinent Decision Stage indicator will be assigned one of the preset values. 
 
Process Control modules ensure the proper and effective application of knowledge in 
Decision Process modules and undertake conflict resolution. They evaluate the current 
attribute values in Decision Stage of the blackboard, which provides the indicator to assist 
this decision making. All primary tasks in Process Control module are expressed on 
command buttons together with procedural methods attached. Process Control knowledge 
modules work closely with the user-interface module to produce user-friendly main menu 
displays. The Main Decision Process class monitors the decision stage of all key tasks during 
the decision process and decides either to continue to next step or to prompt a warning 
message. Moreover, the relevant entries and decision parameters under Decision Entities, the 
corresponding attribute values of Decision Stage are synchronized through the Process 
Control knowledge modules. The procedural method attached to Decision Process modules is 
processed when the value of the attribute changes, either by assignment under another 
method or by the user. A mixed problem-solving strategy is adopted. After the user supply 
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the relevant data during each decision stage, the system will determine the execution order of 
different decision knowledge modules. 
 
Procedural methods 
Procedural knowledge expressed using methods are often represented as program codes 
attached to attributes. Here, methods are often attached to the command buttons or option 
buttons. However, procedural methods are only attached to attributes of objects in Decision 
Process and Process Control knowledge modules representing the decision processes whilst 
objects in the blackboard representing the decision context do not embed any procedures.  
 
Production rules 
Some heuristic knowledge is represented in the IF/THEN/ELSE production rules with 
confidence factors that can be assigned either automatically, or in response to the user’s 
request. These rules are a formal way of specifying how an expert selects and manipulate the 
model and its associated parameters. The following is a typical example of the production 
rules in this prototype system. 
 
RULE to determine model dimensions: 4 of 5 
IF the water depth is deep AND 

the density stratification in the vertical direction is significant 
THEN the 3-dimensional numerical model is selected CF 75 

 
In the production rules, the confidence factor (CF), with range is basically from 0 to 100, is 
employed as the determining factor to control the inference process for the evaluation of each 
parameter. The confidence factors, representing the degree of confidence of the statement, are 
set by weighted opinions of various experts based on their heuristic and experience. 
Appropriate rules will be executed depending on the responses of the user.  
 
Incorporation of fuzzy logic 
Fuzzy descriptions are also incorporated in production rules, with the membership functions set 
by weighted opinions of various experts. The user can specify continuously varying conditions, 
such as the pollutant source, with either fuzzy description or definite numerical values. The 
system can automatically transfer the numerical values into fuzzy description with the fuzzy 
membership curve to calculate its relevant confidence of membership before searching the rule 
base. Figure 3 shows the fuzzy description of the water depth with different curves representing 
the definitions of “very low”, “low”, “medium”, “high” and “very high”, respectively.  
 
Incorporation of ANN 
An ANN is used as the learning mechanism to transfer engineering experience into 
knowledge in the calibration of model parameters. The user has to choose appropriate 
answers to questions relating to the physical environment, data availability, demand on 
accuracy, demand on efficiency, and so on. The integrated system then matches the selected 
answers with each rule, executes the appropriate ones, and confirms their priority order on the 
basis of an ANN. A back-propagation architecture with 36 inputs (one attribute and one 
confidence factor for each parameter), 5 outputs (water depth, velocities and water quality at 
specific point of interest), and one hidden layer of 18 nodes is created for the problem. The 
control parameters include a learning rate of 1.0 and a momentum factor of 0.5. The initial 
network weights are assumed with uniformly distributed random values between -0.5 to 0.5. 
A linear function is employed for the input layer whilst the S-shaped sigmoid curve is used as 
a transfer function on each neuron to represent the input-output relation in the hidden layer 
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and output layer. 

 

In order to evaluate the training performance, the normalized root-mean-square error 
(NRMSE) between target and output results is computed. Let N be the number of testing 
example, Tij, Oij be the target values and the computed value of the ith test example and jth 

output node respectively, and jT  be the average target value of jth output node, then the 

definition of the above-mentioned statistical quantity is as follows: 
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Figure 4 shows the relationship between NRMSE and number of training cycles. After about 
30 cycles, self-learning mechanism is accomplished by the use of ANN. System validation is 
performed through the validation process of the ANN and by comparison of the results with 
those by the experts. It should be noted that the knowledge base is dynamic and if more 
input-output data pairs are provided by other experts in different locations of the world, better 
output results will be acquired via the generalization capability of the ANN. 
 
Inference engine 
The inference engine controls the strategies in the selection of procedure methods and 
production rules from the knowledge base to derive a conclusion or decision context. A 
hybrid reasoning strategy that combines forward and backward reasoning schemes is adopted. 
Given the current input values possibly with some unknowns initially, forward chaining 
inference is employed to infer the output values. Finally, when no unknown input can alter 
the current decision significantly, the prototype arrives at a conclusion. Backward chaining 
reasoning is employed, however, if the system has not arrived at a certain conclusion with a 
defined threshold value of confidence factor. The system will then automatically highlight the 
unknown input units that have significantly effect on the current most plausible conclusion, 
and prompt the user to enter their values. In this way, it is able to arrive at a reasonable 
conclusion with minimum information. 
 
Moreover, it is tailored that all the decision steps are seen explicitly on the main screen 
display. The validity of the user’s choice on the preferred sequence of decision processes is 
checked by Process Control knowledge modules, which act opportunistically upon being 
triggered. Moreover, an event-driven inference processing mechanism is adopted so that the 
ensuing action of the system will depend on the input made by the user. For example, if a 3-
dimensional model has been selected, the user is prompted to enter the vertical spatial grid 
size. However, this question will not be prompted in case a 2-dimensional model has been 
chosen. 
 
User-friendly interface 
The system offers a friendly user interface. Whilst input data entries are kept at minimum, 
they are provided by the user mostly through selection of appropriate values of parameters 
from the menus and answers to the queries made by the system. If the input data provided by 
the user is not within the specified range, it will be rejected and warning message will be 
prompted.  
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Verification and Validation 
 
Verification and validation of the prototype system are undertaken by applying to several real 
problems in Hong Kong coastal waters. The application case studies involve the 
establishment of several numerical models on coastal flow and water quality in Hong Kong, 
which encapsulate a few strategically chosen locations such as Pearl River Estuary [25-26], 
Shing Mun River [27], and Tolo Harbour [28-30]. Each of these water bodies is subject to a 
distinct environmental problem. The areas around the Pearl River Estuary, which is the 
largest river system in the South China, have been prospering during the past decade in such 
a dramatic rate that almost all the resources of the estuary are involved. This results in a 
worsening and deteriorating water quality as evidenced by the increasing occurrence of algal 
blooms recently. Shing Mun River is one of the most representative river channels in Hong 
Kong. The water quality of Tolo Harbour, which is an almost land-locked embayment with 
merely a narrow outlet channel, has declined drastically in recent years. It exhibits high algal 
growth and is in particular highly eutrophic. The details and modeling results for these areas, 
which can be found in the above references, are not reiterated here. This prototype system is 
applied to these modeling case studies so as to assist the selection of appropriate model and 
associated parameters and to evaluate the outcomes of employing a variety of methods to 
manipulate either accuracy or effectiveness. Figure 5 shows an example screen displaying 
user-friendly model selection for the application example. 

 

Several numerical experiments were then conducted on these study areas to investigate the 
effects of applying different methods to manipulate either accuracy and/or efficiency. For 
each trial, only one design parameter was varied in order to study its effect. The improvement 
in accuracy was measured by comparing the NMSE for the two cases with and without the 
specified method applied, expressed in a percentage format. The improvement in efficiency 
was measured by comparing the required computer processing unit time for the two cases, 
also expressed in a percentage format. Table 1 shows a summary of comparisons in selected 
experiments regarding accuracy and/or efficiency improvement. In applying the integrated 
system to simulate case studies in Hong Kong coastal areas, it was found that the processes 
used in hydro-informatics and manipulation direction, were reasonable, since similar 
manipulation processes are also accomplished by human expert counterparts. In all the case 
studies, the most appropriate selection and manipulation of numerical model was effective, 
with regard to: bathymetry; data availability; demand on accuracy; demand on efficiency; and, 
numerical stability. 

 
Conclusions 
 
An integrated prototype KBS, which assists in making decisions on modeling process of flow 
and water quality, was developed and implemented. It incorporates an ANN for training of 
water quality parameters and a fuzzy rule base for representation of the heuristic knowledge. 
It is shown that the hybrid application of these latest AI technologies is appropriate to act as 
repository for heuristic knowledge. The knowledge base is transparent and can easily be 
updated, which render the prototype KBS an ideal tool for incremental programming. The 
prototype system has been successfully calibrated in Hong Kong conditions. This prototype 
system, serving both as a design aid as well as a training tool, is able to allow hydraulic 
engineers and environmental engineers to become acquainted with up-to-date flow and water 
quality simulation tools. Moreover, the system can quickly assist policy-makers in reaching 
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decisions and also furnish convenient and open information service on water quality for the 
general public. 
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Table 1. Examples of comparison of accuracy or efficiency improvement from this case study 

Change in scheme/algorithm Improvement in 
accuracy 

Improvement in 
efficiency 

Use of 1-dimension instead of 2-dimension -11% 50% 

Use of 2-dimension  instead of 3-dimension -10% 60% 

Incorporation of  major tidal constituent only -7% 8% 

Assuming constant friction coefficient -6% 12% 

Increase in time step size -6% 30% 

Use of minimum number of variables -5% 10% 

Increase in horizontal grid spacing -5% 35% 

Use of lower order scheme -4% 25% 

Use of explicit scheme instead of implicit scheme -3% 20% 
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Figure 1. Schematic diagram of the prototype integrated system 
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Figure 2. Details of the blackboard architecture 
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Figure 3. Fuzzy membership function of water depth 
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Figure 4. Relationship between NRMSE and number of training cycles
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Figure 5. Screen displaying user-friendly model selection for the application example 




