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Abstract 

In this paper we study a scheduling model that simultaneously considers production 

scheduling, material supply, and product delivery. One vehicle with limited loading 

capacity transports unprocessed jobs from the supplier’s warehouse to the factory in a 

fixed travelling time. Another capacitated vehicle travels between the factory and the 

customer to deliver finished jobs to the customer. The objective is to minimize the 

arrival time of the last delivered job to the customer. We show that the problem is 

NP-hard in the strong sense, and propose an O(n) time heuristic with a tight 

performance bound of 2. We identify some polynomially solvable cases of the 

problem, and develop heuristics with better performance bounds for some special 

cases of the problem. Computational results show that all the heuristics are effective 

in producing optimal or near-optimal solutions quickly. 
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1. Introduction 

Supply chain scheduling has in recent years gained new importance with the 

development of supply chain management. Supply chain scheduling research 

integrates the three stages of material supply, production arrangement, and product 

delivery into one model that seeks to achieve optimal overall system performance 

through proper coordination of these stages. Thomas and Griffin (1996), and Erengüc 

et al. (1999) emphasized the need for studying supply chain issues at the operational 

level. Hall and Potts (2003) showed that if decision makers at different stages of a 

supply chain make poorly coordinated decisions at the operational level, substantial 

inefficiencies may result. The supply chain scheduling problem is different from the 

traditional batch scheduling problem, which mainly uses batching as a means to 

reduce machine setup times and costs incurred from switching production between 

different job families. For example, the reader is referred to the papers on this area by 

Cheng et al. (1996, 1997), Potts and Van Wassenhove (1992), Potts and Kovalyov 

(2000), Quadt and Kuhn (2007), and Schaller (2007).  

Research on supply chain scheduling mainly focuses on models that describe the 

coordination between production and delivery stages. For example, see Lee and Chen 

(2001), Chang and Lee (2004), Chen and Vairaktarakis (2005), Pundoor and Chen 

(2005), Wang and Lee (2005), Li et al. (2005), and Wang and Cheng (2007). To the 

best of our knowledge, for integrated three-stage supply chain scheduling models, 

Hall and Potts (2003) considered scheduling models integrating material supply, 

production scheduling, and product delivery with an arborescent supply chain 

structure. Li and Ou (2005) studied a single-machine scheduling model with material 

pickup and job delivery under the assumption that the material supplier and the 

customer are at located the same location, while the manufacturer resides at another 

location.  
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Many firms in Hong Kong are engaged in global supply chain business activities. 

For example, a clothing manufacturer in Hong Kong has received orders for fashion 

apparels from European customers. Taking into consideration such factors as 

availability of materials, material quality and price, manpower cost, and availability of 

workers, the manufacturer purchases raw materials such as cotton from South Korea 

and arranges production at its factories in mainland China. For such season-sensitive 

products, in order to reduce the high risk from market uncertainty, the firm finds it 

advantageous to consider the planning decisions on material supply, production and 

product delivery simultaneously. Since transportation spans long distances in this 

situation, both transport time and transport capacity constraints need to be considered 

in the planning decisions.  

Motivated by the above example, we consider in this paper a scheduling model 

that integrates material supply, production scheduling, and product delivery. In our 

model the material warehouse, the factory, and the customer are located at three 

different places. There are two vehicles each with a limited loading capacity; one 

vehicle travels between the warehouse and the factory for material transportation, and 

the other travels between the factory and the customer for product delivery. The 

whole logistics activity embracing both production and transportation requires proper 

coordination in order to achieve low costs and a high level of customer service. Our 

model differs from that of Hall and Potts (2003) in that we incorporate the important 

factor of transport time in the model. Our model also differs from that of Li and Ou 

(2005) for we assume that the material supplier and the customer are at different 

locations. 

The remainder of the paper is organized as follows. In Section 2 we formally 

describe the problem and introduce some notation. In Section 3 we first show that the 

problem is NP-hard in the strong sense, then we establish some optimal properties for 
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the assignment of jobs to supply batches and delivery batches, and finally derive some 

lower bounds for the optimal solution of the problem. In Section 4 we identify special 

cases of the problem that can be solved in polynomial time. In Section 5 we devise 

several heuristics for the general problem and for some special cases, and analyze 

their worst-case performance bounds. In Section 6 we evaluate the performance of the 

heuristics computationally and present the experimental results. In the last section we 

make concluding remarks and suggest directions for future research. 

 

2. Description of the problem 

We formally describe our problem as follows: the material supplier, the factory, 

and the customer are located at different locations. There is a set of orders (jobs) 

},,2,1{ nN =  from the customer. Each job requires to be processed by a single 

machine at the factory, where job preemption is not allowed. We assume that job 

),,2,1( nii =  has a processing time 0>ip . Initially, the unprocessed jobs as 

materials are located at the supplier’s warehouse, which need to be transported to the 

factory for processing. The finished jobs need to be delivered to the customer, too. A 

vehicle initially stays at the supplier’s warehouse and is available for transporting 

unprocessed jobs from the supplier’s warehouse to the factory. Each trip may load at 

most 01 >K  jobs due to the restriction of the vehicle capacity. It takes 01 >t  units 

of time for the vehicle to travel from the supplier’s warehouse to the factory, and 1t  

units of time to travel from the factory back to the supplier’s warehouse. There is 

another vehicle that initially stays at the factory and transports finished jobs from the 

factory to the customer. It can load no more than 02 >K  jobs in each trip. The 

vehicle takes 02 >t  units of time to deliver processed jobs from the factory to the 

customer, and 2t  units of time to go back the factory from the customer. We assume 

that both 1t  and 2t  include the time of loading and unloading jobs. A job is 
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available for processing once being delivered to the factory, and is available for 

delivery to the customer once its processing is finished. The logistical issues of our 

problem are concerned with determining the departure times of both of the supply 

trips and delivery trips, the jobs to be transported in each trip, and the starting time of 

processing each job. The objective is to minimize the makespan of the whole logistics 

activity, i.e., the arrival time of the last delivered job to the customer.  

In a trip from the supplier’s warehouse to the factory, all the unprocessed jobs 

loaded by the vehicle are denoted as a supply batch. For nonnegative integers 1q  and 

1u  satisfying 111 uKqn +=  and 110 Ku ≤< , 11 +q  is the minimum number of 

supply batches the vehicle has to take in order to transport all the unprocessed jobs 

from the supplier’s warehouse to the factory. For any solution for the problem, all the 

supply batches constitute a supply scheme ),,,( 21
s
w

ss BBB =ϕ , where s
kB  denotes 

the kth supply batch, and nwq ≤≤+11 . In a trip from the factory to the customer, 

all the finished jobs loaded by the vehicle are denoted as a delivery batch. For 

nonnegative integers 2q  and 2u  satisfying 222 uKqn +=  and 220 Ku ≤< , 

12 +q  is the minimum number of delivery batches the vehicle has to take in order to 

deliver all the processed jobs from the factory to the customer. All the delivery 

batches constitute a delivery scheme ),,,( 21
d
v

dd BBB =ψ , where d
kB  denotes the 

kth delivery batch, and nvq ≤≤+12 . To minimize the makespan, both batch 

transporting and job processing must be carried out as early as possible. Thus, once a 

supply scheme ϕ , a schedule π , and a delivery scheme ψ  are determined, we 

obtain a solution ),,( ψπϕ  for the problem. 

We define the following notation: 

P: the sum of the processing times of all the jobs, i.e., npppP +++= 21 ; 

)(iπ : the ith processed job in schedule π ; 
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),,(max ψπϕC : the makespan of the solution ),,( ψπϕ ; 

HxCmax : the makespan of Heuristic Hx; 

∗
maxC : the optimal makespan of the problem. 

 

3. Properties of the problem 

In this section we first establish the computational complexity of our problem. We 

then discuss some properties for assigning jobs to supply or delivery batches in order 

to obtain an optimal solution. Finally, we establish some lower bounds for the optimal 

solution of the problem. 

The following theorem states the computational complexity of the problem. 

 

Theorem 1. The recognition version of the problem is strongly NP-complete even if 

21 KK =  and 21 tt = . 

   We can prove the theorem using similar arguments in Li and Ou (2005), so we 

omit the proof. In view of Theorem 1, it is unlikely that the problem can be solved in 

polynomial time. The following optimal properties of the problem are obvious. 

 

Lemma 1. There exists an optimal solution that satisfies the following conditions: 

   (i) ),,,( 121 1

s
q

ss BBB += ϕ , where 121 ||||||
1

KBBB s
q

ss ====   and 11 ||
1

uBs
q =+ . 

The supply batch s
kB , 1,,2,1 1 += qk  , should be transported to the factory once 

the vehicle is idle at the supplier’s warehouse. The vehicle must return from the 

factory immediately after unloading any supply batch. 

   (ii) The jobs of s
iB , 1,,2,1 qi = , should be processed before the jobs of s

iB 1+ ; 

the jobs of d
iB , 2,,2,1 qi = , should be processed before the jobs of d

iB 1+ . There is 
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no idle time on the machine in the factory if there are unprocessed jobs that are 

available for the machine to process. 

   (iii) ),,,( 121 2

d
q

dd BBB += ψ , where 21 || uBd =  and |||||| 132 2

d
q

dd BBB +===   

2K= . The delivery batch d
kB , 1,,2,1 2 += qk  , should be delivered from the 

factory to the customer once all the jobs in d
kB  are finished processing and the 

vehicle is idle at the factory. The vehicle must return from the customer immediately 

after unloading any delivery batch. 

   In order to search for an optimal solution for our problem, we may confine our 

attention to solutions that satisfy the conditions of Lemma 1. Once a schedule for 

processing the jobs is determined, we may generate a solution for the problem that 

complies with Lemma 1. The process is formally stated as a procedure as follows. 

 

Procedure SD 

Step 1. For a given schedule ))(,),2(),1(( nππππ = , assign jobs 

)1)1(( 1 +− Kiπ , )(, 1iKπ  to supply batch s
iB  for 1,,2,1 qi = , and 

),1( 11 +Kqπ , )( 111 uKq +π  to supply batch s
qB 11+

. 

Step 2. Assign jobs ),1(π , )( 2uπ  to delivery batch dB1  and 

)1)1(( 22 +−+ Kiuπ , )(, 22 iKu +π  to delivery batch d
iB 1+  for 

2,,2,1 qi = . 

Step 3. Departing at time 0, the vehicle carries s
q

ss BBB 121 1
,,, +  in turn from the 

supplier’s warehouse to the factory with no idle time between any two 

consecutive trips. Another vehicle delivers d
q

dd BBB 121 2
,,, +  in turn from 

the factory to the customer once all the jobs in the delivery batch are finished 
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processing and the vehicle returns to the factory. Stop. 

 

   Obviously, Procedure SD can be performed in O(n) time. Having once determined 

a schedule π , we will use Procedure SD to produce a solution ),,( ψπϕ  for the 

problem. Sometimes we denote ),,(max ψπϕC  as )(max πC  for notational 

convenience.  

   For a given schedule ))(,),2(),1(( nππππ = , according to Lemma 1, there 

exists an integer pair ),( ππ ηξ  such that 2211max 22)( ttPttC x ++++= ππ ηξπ , 

where 10 q≤≤ πξ , 20 q≤≤ πη , nKK <+ 21 ππ ηξ , and ∑ −

+=
= 2

1 1 )(
Kn

Ki ix pP π

π

η

ξ π . For any 

integer pair ),( ηξ  satisfying 10 q≤≤ ξ , 20 q≤≤η , nKK <+ 21 ηξ , 

and ∑ −

+=
= 2

1 1 )(
Kn

Ki ix pP η

ξ π , let 2211 22),( ttPttL x ++++= ηξηξ , and we have 

)(),( max πηξ CL ≤ . Thus, we obtain the following lower bounds for the optimal 

solution for the problem. 

 

Lemma 2. The optimal solution of the problem has the following lower bounds: 

211 tPtLB ++= , 2111 22 ttqtLB ++= , 2221 23 ttqtLB ++= , and 11 24 ttLB ξ+=  

222 tt ++ η  for all ξ  and η  satisfying nKK <+ 21 ηξ . 

   For the special case where 21 KK = , we have 21 qq =  and 21 uu = . Set KK =1 , 

qq =1 , uu =1 , and max21 },,,max{ pppp n = . We consider an instance of the case 

with n job processing times },,,,{ maxpεεε  , where ε  is a very tiny positive 

number and },,,min{ 21 nppp <ε . For this instance, there are n different 

schedules when the job with maxp  is sequenced in n different positions. We denote 

the schedule in which the job with maxp  is sequenced in the kth position as kπ . For 

schedule kπ , nk ,,2,1 = , its lower bound )( kL π  is  
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+−−+−+++
+

++∈+−+−+++
=

                      otherwise)1(2)1(2
 },            

,2,1{ if
 

)(2)1(2
)(

22max11

22max11

ttmqKpmtt
umK

mKmKkttmqupmtt
L k

ε

ε
π  , 

where qm ,,2,1,0 = . When 21 tt ≥ , we have 

)}(,),(),(min{22 2122max21 nLLLttpqtt πππ ≤+−++ . 

When 21 tt < , we have 

)}(,),(),(min{22 2121max11 nLLLttpqtt πππ ≤+−++ . 

Hence, 





+−++
≥+−++

=
otherwise       22

 if        22
5

21max11

2122max21

ttpqtt
ttttpqtt

LB  

is a lower bound for the instance with processing times },,,,{ maxpεεε  . 

   It is obvious that the optimal objective value of the problem with processing times 

},,,{ 21 nppp   is no less than that of the instance with processing times 

},,,,{ maxpεεε  . Therefore, we have the following lemma. 

 

Lemma 3. When KKK == 21 , the optimal solution for the problem has a lower 

bound 





+−++
≥+−++

=
otherwise       22

 if        22
5

21max11

2122max21

ttpqtt
ttttpqtt

LB . 

 

4. Polynomial solvable cases 

Although the general problem is NP-hard in the strong sense, there are some 

special cases that are solvable in polynomial time. In this section we identify such 

solvable cases and give the respective algorithms to solve these cases in polynomial 

time. 

 Case q1 = 0 

We consider the case where 01 =q , i.e., all the unprocessed jobs can be carried 
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by the vehicle in a single trip from the supplier’s warehouse to the factory. In this case, 

supply transportation is not a bottleneck constraint on the entire three-stage logistics 

activity and only contributes a constant time 1t  to the optimal objective of the 

problem. So the case is essentially equivalent to the problem with only production and 

delivery coordination. For such a situation, the optimal solution can be obtained by 

the following procedure: Generate a schedule ))(,),2(),1(( nππππ =  such that 

)()2()1( nppp πππ ≤≤≤  . Then perform Procedure SD to produce a solution 

),,( ψπϕ . Obviously, the solution ),,( ψπϕ  is optimal and its makespan is 

+++ 121 ,max{ ttPt  ∑ ∈
++dBj j ttqp

1
}2 222 . 

 Case q2 = 0 

We now consider the case where 02 =q , i.e., all the finished jobs can be 

transported by the vehicle in one trip from the factory to the customer. In this case, 

delivery transportation is not a bottleneck constraint on the entire three-stage logistics 

activity and only contributes a constant time 2t  to the optimal objective of the 

problem. So the case is essentially equivalent to the problem with only supply and 

production coordination. For this case, an optimal solution can be obtained by the 

following procedure: Generate a schedule ))(,),2(),1(( nππππ =  such that 

)()2()1( nppp πππ ≥≥≥  . Then perform Procedure SD to produce a solution 

),,( ψπϕ . Obviously, the solution ),,( ψπϕ  is optimal and its makespan is 

∑
+∈

+++++ s
qBj j tptqttPt

11

}2,max{ 211121 . 

 Case 11 2tP ≥  

Re-index the jobs such that nppp ≤≤≤ 21 , and let ∑ +−=
= 1

1 1)1(

iK

Kij ji pP  for 

1,,2,1 qi = , and ∑ +

+=+ = 111

111 11
uKq

Kqj jq pP . We consider the special case where 11 2tP ≥ . 

In this case, the ability to transport material supply is so high that any supply planning 
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decision has the same effect on the planning decisions for the subsequent two stages. 

In such a situation, we can develop a polynomial time algorithm to solve the case 

optimally. The algorithm is performed as follows: Generate a schedule 

))(,),2(),1(( nππππ =  such that )()2()1( nppp πππ ≤≤ . Then perform Procedure 

SD to produce a solution ),,( ψπϕ . The optimal makespan is PtC += 1max max{)(π  

}2, 222012 ttqDtt ++++ . 

 

5. Heuristics 

Since there are polynomial time algorithms to solve the above special cases 

optimally, we assume that the general problem studied in this section does not include 

the above special cases. In other words, we assume that 11 ≥q , 12 ≥q , and 11 2tP <  

hold for the general problem. We first provide a heuristic for the general problem. 

Then with some restrictions imposed on the parameters 1K  and 2K , we develop 

some better heuristics. 

 

Heuristic H1 

Step 1. For an arbitrary schedule ))(,),2(),1(( nππππ = , use Procedure SD to 

produce a solution ),,( ψπϕ . Stop. 

   Heuristic H1 runs in O(n) time. The following theorem provides a performance 

bound of Heuristic H1. 

 

Theorem 2. 2/ max
1

max ≤∗CC H  and the bound is tight. 

   The proof of Theorem 2 is trivial and is omitted. Let 11+qP  denote the sum of the 

1K  largest processing times of the jobs in N. For the special case where 11 2
1

tPq ≤+ , 
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we can easily derive the following theorem. 

 

Theorem 3. If 11 2
1

tPq ≤+ , then 1max
1

max /11/ qCC H +≤∗ . 

   Since there are many parameters, namely 1K , 2K , 1t , and 2t , in the model of 

the general problem, developing a good heuristic for the general problem is very 

difficult. A better approach to study the problem is to consider some special cases. In 

the following, we study the special cases where 11 =q , 12 =q , and 21 KK = . In fact, 

even for these special cases, we can show in a manner similar to Theorem 1 that both 

of the cases where 11 =q  and 12 =q  are at least NP-hard in the ordinary sense. By 

Theorem 1, the case where 21 KK =  is NP-hard in the strong sense. We develop 

better heuristics for these special cases.  

5.1 Case 11 =q  

   When 11 =q , i.e., all the unprocessed jobs can be transported to the factory in two 

supply batches. We provide the following heuristic.  

 

Heuristic H2 

Step 1. Re-index the jobs of N such that nppp ≤≤≤ 21 .  

Step 2. Generate a schedule ),,2,1,,,2,1( 111111 uKuuu  +++=π , and use 

Procedure SD to produce a solution ),,( 111 ψπϕ . 

Step 3. For the solution ),,( 111 ψπϕ , where ),,( 1211 2

d
q

dd BBB += ψ , when 22 =q , 

2/
1

Pp
iBi d >∑∈

, and 2211max 4)(
1

ttptC dBi i +++= ∑∈
π  hold, proceed with 

the following procedure: 

1) Swap the job with the largest processing time in dB1  and the job with the 

smallest processing time in dB3 .  
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2) After swapping the two jobs, check the objective function: If 1==ηξ  or 

2/
1

Pp
iBi d <∑∈

, then go to the next step. Otherwise, go to Step 1. 

3) Generate a schedule )ˆ,ˆ,ˆ( 3212
ddd BBB=π , where the jobs in d

iB̂  follow the 

shortest processing time (SPT) rule for 3,2,1=i . For schedule 2π , use 

Procedure SD to produce a solution ),,( 222 ψπϕ . 

Step 4. Generate a schedule ),1,,2,1(3 nn −= π , and use Procedure SD to 

produce a solution ),,( 333 ψπϕ . 

Step 5. Let )}(),(),(min{ 3max2max1max
2

max πππ CCCC H = . Stop. 

   Clearly, Heuristic H2 runs in O(nlogn) time. The following theorem provides a 

performance bound of Heuristic H2. 

 

Theorem 4. If ,11 =q  then 2/3/ max
2

max ≤∗CC H . 

The proof of Theorem 4 can be obtained from the authors. 

 

Although the performance bound of Heuristic H2 is not tight, the following 

instance shows that the bound is no less than 7/5: mn 4=  )1( >m  jobs with 

processing times ε==== mppp 221  , 2212 ++ = mm pp ε−=== 24mp , mK 21 = , 

22 =K , mt =1 , and 12 =t . Applying Heuristic H2, for the solution ),,( 111 ψπϕ , we 

have )2,,2,1,4,,22,12(1 mmmm ++=π  and 127)( 1max +−= επ mmC . For 

the solution ),,( 333 ψπϕ , we have )4,,2,1(3 m=π  and 

127)( 3max +−= επ mmC . Since 22 >q , we need not consider the solution 

),,( 222 ψπϕ . In fact, the optimal solution is ),,( ∗∗∗ ψπϕ , where 

)4,2,,22,2,12,1( mmmm ++=∗π , and 15max +=∗ mC . So =∗
max

2
max / CC H  

)15/()127( ++− mmm ε . Hence, ∗
max

2
max / CC H  approaches 7/5 as m approaches 
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infinity and ε  approaches zero.  

   We notice that an instance of Case 12 =q  can be easily transformed into an 

equivalent instance of Case 11 =q . Let an entry ),;,( 2211 tKtK  denote a kind of 

instances where the vehicle capacity and travelling time for supplies are 1K  and 1t , 

respectively; and the vehicle capacity and travelling time for deliveries are 2K  and 

2t , respectively. Consider instances ),;,( 2211 tKtK ′′′′  of Case 11 =q  and 

),;,( 2211 tKtK ′′′′′′′′  of Case 12 =q  with the same parameters, except that 

122121 ,, KKttKK ′=′′′=′′′=′′  and 12 tt ′=′′ . It is easy to show that the reversed schedule of 

any feasible schedule for the first instance is a feasible schedule for the second 

instance, and that these two schedules have the same makespan. From this property, 

similar to the analysis of the case where 11 =q , we can develop a heuristic with a 

performance bound of 3/2 for the case where 12 =q .  

5.2 Case 21 KK =  

We now consider the special case of the problem where KKK == 21 , i.e., 

qqq == 21 . For the special case where 11 =q , we have provided Heuristic H2 with a 

worst-case bound of 3/2. In the following heuristic, we suppose that 2≥q  holds.  

 

Heuristic H3 

Step 1. Re-index the jobs of N such that nppp ≤≤≤ 21 .  

Step 2. Generate a schedule ),1,,2,1(1 nn −= π , and use Procedure SD to 

produce a solution ),,( 111 ψπϕ . 

Step 3. Generate a schedule )1,1,,3,2,(2 −= nn π , and use Procedure SD to 

produce a solution ),,( 222 ψπϕ . 

Step 4. Let λ  be an integer satisfying  +≤<++ ++− 111)1( 2 KKK ptpp λλλ  

Kp )1( ++ λ  and }1,,2,1{ −∈ qλ , or satisfying 11)1( 2tpp qKKq ≤+++−   
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uqKuKq pp +++− ++≤ 1)1(  and q=λ . If such a λ  exists and q>λ2 , then 

produce a schedule 3π  as follows; otherwise, let 

})(),(min{ 2max1max
3

max ππ CCC H = . Stop. 

       When uKq +− )( λ  is even, 

;1,,3,1;1)(,,3,1(3 −+++−+−= uqKKKuKq  λλλπ  

;,,2)(,1)( KuKquKq λλλ ++−++−  

),,4,2;)(,,4,2 uqKKKuKq ++++−  λλλ . 

       When uKq +− )( λ  is odd, 

;1,,4,2;1)(,,6,4,2,1(3 −+++−+−= uqKKKuKq  λλλπ  

;,,2)(,1)( KuKquKq λλλ ++−++−  

),,3,1;)(,,5,3 uqKKKuKq ++++−  λλλ . 

Use Procedure SD to produce a solution ),,( 333 ψπϕ . 

Step 5. Let )}(),(),(min{ 3max2max1max
3

max πππ CCCC H = . Stop. 

   Clearly, Heuristic H3 runs in O(nlogn) time. The following theorem provides a 

performance bound of Heuristic H3. 

 

Theorem 5. If KKK == 21  and 2≥q , then 4/7/ max
3

max ≤∗CC H . 

Proof. Let iKKii ppP ++= +− 1)1(  for qi ,2,1=  and nKnq ppP ++= +−+ 11 . We 

consider the cases: (1) 11 2tPq ≤+ , and (2) 112 +< qPt , respectively. 

(1) 11 2tPq ≤+  

We consider the solution ),,( 111 ψπϕ . 22111max 22)( ttPttC x ++++= ηξπ , 

where KKn <+− )( ηξ  and ∑ −

+=
=

Kn

Ki ix pP η

ξ 1
, so 11max 24)( tPLBC x ≤=−π  

2/2LB≤ , thus 2/3)( max1max
∗≤ CC π . 
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(2) 112 +< qPt  

In this situation, when 11 2tP ≥ , )( 1max πC  is an optimal solution; when 11 2tP < , 

there exists an integer λ  defined in Step 4 with }1,,2,1{ −∈ qλ  such that 

112 +≤≤ λλ PtP , or q=λ  such that 112 +<≤ qq PtP . 

For 22111max 22)( ttPttC x ++++= ηξπ , if 1−≤ λξ , we have 12tPx ≤ , then 

2/3)( max1max
∗≤ CC π ; otherwise, 22111max )(22)( ttqPttC x +−+++= λλπ  or 

21111max )(2)( tppttC nK +++++= + λλπ . When +++= xPttC 111max 2)( λπ  

22)(2 ttq +− λ , 2/32))(22()( 222111max LBtPttqttC x ≤<=+−++− λλπ , so 

2/3)( max1max
∗≤ CC π . When 21111max )(2)( tppttC nK +++++= + λλπ , if 

2/1 Ppp nK ≤+++ λ , then clearly 2/3)( max1max
∗≤ CC π . On the other hand, when 

21111max )(2)( tppttC nK +++++= + λλπ  and uKqK +−< )( λλ hold, λλ −≤ q , 

i.e., q≤λ2 , we also have 2/3)( max1max
∗≤ CC π . Thus, in the following discussion, 

we only consider the situation where 2/1 Ppp nK >+++ λ  and q>λ2  hold for 

21111max )(2)( tppttC nK +++++= + λλπ . We divide the case into two situations: 1) 

2/Ppn ≥ , and 2) 2/Ppn < . 

1) 2/Ppn ≥  

If 21 tt ≤ , by Lemma 3, 2/1)(5)( 11111max LBtpptLBC nK ≤++++≤− −+ λπ  

6/2LB+ , then 3/5)( max1max
∗≤ CC π . 

If 21 tt > , we consider the solution ),,( 222 ψπϕ . When 212max )( tPtC ++=π  or 

2111112max )(2)( tpppttC nK ++++++= −+ λλπ , obviously 2/3)( max2max
∗≤ CC π . 

When 22212max 2)()( tqtppptC nu ++++++= π , by Lemma 3, 5)( 2max LBC −π  

3/26/32/12)( max22
∗≤+≤+++≤ CLBLBtpp u , i.e., 3/5)( max2max

∗≤ CC π . 

2) 2/Ppn <  
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We focus on the solution ),,( 333 ψπϕ . For 22113max 22)( ttPttC x ++++= ηξπ , 

when 11 −≤≤+− λξλq , since ∑∈
≤s

lBi i tp 22  for λλ ,,2 +−= ql , we have 

2/12)22()( 122113max LBtPttttC x <<=+++− ηξπ , so 2/3)( max3max
∗≤ CC π . Hence, 

in the following, we only consider the situations i) λξ −≤ q , and ii) λξ ≥ . 

i) When λξ −≤ q  

If 0=η , since λξ −≤ q  and λλ <−q , we have q<ξ2 , then 

2/221)( 13max LBtLBC <=− ξπ , thus 2/3)( max3max
∗≤ CC π . 

If 0≠η , let 





+−+++
+−+++

=
even is )( if},,4,2{
odd is )( if},,3,1{

32 uKquqKKK
uKquqKKK

U
λλλ
λλλ




. 

Clearly,  KU /|| 32≥η . In this situation, 4/2/)( 1
32

Pppp nKUi i >++≥ +∈∑ λ . 

Therefore, 4/34/34)( max3max
∗<<=− CPPLBC xπ . That is, 4/7)( max3max

∗≤ CC π . 

ii) When λξ ≥  

Let  





+−−+−
+−−+−

=
even is )( if      }1)(,,5,3,1{

 odd is )( if  }1)(,,6,4,2,1{
11 uKquKq

uKquKq
U

λλ
λλ




, 





+−−+++
+−−+++

=
even is )( if   }1,,3,1{
odd is )( if }1,,4,2{

12 uKquqKKK
uKquqKKK

U
λλλ
λλλ




, 

},,2)(,1){(2 KuKquKqU λλλ ++−++−= , 





+−+−
+−+−

=
even is )( if       })(,,4,2{
odd is )( if    })(,,5,3{

31 uKquKq
uKquKq

U
λλ
λλ




. 

If 0≠η , since the jobs in 3231 UU ∪  are sequenced in nondecreasing order of 

their processing times in 3π , then 22tPx ≤ , so 2/3)( max3max
∗≤ CC π . 

If 0=η  and when KuKq λλ ≠+− )( , we have ∑∑ ∈∈
−≥

3212 Ui niUi i ppp  and 

∑∑ ∈ +−∈
−≥

3111
)(Ui uKqiUi i ppp λ , and 2U  is not an empty set. So ∑ ∪∪∈ 21112 UUUi ip  
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2/
32313231

Pppp
UUi inUUi i −>−≥ ∑∑ ∪∈∪∈

, ∑ ∪∪∈
=−>

21112
2/2/2

UUUi i PPPp , i.e., 

∑ ∪∪∈
>

21112
4/

UUUi i Pp , so 4/3
3231

Pp
UUi i <∑ ∪∈

. We have 2)( 3max LBC −π  

4/3
3231

PpP
UUi ix <≤< ∑ ∪∈

. Thus, 4/7)( max3max
∗≤ CC π . 

If 0=η  and when KuKq λλ =+− )( , we have Ku = , and 2U  is an empty set. 

In this situation, ∑∈
=

32Bi ix pP . Since 2/2
123111

PpPpp nUi iUUi i >−≥+ ∑∑ ∈∪∈
, 

4/
123111

Ppp
Ui iUUi i >+∑∑ ∈∪∈

, thus 4/3
32

Pp
Ui i <∑∈

. We have 

4/32)(
32

3max PpPLBC
Ui ix <≤<− ∑∈

π . Thus, 4/7)( max3max
∗≤ CC π . □ 

Although the performance bound of Heuristic H3 is not tight, the following 

instance shows that the bound is no less than 3/2: 24 += mn jobs with processing 

times ε==== +1221 mppp  , ε−==== +++ 2243222 mmm ppp  , 221 == KK , 

ε−= 11t  and 12 =t . Applying Heuristic H3, for the solution ),,( 111 ψπϕ , we have 

)24,,2,1(1 += mπ  and 4)14(6)( 1max ++−= επ mmC . For the 

solution ),,( 222 ψπϕ , we have )1,14,,3,2,24(2 ++= mm π  and 

2)14(6)( 2max +−−= επ mmC . Since mq 2=  and m=λ , q>λ2  does not hold. 

So we need not consider the solution ),,( 333 ψπϕ . In fact, the optimal solution 

is ),,( ∗∗∗ ψπϕ , where )24,12,,32,2,22,1( ++++=∗ mmmm π , and 

44max +−=∗ εmC . So, 2)14(63
max +−−= εmmC H . From =∗

max
3

max / CC H  

)44/()2)14(6( +−+−− εε mmm , ∗
max

3
max / CC H  approaches 3/2 as m approaches 

infinity and ε  approaches zero.  

 

6. Computational experiments 

In this section we report the results of computational experiments conducted to 

test the performance of the above heuristics. 
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For the problem under study, our heuristics are based on the idea of matching or 

balancing the abilities of the three logistical stages in a series of time periods. We use 

the notion of “logistics ability” to uniformly describe the transportation ability of the 

delivery vehicles, and the production ability of the processing machine. For the supply 

and delivery stages, we measure their logistics abilities by ))12/(( 11 tqN +=α  and 

))12/(( 22 tqN +=α , respectively. For the processing machine, its logistics ability is 

measured by PN /=α . In essence, the parameter α  quantitatively scales the 

largest ability to pass the number of jobs per time unit at each logistical stage. Since 

the value of α  is only taken as a comparative scale of the logistics abilities of three 

different stages, for the convenience of experimental computation, we first set an 

appropriate value of α  at 0.04. The experimental scheme was designed to test the 

heuristics operating in situations characterized by different combinations of logistics 

abilities of the three logistical stages. Specifically, when 02.0=α , 0.04 and 0.08 for 

the transportation or production stage, we consider that this stage has small, middle 

and big logistics ability, respectively. In the following tables, we use letters “S”, “M” 

and “B” to denote small, middle and big logistics ability, respectively. For example, 

the symbol “BMS” represents the case where the supply, production and delivery 

stage have big, middle and small logistics ability, respectively. The total number of all 

possible combinations of the logistics abilities of the three stages is 33 = 27. We did 

not distinguish the cases BBB, MMM and SSS in the experimental scheme since the 

logistics abilities of all of the three stages are equivalent. So we only consider 25 

cases of the problem in the following experiments.  

The heuristics were tested over problem sizes of 200,150,100,50,25=N  jobs. 

For any instance, the job processing times were independently and randomly 

generated from a discrete uniform distribution in the interval [1, U], where U = 100, 

50, 25 when the production stage has a small, middle and big logistics ability, 
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respectively. We also randomly generated parameter 1K  or 2K  from a discrete 

uniform distribution under the constraints of the problem. Furthermore, according to 

the specified logistics ability α  of the supply or delivery stage, we calculated 

parameter 1t  or 2t . Considering the different number of jobs and the different 

combinations of the logistics abilities of the three stages, we examined the 

performance of each heuristic operating in 125 situations, and randomly generated 

100 instances for each situation.  

We evaluated the performance of the heuristics by the average relative error and 

the maximum relative error of each situation of the problem. For each instance, we 

computed HxCmax  and the lower bound LB, where }4,3,2,1max{ LBLBLBLBLB =  

for Heuristics H1 and H2, and }5,4,3,2,1max{ LBLBLBLBLBLB =  for Heuristic 

H3. The relative error of a solution is defined as LBCError Hx /max= , the average 

relative error of a situation as mberInstanceNuErroravgE /)(∑= , and the 

maximum relative error of a situation as testedinstancesallErrormaxE |max{=  

}situationafor . 

   Tables 1 to 3 exhibit the experimental results for Heuristics H1, H2 and H3, 

respectively. From Table 1, the average relative errors of all the 25 logistics ability 

combinations were no more than 10%, and the maximum relative errors no larger than 

30%, which indicate that the performance of Heuristic H1 is good for the general 

problem. From Tables 2 and 3, we see that the performance of Heuristics H2 and H3, 

especially in terms of maximum relative errors, is almost always better than that of 

Heuristic H1. They are capable of generating near-optimal solutions or optimal 

solutions. 

In our experimental scheme, since the average and maximum relative errors were 

evaluated with respect to the lower bounds of the test instances, this fact should be 
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taken into account in interpreting the above insights about the performance of the 

heuristics. However, on further examining the experimental results in Tables 1 to 3, 

we notice that the performance of the heuristics is clearly related to different cases of 

logistics ability. This phenomenon indicates that our experimental scheme to 

distinguish the different logistics ability of the three stages is reasonable. On the other 

hand, this observation highlights that problems with different logistics ability 

characteristics require different scheduling strategies to deal with in order to achieve 

good results. We also observe that the effectiveness of Heuristics H2 and H3 increases 

as the number of the jobs increases, suggesting that they can be put to practice to 

effectively cope with real-life problems. 

 

7. Conclusions 

In this paper we studied the problem of production scheduling with supply and 

delivery considerations, where the material warehouse, the factory, and the customer 

are at different locations. Through the coordination of transportation and production, 

the objective is to minimize the makespan. We showed that the problem is NP-hard in 

the strong sense, and developed several heuristics for the general problem and for 

some special cases. The worst-case error bounds of the heuristics were analyzed. 

Computational results showed that all the heuristics are effective in producing optimal 

or near-optimal solutions quickly. 

There are many interesting topics worthy of studying for models integrating 

material supply, production scheduling, and product delivery at the operational level. 

Within the framework of this paper, the actual transportation and production 

environments or characteristics may be taken into consideration. Another interesting 

research direction is to extend our model to consider the optimization of other 

objective functions such as minimizing the total flow time or minimizing the 
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maximum lateness. 
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Table 1. Experimental results for Heuristic H1  

Job Error 
BBM BBS BMB BMM BMS BSB BSM BSS MBB MBM MBS MMB No. values 

25   avgE 1.061 1.032 1.043 1.018 1.061 1.000 1.021 1.032 1.061 1.054 1.033 1.017 
    maxE 1.201 1.113 1.122 1.197 1.223 1.008 1.139 1.189 1.242 1.225 1.111 1.178 

50   avgE 1.064 1.037 1.042 1.017 1.077 1.000 1.018 1.032 1.070 1.058 1.032 1.016 
    maxE 1.218 1.126 1.119 1.144 1.269 1.000 1.178 1.209 1.238 1.203 1.112 1.188 

100  avgE 1.061 1.036 1.038 1.011 1.081 1.000 1.015 1.022 1.059 1.058 1.029 1.013 
    maxE 1.221 1.120 1.108 1.109 1.262 1.000 1.142 1.168 1.245 1.198 1.108 1.122 

150  avgE 1.069 1.035 1.041 1.022 1.077 1.000 1.017 1.024 1.067 1.057 1.032 1.014 
    maxE 1.236 1.126 1.131 1.188 1.218 1.003 1.133 1.199 1.256 1.197 1.111 1.132 

200  avgE 1.068 1.030 1.037 1.019 1.082 1.000 1.016 1.030 1.061 1.055 1.030 1.020 
    maxE 1.249 1.108 1.123 1.129 1.236 1.001 1.161 1.147 1.239 1.196 1.117 1.105 

 
 
To continue 

MMM MMS MSB MSM MSS SBB SBM SBS SMB SMM SMS SSB SSM 

1.040 1.071 1.026 1.036 1.063 1.039 1.035 1.032 1.080 1.073 1.062 1.027 1.043 
1.162 1.237 1.195 1.142 1.254 1.121 1.134 1.094 1.284 1.256 1.233 1.190 1.224 

1.046 1.066 1.023 1.038 1.070 1.040 1.033 1.033 1.081 1.063 1.068 1.020 1.019 
1.177 1.219 1. 182 1.214 1.296 1.113 1.110 1.111 1.274 1.248 1.221 1.133 1.134 

1.023 1.057 1.029 1.035 1.069 1.034 1.032 1.029 1.080 1.060 1.054 1.029 1.026 
1.102 1.201 1.151 1.187 1.252 1.121 1.117 1.102 1.264 1.211 1.213 1.153 1.185 

1.028 1.059 1.025 1.029 1.071 1.036 1.032 1.033 1.076 1.061 1.066 1.024 1.031 
1.099 1.218 1.163 1.195 1.282 1.107 1.113 1.106 1.216 1.199 1.193 1.125 1.151 

1.017 1.063 1.026 1.026 1.065 1.032 1.032 1.023 1.072 1.065 1.058 1.026 1.012 
1.082 1.207 1.179 1.181 1.287 1.118 1.105 1.094 1.246 1.221 1.211 1.145 1.130 
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Table 2. Experimental results for Heuristic H2 
Job Error 

BBM BBS BMB BMM BMS BSB BSM BSS MBB MBM MBS MMB No. values 

25   avgE 1.016 1.008 1.015 1.038 1.009 1.005 1.016 1.008 1.013 1.019 1.004 1.018 
    maxE 1.080 1.043 1.141 1.114 1.058 1.044 1.066 1.048 1.059 1.086 1.028 1.122 

50   avgE 1.014 1.007 1.011 1.034 1.011 1.004 1.012 1.007 1.008 1.009 1.003 1.015 
    maxE 1.076 1.040 1.067 1.101 1.054 1.028 1.044 1.031 1.047 1.084 1.016 1.067 

100  avgE 1.011 1.006 1.007 1.028 1.009 1.000 1.009 1.006 1.008 1.010 1.003 1.015 
    maxE 1.058 1.031 1.075 1.100 1.045 1.027 1.035 1.031 1.051 1.058 1.020 1.063 

150  avgE 1.009 1.005 1.006 1.031 1.009 1.000 1.007 1.005 1.008 1.007 1.002 1.014 
    maxE 1.054 1.029 1.048 1.087 1.056 1.007 1.031 1.029 1.067 1.061 1.013 1.062 

200  avgE 1.009 1.005 1.003 1.027 1.010 1.000 1.006 1.004 1.007 1.008 1.003 1.013 
    maxE 1.058 1.031 1.054 1.077 1.055 1.012 1.026 1.024 1.057 1.060 1.014 1.043 

 
 
To continue 

MMM MMS MSB MSM MSS SBB SBM SBS SMB SMM SMS SSB SSM 

1.097 1.007 1.003 1.034 1.045 1.006 1.006 1.008 1.019 1.011 1.018 1.003 1.035 
1.224 1.053 1.049 1.152 1.151 1.030 1.029 1.042 1.098 1.058 1.086 1.042 1.131 

1.087 1.006 1.001 1.039 1.059 1.004 1.004 1.003 1.012 1.007 1.009 1.003 1.035 
1.174 1.064 1.035 1.110 1.156 1.024 1.023 1.042 1.067 1.043 1.084 1.032 1.084 

1.093 1.006 1.001 1.034 1.057 1.004 1.004 1.004 1.010 1.007 1.009 1.003 1.037 
1.177 1.039 1.025 1.115 1.132 1.026 1.025 1.029 1.050 1.048 1.057 1.021 1.087 

1.092 1.004 1.000 1.042 1.072 1.004 1.004 1.002 1.011 1.007 1.006 1.002 1.038 
1.191 1.022 1.021 1.094 1.150 1.035 1.033 1.030 1.067 1.065 1.060 1.018 1.083 

1.094 1.006 1.000 1.040 1.063 1.004 1.003 1.003 1.009 1.006 1.007 1.001 1.037 
1.199 1.031 1.010 1.088 1.134 1.029 1.028 1.030 1.056 1.071 1.058 1.017 1.077 
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Table 3. Experimental results for Heuristic H3 
Job Error 

BBM BBS BMB BMM BMS BSB BSM BSS MBB MBM MBS MMB No. values 

25   avgE 1.001 1.000 1.012 1.024 1.000 1.000 1.000 1.008 1.017 1.040 1.000 1.148 
    maxE 1.013 1.007 1.085 1.076 1.007 1.000 1.000 1.042 1.096 1.131 1.006 1.251 

50   avgE 1.002 1.001 1.027 1.023 1.001 1.000 1.000 1.003 1.037 1.042 1.001 1.165 
    maxE 1.013 1.007 1.092 1.058 1.003 1.000 1.000 1.025 1.085 1.144 1.006 1.244 

100  avgE 1.001 1.000 1.039 1.032 1.000 1.000 1.000 1.002 1.053 1.031 1.000 1.166 
    maxE 1.007 1.003 1.082 1.061 1.002 1.010 1.010 1.020 1.096 1.085 1.003 1.260 

150  avgE 1.002 1.001 1.046 1.039 1.000 1.003 1.003 1.003 1.055 1.040 1.001 1.168 
    maxE 1.012 1.006 1.070 1.068 1.002 1.013 1.013 1.014 1.075 1.131 1.006 1.262 

200  avgE 1.001 1.000 1.046 1.041 1.000 1.005 1.005 1.003 1.051 1.030 1.000 1.172 
    maxE 1.008 1.004 1.069 1.067 1.001 1.012 1.012 1.011 1.068 1.107 1.004 1.250 

 
 
To continue 

MMM MMS MSB MSM MSS SBB SBM SBS SMB SMM SMS SSB SSM 

1.146 1.000 1.019 1.019 1.023 1.003 1.003 1.020 1.004 1.004 1.039 1.150 1.149 
1.241 1.006 1.096 1.095 1.077 1.071 1.069 1.065 1.133 1.129 1.123 1.269 1.263 

1.162 1.001 1.034 1.034 1.024 1.014 1.014 1.021 1.023 1.023 1.039 1.163 1.162 
1.241 1.003 1.085 1.085 1.063 1.078 1.076 1.072 1.078 1.077 1.087 1.240 1.239 

1.164 1.000 1.047 1.047 1.035 1.012 1.012 1.015 1.018 1.017 1.026 1.166 1.165 
1.258 1.002 1.096 1.096 1.064 1.044 1.043 1.042 1.087 1.085 1.082 1.251 1.250 

1.166 1.000 1.051 1.051 1.036 1.018 1.018 1.020 1.021 1.021 1.026 1.161 1.161 
1.262 1.002 1.080 1.079 1.063 1.070 1.068 1.065 1.059 1.058 1.060 1.263 1.262 

1.171 1.000 1.052 1.052 1.041 1.014 1.013 1.015 1.015 1.015 1.019 1.169 1.169 
1.246 1.001 1.072 1.072 1.063 1.056 1.055 1.053 1.044 1.044 1.046 1.247 1.246 

 




