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Abstract 
In the recent past, machine learning (ML) techniques such as artificial neural networks 
(ANN) have been increasingly used to model algal bloom dynamics. In the present paper, 
along with ANN, we select genetic programming (GP) for modelling and prediction of algal 
blooms in Tolo Harbour, Hong Kong. The study of the weights of the trained ANN and also 
the GP-evolved equations shows that they correctly identify the ecologically significant 
variables. Analysis of various ANN and GP scenarios indicates that good predictions of long-
term trends in algal biomass can be obtained using only chlorophyll-a as input. The results 
indicate that the use of biweekly data can simulate long-term trends of algal biomass 
reasonably well, but it is not ideally suited to give short-term algal bloom predictions.  
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1. Introduction 
 Harmful algal blooms (HABs) refer to the explosive growth and accumulation of 
harmful microscopic algae (phytoplankton). The well-known form of algal bloom – the red 
tide – has been widely reported and has become a serious environmental problem due to its 
negative impacts on human health and aquatic life. Harmful effects of red tides include beach 
closure, mariculture loss due to oxygen depletion or toxic algae, anoxia or shellfish poisoning 
(Anderson, 1994). In the past two decades there is an increasing trend in the occurrence of 
harmful algal blooms throughout the world. In particular, in April 1998, a devastating red tide 
resulted in the worst fish kill in Hong Kong’s history - it destroyed over 80 percent (3400 
tonnes) of cultured fish stock, with estimated loss of more than HK$312 million (Lee and Qu, 
2004). Thus, a capability to analyze and predict the occurrence of algal blooms with an 
acceptable accuracy and lead-time would apparently be very beneficial to fisheries and 
environmental management. 
 Traditionally, models of phytoplankton dynamics are based on theories of the 
dependence of growth and decay factors on physical and biotic environmental variables (e.g. 
solar radiation, nutrients, flushing) – expressed mathematically and incorporated in advective 
diffusion equations in a water quality model. Such deterministic models are normally referred 
to as process-based models. A limitation of the process-based models is the significant 
uncertainty of many kinetic coefficients adopted in the water quality model. In the recent 
past, with the development of artificial intelligence (AI) techniques and easy availability of 
computer-aided analysis, machine learning (ML) techniques have been extensively used in 
ecological modelling (Recknagel, 2001).  
 ML techniques are ideally suited to model the algal dynamics since such models can 
be set up rapidly and is known to be effective in handling dynamic, non-linear and noisy data, 
especially when underlying physical relationships are not fully understood, or when the 
required input data needed to drive the process-based models are not available. In the present 
study, we employ artificial neural networks (ANN) and genetic programming (GP) for 
analysis of water quality data from Tolo Harbour. In the following sections, we first present 
an introduction to the key principles of ANN and GP, followed by its application to modeling 
of algal dynamics.  
 
2. Machine Learning (ML) modelling techniques 
 During the past two decades, researchers have at their disposal, many fourth 
generation ecological models, ranging from numerical, mathematical and statistical methods 
to techniques based on AI. ML is an area of computer science, a sub-area of AI concentrating 
on the theoretical foundations (Solomatine, 2002). A ML technique is an algorithm that 
estimates hitherto unknown mapping (or dependency) between a system’s inputs and its 
outputs from the available data (Mitchell, 1997). Once a dependency is discovered, it can be 
used to predict (or effectively deduce) the system’s future outputs from the known input 
values. The growing development of computer-aided analysis, which is easily accessible to 
all researchers, has facilitated the application of various ML techniques in ecological 
modelling (Recknagel, 2001). These techniques include ANN (Recknagel et al., 1997, 2002; 
Yabunaka et al., 1997; Maier et al., 1998; Scardi and Harding, 1999; Jeong et al., 2001; 
Scardi, 2001; Wei et al., 2001; Chau and Cheng, 2002; Lee et al., 2003; Chau, 2004a&b; 
Cheng et al., 2005; Chau, 2005), fuzzy and neuro-fuzzy techniques (Maier et al., 2001; Chen 
and Mynett, 2003), evolutionary based techniques (Bobbin and Recknagel, 2001; Recknagel 
et al., 2002; Jeong et al., 2003; Muttil et al., 2004), etc. Although most of these studies are 
applied to freshwater environments (i.e., limnological or riverine systems), a few have been 
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to saltwater eutrophic areas (Scardi and Harding, 1999; Scardi, 2001; Lee et al., 2003; Muttil 
et al., 2004).  
 Out of the several possible ML techniques, we considered ANN and GP. We selected 
ANN because it is the most widely used method in water resources variable modelling (Maier 
and Dandy, 2000), and GP because it has an advantage in that it generates equations or 
formulae relating input and output variables, which might shed physical insight into the 
ecological processes involved. Further, Recknagel (2001) reported that ANN and genetic 
algorithms (of which GP is an extension) currently appear to be most innovative for 
ecological modelling. We present brief introductions to these two techniques in the following 
sub-sections. 
 

2.1. Artificial neural network (ANN) 
 An ANN is a computing paradigm designed to mimic natural neural networks 
(Haykin, 1999).  Although there are many types of ANNs, by far the most widely used is the 
feed-forward neural networks or the multi-layer perceptron, which is organized as layers of 
computing elements (called neurons) connected via weights between layers. Typically, there 
is an input layer that receives inputs from the environment, an output layer that produces the 
network's response, and one or more intermediate hidden layers. 
 The action of each neuron is to compute a response from the weighted sum of its 
inputs from neurons connected to it, using a predetermined activation function. The output is 
routed to become the inputs of other neurons in the following layer. Many activation 
functions are in use, with the most popular being the sigmoid and the hyperbolic-tangent 
(tanh) functions. 
 The feed-forward network is also known as the (error) back-propagation network 
because of the method used in its training.  Training is a process of adjusting the connection 
weights in the network so that the network's response best matches the desired response. 
Although this can be addressed as an optimization method, the back-propagation method 
avoids this costly exercise by using an approximation to a gradient descent method. More 
details on ANN can be found in, for example, Haykin (1999). 
 

2.2. Genetic programming (GP) 
 The basic search strategy behind genetic programming (Koza, 1992) is a genetic 
algorithm (Goldberg, 1989), which imitates biological evolution. It differs from this 
traditional genetic algorithm in that it typically operates on parse trees instead of bit strings. 
A parse tree is build from a terminal set (the variables in the problem) and a function set. 
Suppose the terminal set consists of a single variable x and some constants, and the function 
set consist of the operators for multiplication, division, addition and subtraction, the space of 
available parse trees constitute all polynomials of any form over x and the constants. An 
example can be found in Figure 1, where the parse tree for the model: y = -0.2x + 0.3 is 
shown. 
 As a genetic algorithm, genetic programming proceeds by initially generating a 
population of random parse trees, calculate their fitness - a measure of how well they solve 
the given problem - and subsequently selects the better parse trees for reproduction and 
recombination to form a new population. This process of selection and reproduction iterates 
until some stopping criterion is satisfied. The recombination takes place by crossover: 
randomly swapping sub-trees of the parse trees between selected individuals. A more 
comprehensive presentation of GP can be found in Babovic and Abbott (1997) and Babovic 
and Keijzer (2000). 
 The main advantage of GP for the modeling process is its ability to produce models 
that build an understandable structure, i.e., a formula or equation. Thus, for "data rich, theory 
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poor" instances, GP may offer advantages over other techniques since GP can self modify, 
through the genetic loop, a population of function trees in order to finally generate an 
"optimal" and physically interpretable model. 
 
3. Modelling approach and application 
 The application of ANN and GP for real-time algal bloom prediction at Tolo Harbour 
in the northeastern coastal waters of Hong Kong is presented. In this section, we give an 
account of the nature of the data used and details of the modelling.  
 

3.1. The study site and data 
 Tolo Harbour is a semi-enclosed bay in the northeastern coastal waters of Hong Kong 
(Figure 2). It is connected to the open sea at Mirs Bay; in general the water quality improves 
from the more enclosed and densely populated inner “Harbour Subzone” towards the better 
flushed outer “Channel Subzone”.  
 The nutrient enrichment in the harbour due to municipal and livestock waste 
discharges has been a major environmental concern over the past two decades. The organic 
loads are derived from the two major treatment plants at Shatin and Taipo (Figure 2), non-
point sources from runoff and direct rainfall, and waste from mariculture. The eutrophication 
has resulted in frequent algal blooms and red tides, particularly in the weakly flushed tidal 
inlets inshore, with occasional massive fish kills due to severe dissolved oxygen depletion or 
toxic red tides. Various studies (Morton, 1988; Xu et al., 2004) have shown that the 
ecosystem health state of the Tolo Harbour had been progressively deteriorating since the 
early 1970s up to late 1980s. During this period, the nutrient enrichment in the harbour due to 
urbanization, industrialization and livestock rearing had caused serious stresses to the marine 
coastal ecosystem. The situation became worst in the late 1980s with frequent occurrences of 
red tides and associated fish kills. Morton (1988) referred to the Tolo Harbour as “Hong 
Kong’s First Marine Disaster” and pointed out that the inner harbour was effectively dead. In 
the late 1980s, Tolo harbour had reached a critical stage, which resulted in the development 
of an integrated action plan, Tolo Harbour Action Plan (THAP) by the Hong Kong 
Government. The implementation of THAP in 1988 had achieved significant effectiveness on 
the reduction of pollutant loading and on the improvement of the water quality.  A number of 
field and process-based modeling studies on eutrophication and dissolved oxygen dynamics 
of this harbour have been reported (e.g., Chan and Hodgkiss, 1987; Chau and Jin, 1998; Lee 
and Arega, 1999; Chau, 2004c; Xu et al., 2004). 
 The monthly/biweekly water quality data, collected as part of the routine water 
quality monitoring program of the Hong Kong government’s Environmental Protection 
Department, is used as a basis for the modelling. In order to isolate the ecological process 
from the hydrodynamic effects as much as possible, the data from the most weakly flushed 
monitoring station, TM3 (Figure 2), are used. The ecological variables are all depth-averaged. 
The biweekly observed data is linearly interpolated to get the daily values. In addition, daily 
meteorological data (thus no interpolation required) of wind speed, solar radiation and 
rainfall recorded by the Hong Kong Observatory is used. The data from 1988 – 1992 are used 
for training and data from 1993 – 1996 are used for testing the models. More details on the 
water quality data can be found elsewhere (Lee and Arega, 1999; Lee et al., 2003). 
 

3.2. Objective function and model performance criterion 
 The objective function used for the evolution of the GP models is the minimization of 
Root-Mean-Square-Error (RMSE) of the prediction over the training period. The 
performance of the predictions for both ANN and GP is evaluated by two goodness-of-fit 
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measures: the RMSE and correlation coefficient (CC). Time series plots are used for visual 
comparison. 
 

3.3. Selection of model inputs and output 
 Based on previous field and modelling studies in weakly flushed embayment in Tolo 
Harbour (Chau et al., 1996; Lee and Arega, 1999; Lee at al., 2003), the following nine input 
variables are selected to be the most influential on the algal dynamics of Tolo Harbour: 
chlorophyll-a, Chl-a (µg/L); total inorganic nitrogen, TIN (mg/L); phosphorus, PO4 (mg/L); 
dissolved oxygen, DO (mg/L); secchi-disc depth, SD (m); water temperature, Temp (˚C); 
daily rainfall, Rain (mm); daily solar radiation, SR (MJ/m2) and daily average wind speed, 
WS (m/s). 
 Chlorophyll-a, an indicator of the algal biomass, is taken as the model output. Based 
on considerations of the ecological process at Tolo Harbour and practical constraints of data 
collection, a one-week prediction of algal blooms is set as the modelling target. For each of 
the input variables, a time lag of 7-13 days is introduced. The time lag starts from 7 because 
of the requirement of one-week lead-time of the prediction. 
 
4. Selection of significant input variables 
 In any ML technique, the selection of appropriate model input variables is extremely 
important. The choice of input variables is generally based on a priori knowledge of causal 
variables and physical/ecological insight into the problem. Moreover, the use of lagged input 
variables also leads to better predictions in a dynamical system. Maier and Dandy (2000) 
have reviewed 43 international journal papers, which used ANN for modelling and 
forecasting of water resources variables, published between 1992 and 1998. They concluded 
that in many papers, the modelling process is carried out incorrectly and one of the main 
areas of concern included arbitrary selection of model inputs, which we address in this 
section. 
 ANN networks are trained and GP equations are evolved to develop a relationship 
between the chlorophyll-a concentration at time t and the nine input variables with the time 
lag of 7-13 days. Thus, for each of the nine input variables, we have seven time-lagged 
variables, making a total of 9 × 7 (= 63) input variables, out of which the significant input 
variables are to be selected.  
 

4.1. Significant variables based on ANN weights 
 In this study, a fully connected feed forward MLP neural network trained with a back 
propagation algorithm with momentum term was used for forecasting the algal blooms. A 
single hidden layer was considered in this study, and thus the resulting MLP neural network 
structure consisted of three layers: an input layer, a hidden layer and an output layer. 
 The input layer had 63 nodes, which were the input variables determined previously. 
Determination of the optimal number of nodes in the hidden layer is an important factor, 
which affects the performance of the trained network. In general, networks with fewer hidden 
nodes are preferable as they usually have better generalization capability and less over fitting 
problem. The use of computational time is also less with fewer numbers of nodes. But if the 
number of nodes is not enough to capture the underlying behaviour of the data then the 
performance ability of the network decreases. In this study, a trial and error procedure was 
carried out by gradually varying the number of nodes in the hidden layer from 2 to 10 and the 
optimal number was found to be 6. The output layer of the networks contained only one 
neuron, which is the chlorophyll-a concentration that is to be predicted. 
 The learning rate parameter and the momentum term were also determined by trial 
and error. The optimal values for the learning rate parameter and the momentum term for the 
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neural network runs were found to be 0.05 and 0.1 respectively. The hyperbolic-tangent 
function (tanh) was used as the activation function for both the hidden and the output layer. 
 The above described network structure (see Figure 3) is used to predict the algal 
biomass with a one-week lead-time. All simulations are carried out in accordance with the 
model formulation and training details described above. The back propagation training was 
stopped after 500 epochs in all the simulations. This number was selected by trial and error, 
as it was observed that 500 epochs were enough to train the network and there was no over-
training. 
 In order to select the significant input variables, an analysis of the network weights 
was done. In the trained network, the connection weights along the paths from the input 
nodes to the hidden nodes demonstrate the relative predictive importance of the independent 
variables. Now, in our network, there are 63 input nodes, and in order to measure the 
importance of any one variable in predicting the network’s output, relative to the other input 
variables in the same network, we define a term called the contribution factor. The 
contribution factor of the nth variable, CFn is defined as below: 
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where nH denotes the number of hidden nodes, nV is the number of input variables, wji are 
the weights from input layer i to the hidden layer j (see Figure 3) and ABS is the absolute 
function. 
 Using Eqn. (1), the contribution factor of each of the 63 input variables is calculated, 
and this is presented in Table 1. The sum of the contribution factors of all the 63 input 
variables should add up to 100%, which can be seen in Table 1. The contribution factor is so 
defined that the higher its value for a variable, the more that variable is contributing to the 
prediction. From this analysis, which is based on the weights of the trained neural network, 
Chl-a at (t-7), with a contribution factor of 9.17%, is the most significant in predicting the 
one-week ahead algal biomass. In Table 1, the variables with a contribution factor greater 
than 2.00% are shaded and are considered relatively more significant. The other variables 
suggested to be significant are PO4, TIN, DO and SD. 
 

4.2. Significant variable using GP equations 
 An attempt is made to use the evolutionary search capabilities of GP for selecting the 
significant input variables. The GPKernel parameters used for all the GP runs are presented 
in Table 2. The parameters "Maximum initial tree size" and "Maximum tree size" indicate the 
maximum size of the tree of the initial population and of the population from subsequent 
generations, respectively. The values of "Maximum initial tree size" and "Maximum tree 
size" are constrained to 45 and 20, respectively. This restriction is necessary since GP has the 
tendency to evolve uncontrollably large trees, if the tree size is not limited. A maximum tree 
size of 20 evolves simple expressions that are easy to interpret. It is observed that when 
"Maximum tree size" is restricted to 20, the evolved equation contains only 4 to 8 variables. 
Thus, we are allowing the evolutionary process to select only about 4 to 8 variables from the 
total of 63 variables that are used as input. 
 In order to avoid a functional relationship comprising of dimensionally non-
homogenous terms within the evolved GP model, all the variables are normalized or non-
dimensionalized initially. They are non-dimensionalized by dividing all the variables by their 
respective maximum values. 
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 The GP tool software used in this study is GPKernel, which is developed by DHI 
Water & Environment and is available at http://www.d2k.dk. GPKernel is a command line 
based tool for finding functions on data. All computations were performed on a Pentium PC 
with 1021 MB RAM; for each adopted function and variable set, GPKernel is run for 30 CPU 
minutes to obtain the optimal solution. 
 For the GP runs, 4 different function sets are used (Table 3), and for each function set, 
20 GP equations are evolved with different initial seeds. Thus, 80 GP equations were evolved 
for the one-week predictions. As seen in Table 3, small and simple function sets are used. 
This is so because GP is very creative at taking simple functions and creating what it need by 
combining them (Banzhaf et al., 1998). In fact, GP often ignores the more sophisticated 
functions in favor of the simple ones during evolution. A simple function set also leads to 
evolution of simple GP models, which are easy to interpret. Now, since GP has the ability to 
select input variables that contribute beneficially to the model, it is expected that the GP 
evolved equations would contain the most significant of the 63 input variables. In other 
words, a measure of the significance of a variable is the number of times the variable is 
selected. For each of the 63 input variables, the number of times it is selected in each of the 
80 evolved equations are summed up and are presented in Table 4. The significant variables 
as indicated by GP are shaded in this table. These shaded variables are those whose number 
of terms are more than 2% of the total number of terms in the 80 GP equations. In this 
particular analysis, the total number of terms in the 80 equations is 790 and variables that 
contribute more than 2% of 790 (i.e., 16 or more terms) are shaded. It can be seen from this 
table that the Chl-a value itself plays a significant role in predicting its one-week ahead value. 
The other variables indicated as significant are PO4, DO, TIN and SD. 
 

4.3. Discussion on suggested significant variables 
 From the analysis presented above using both ML techniques, ANN and GP, it is 
clearly observed that Chl-a values during the past 1 – 2 weeks are significant, with Chl-a at 
(t-7) being the most significant in predicting itself. This suggests an auto-regressive nature for 
the algal dynamics. Geophysical time series frequently exhibit such auto-regressive nature or 
"persistence" because of inertia or carryover process in the physical system. Modelling can 
contribute to understanding the physical system by revealing something about the process 
that builds persistence into the series. In the present study, the auto-regressive nature (or 
persistence) of chlorophyll dynamics suggested by the ML techniques may be related to the 
long flushing time (residence time) in the semi-enclosed coastal water. This was also 
suggested in a recent ANN study of algal dynamics in Tolo Harbour (Lee et al., 2003). The 
tidal currents are very small with the average current velocity being 0.04 m/s in the inner 
Harbour Subzone and 0.08 m/s in the outer Channel Subzone (EPD, 1999). Thus, the 
landlocked nature of the estuary leads to weak tidal flushing; the flushing times in inner 
Harbour Subzone have been estimated to be in the order of 1 month (Lee and Arega, 1999).  
 Both the ML techniques also suggest that the nutrients (PO4 and TIN) along with DO 
and SD (to a lesser extent) to be significant, although these variables are not as highly 
significant as Chl-a. The importance of nutrients is understandable, since the growth and 
reproduction of phytoplankton is dependent on the availability of various nutrients. In 
subtropical coastal waters with mariculture activities, the DO level is also intimately related 
to algal growth dynamics. DO is important for the respiration of these organisms and for 
some chemical reactions. Moreover, Xu et al. (2004) pointed out that the general trends for 
PO4, TIN and DO increased from the early 1970s to the later 1980s or the early 1990s; and 
then decreased from the early 1990s to the later 1990s (the decrease can be attributed to the 
implementation of THAP in 1988, as discussed in Section 3.1). In the present study, the 
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significance of PO4, TIN and DO seem to be understandable, since our training data is from 
1988 – 1992, a period when there was an increasing trend in these variables. 
 As mentioned earlier, the biweekly water quality data is linearly interpolated to get 
the daily values, which is used in this study. It should be noted that when interpolation is 
applied to produce time series from longer sampling frequency to short time step, future 
observations are used to drive the predictions (Lee et al., 2003). An approach to avoid this 
use of "future data" in the predictions is to predict the algal dynamics with a lead-time equal 
to the time interval of the original observation. In the present case, a biweekly or more lead-
time prediction would be free of this "interpolation effect". Thus, a biweekly prediction is 
carried out using the same data and the significant input variables are identified using ANN 
and GP, as was done using the one-week predictions. In the biweekly predictions, a time lag 
of 14 - 20 days is introduced for each of the input variables and Chl-a is predicted at time t. 
The significant variables are presented in Table 5 and Table 6 for the ANN and GP 
predictions, respectively. As before, the shaded variables are those whose contribution is 
more than 2% in terms of ANN weights and number of terms in GP equations, respectively. 
From these tables, it is observed that for biweekly predictions, the significant input variables 
are the same as that for the one-week predictions, except for Temp, which is also indicated as 
significant in the biweekly analysis. Since the biweekly predictions are free of the 
interpolation effect, we can conclude that the significant input variables from one-week 
predictions are reasonable. The one-week predictions, although to some extent being driven 
by interpolation of data, still have physical knowledge in them and it seems that they are 
based on cause-effect relationship between the time-lagged input variables and future algal 
biomass. 
 In the next section, the one-week ahead predictions using both ANN and GP are 
presented. The variables suggested as significant, namely, Chl-a, PO4, TIN, DO and SD are 
used as input for the predictions. For each of these significant input variables, 7 – 13 days of 
time-lagged inputs are used. 
 
5. The one-week ahead predictions 

5.1. Predictions using ANN 
 In this section, different neural network runs are carried out with different 
combinations of the significant input variables. As before, the concentration of Chl-a is 
predicted with a one-week lead-time. These neural network simulations are carried out in 
accordance with the model formulation and training details described for the input variable 
selection in Section 4.1. 
 Figure 4 shows the comparison of the predicted Chl-a with observed values for both 
the training and testing periods, for the best ANN prediction, which is with only time-lagged 
Chl-a as inputs. A blow-up of the same predictions for a period (May 1993 to September 
1994) from the testing data is presented in Figure 5. 
 

5.2. Predictions using GP 
 Using as input, the significant variables indicated in the previous section, GP models 
are evolved for Chl-a prediction for one-week lead-time. Five different GP runs are 
conducted with each of the 4 function sets presented in Table 3. The parameters for the GP 
runs are the same as those used for the input variable selection (presented in Table 2), with 
the exception of "Maximum tree size", which is increased to 45, because a bigger tree size 
would give lower RMSE. 
 The best GP model (with minimum RMSE) was evolved with the function set 
consisting of the basic math operators (+, -, *, /), which confirms our using simple function 
sets (see Table 3) based on the understanding that GP requires simple function sets to create 
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models with best predictive capability. Figure 4 also shows the comparison of the predicted 
chlorophyll-a with observed values for both the training and testing periods, again for the best 
GP predictions (using only time-lagged Chl-a as inputs). Figure 5 also presents a blow-up of 
the predictions, similar to that presented for the ANN prediction. 
 

5.3. Discussion on prediction results 
 The goodness-of-fit measures for both the ANN and GP predictions for the different 
scenarios are presented in Table 7. From the results presented in this table, it is clearly 
observed for both ANN and GP predictions that the accuracy of the predictions worsen with 
increase in the number of input variables. In fact, the best predictions are when only time-
lagged Chl-a is used as input. This significance of Chl-a in predicting itself is in contrast to 
various previous studies, which have tended to include many more input variables. For 
example, Jeong et al. (2003) used 19 input variables, but concluded that only 4 variables are 
required to predict cyanobacteria biovolume with a high accuracy; Jeong et al. (2001) used 16 
variables to predict time series changes of algal biomass with a time-delayed recurrent neural 
network; Wei et al. (2001) included eight environmental factors to estimate the evolution of 
four dominant phytoplankton genera using ANN; Recknagel et al. (1997) used 10 input 
variables to a feed-forward ANN for the prediction of algal bloom in lakes in Japan, Finland 
and Australia; Yabunaka et al. (1997) used 10 environmental parameters as ANN inputs to 
predict the concentration of five freshwater phytoplankton species. This observation of algal 
biomass alone being sufficient for predicting itself may also throw doubt on the advantage of 
deploying expensive equipment (like automatic nutrient analyzers for ammonia and nitrate 
nitrogen) in algal bloom warning systems in coastal waters. 
 From the time series plots of the predictions (Figure 4), it is seen that the prediction 
can track the algal dynamics with reasonable accuracy. But on closer examination (the blow-
up of the predictions is presented in Figure 5), a phase error of about one-week can be noted 
in the predictions. Thus, it can be concluded that the use of this biweekly data may not be 
ideally suited for short-term predictions of algal blooms. The use of higher frequency data 
should be a solution for improving the accuracy of the predictions. We would also point out 
that biweekly predictions using the significant input variables were also carried out, but those 
results are not presented here as the phase error in them is much more than that for the one-
week predictions. 
 
6. Conclusions 
 This study presents the analysis of algal dynamics data from a coastal monitoring 
station using two ML techniques, ANN and GP. The interpretation of ANN weights and GP 
equations appear to be able to identify key input variables that are in accordance with 
ecological reasoning. The study reveals that chlorophyll-a itself is enough as input for 
predicting itself, suggesting an auto-regressive nature of the algal dynamics in the semi-
enclosed coastal waters. The results for the prediction of chlorophyll-a suggest that the use of 
biweekly data can simulate long-term trends of algal biomass reasonably well, but it is not 
ideally suited to give short-term algal bloom predictions. The use of higher frequency data is 
suggested for improving the short-term predictions. 
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Table 1. Contribution factor, calculated using the weights of the trained ANN (see 
Eqn. (1)) for one-week predictions 

Contribution factors of the input variables (%) * Input 
variables (t-7) (t-8) (t-9) (t-10) (t-11) (t-12) (t-13) 

Sum 

Chl-a 9.17 2.62 3.35 2.27 2.18 1.89 3.05 24.53 
TIN 3.37 1.54 1.18 1.68 1.50 1.23 2.27 12.77 
DO 3.12 2.06 1.37 1.41 1.13 1.05 1.55 11.68 
PO4 4.11 1.62 1.04 0.72 1.04 1.69 2.55 12.77 
SD 1.08 1.20 1.11 1.22 1.37 1.70 2.98 10.66 

Temp 1.42 1.01 1.28 1.00 0.78 1.02 1.70 8.20 
Rain 0.95 1.31 0.97 1.08 1.15 1.18 1.31 7.95 
SR 1.00 0.56 0.69 0.65 0.68 0.42 0.69 4.70 
WS 1.09 0.89 1.06 1.05 1.13 0.73 0.79 6.74 

Sum of contribution factors of all variables = 100 
* Shaded variables have a contribution factor greater than 2% 
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Table 2. Values of control parameters used in 

GP runs 
 

Parameter Value 

Maximum initial tree size 45 

Maximum tree size 20 

Crossover rate 1 

Mutation rate 0.05 

Population Size 500 

Elitism used Yes 
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Table 3. Function sets used 

for the GP runs  
Function set  

+, -, *, /  

+, -, *, /, ex  

+, -, *, /, x2  

+, -, *, /, xy  
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Table 4. Number of input variable selections in 80 GP runs for one-week 
predictions 

 

Number of terms of time-lagged input variables * Input 
variables (t-7) (t-8) (t-9) (t-10) (t-11) (t-12) (t-13) 

Total 
terms 

Chl-a 229 53 65 58 51 46 23 525 
TIN 14 7 10 1 3 2 5 42 
DO 18 14 5 5 10 6 14 72 
PO4 38 10 9 4 2 4 1 68 
SD 13 17 4 11 2 1 2 50 

Temp 4 3 2 1 5 7 5 27 
Rain 0 0 0 0 0 1 1 2 
SR 0 0 1 0 0 2 1 4 
WS 0 0 0 0 0 0 0 0 

Total number of terms in 80 GP models =  790 
* Shaded variables contribute to more than 2% of the 790 terms in the 80 GP models 
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Table 5. Contribution factor, calculated using the weights of the trained ANN (see 
Eqn. (1)) for biweekly predictions 

Contribution factors of the input variables (%) * Input 
variables (t-14) (t-15) (t-16) (t-17) (t-18) (t-19) (t-20) 

Sum 

Chl-a 2.79 1.54 1.23 1.24 1.07 0.54 2.46 10.87 
TIN 5.53 2.34 1.27 1.02 1.91 2.68 3.71 18.46 
DO 2.42 1.96 1.86 1.39 0.63 0.80 1.19 10.26 
PO4 3.35 1.92 0.85 0.28 0.42 0.93 2.04 9.78 
SD 3.50 2.38 1.38 0.20 1.06 2.27 3.66 14.45 

Temp 4.04 3.09 2.39 1.78 1.18 0.94 1.36 14.79 
Rain 1.89 1.55 1.23 1.08 1.38 1.26 1.57 9.96 
SR 0.70 0.45 0.59 0.40 0.47 0.27 1.59 4.46 
WS 1.19 0.63 1.14 0.83 1.00 1.02 1.15 6.95 

Sum of contribution factors of all variables = 100 
* Shaded variables have a contribution factor greater than 2% 
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Table 6. Number of input variable selections in 80 GP runs for biweekly 
predictions 

 

Number of terms of time-lagged input variables * Input 
variables (t-14) (t-15) (t-16) (t-17) (t-18) (t-19) (t-20) 

Total 
terms 

Chl-a 140 18 71 111 13 9 6 368 
TIN 10 5 4 1 0 4 10 34 
DO 31 10 11 2 3 3 11 71 
PO4 24 10 2 1 3 9 15 64 
SD 35 9 3 5 2 0 7 61 

Temp 14 8 2 3 2 1 9 39 
Rain 0 0 0 1 0 0 2 3 
SR 0 1 3 11 10 11 13 49 
WS 0 0 0 1 0 1 0 2 

Total number of terms in 80 GP models =  691 
* Shaded variables contribute to more than 2% of the 691 terms in the 80 GP models 
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Table 7. Goodness-of-fit measures for the ANN and GP one-week predictions 

Training Testing 
Input variables * 

RMSE CC RMSE CC 

For ANN modelling 

Chl-a, PO4, TIN, DO, SD 1.87 0.96 4.02 0.82 

Chl-a, PO4, TIN, DO 2.16 0.94 4.49 0.86 

Chl-a, PO4, TIN 2.14 0.95 3.00 0.91 

Chl-a, PO4 2.42 0.94 2.76 0.92 

Chl-a 2.55 0.93 2.24 0.95 

For GP modelling 

Chl-a, PO4, DO, SD 2.67 0.92 2.54 0.93 

Chl-a, PO4, DO 2.55 0.92 2.50 0.93 

Chl-a, PO4 2.37 0.93 2.32 0.94 

Chl-a 2.55 0.93 1.99 0.95 
* All input variables are of 7-13 days time lag 
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Figure 1. Example of GP parse tree representing  -0.2x + 0.3 
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Figure 3. General neural network for the prediction of algal blooms, p = 7,…,13 for one-week 

predictions and p = 14,…,20 for biweekly predictions 
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Figure 4. One-week predictions of chlorophyll-a at TM3 using ANN and GP (for training and 

testing periods) 
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Figure 5. Blow-up of the one-week ANN and GP predictions indicating the phase errors 

(from part of testing period) 
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