
Single machine due-date scheduling of jobs
with decreasing start-time dependent

processing times

T.C.E. Cheng1, L.Y. Kang1,2, C.T. Ng1

1Department of Logistics, The Hong Kong Polytechnic University,

Hung Hom, Kowloon, Hong Kong

2Department of Mathematics, Shanghai University, Shanghai 200436, China

Abstract

We study the problem of scheduling jobs whose processing times

are decreasing functions of their starting times. We consider the case

of a single machine and a common decreasing rate for the processing

times. The problem is to determine an optimal combination of the

due-date and schedule so as to minimize the sum of due date, earliness

and tardiness penalties. We give an O(n log n) time algorithm to solve

this problem.

Key words: Single machine scheduling; Due-date; Deteriorating jobs.

Introduction

Machine scheduling problems with start-time dependent job processing times

have received increasing attention from the scheduling community in recent

years [1, 2, 3, 6, 12, 13, 14]. Researchers have formulated different models

for this phenomenon and solved different versions of the problem for various

criteria. A survey of scheduling research with start-time dependent processing

times can be found in Cheng et al. [7]. Generally, there are two groups

1

This is the Pre-Published Version.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyU Institutional Repository

https://core.ac.uk/display/61007544?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of models to describe this kind of scheduling processes. The first group is

devoted to the problems in which the job processing times are characterized

by non-decreasing functions of their starting times, and the second group

concerns the problems in which the job processing times are non-increasing

functions of their processing times. In this paper, we study the latter group

of problems.

Application examples of the non-decreasing model of job processing time

are quite intuitively different from its non-increasing counterpart. The latter

model can be used to describe the process by which aerial threats are to be

recognized by a radar station. In this case, a radar station has detected some

objects approaching it. The time required to recognize the objects decreases

as the objects get closer. Thus, the later the objects are detected, the smaller

is the time for their recognition. Another example refers to the so-called

‘learning effect’. Assume that a worker has to assemble a large number of

similar products. The time required by the worker to assemble one product

depends on his knowledge, skills, organization of his working place and others.

The worker learns how to produce over time. After some time, he is better

skilled, his working place is better organized and his knowledge is increased.

As a result of his learning, the time required to assemble subsequent products

decreases.

Problem formulation

There are given a single machine and a set J = {1, 2, . . . , n} of n independent

and non-preemptive jobs, which are immediately available for processing. The

processing time pi of job i is given as a linear decreasing function of its starting

time si:

pi(si) = ai − bsi,

where ai > 0 denotes the normal processing time of job i and b denotes its

decreasing rate, which is assumed to be common for all jobs. It is further

2

assumed that the decreasing rate b satisfies the following conditions:

0 < b < 1 and b(
n∑

j=1

aj − ai) < ai, for 1 ≤ i ≤ n.

The first condition ensures that the decrease in job processing time is less than

one unit for each unit of delay in its starting moment. The second condition

ensures that all job processing times are positive in non-delay schedules. The

paper only considers cases where non-delay schedules are optimal.

In addition, we cast the problem as the Common Due-Date Problem

(CDDP), which deals with job scheduling on a single machine in a just-in-

time production environment [4, 8, 9, 10, 14]. Prescribing a common due-date

might represent a situation where several items constitute a single customer’s

order, or it might reflect an assembly environment in which the components

should all be ready at the same time in order to avoid staging delays.

For any given schedule σ, let

si(σ) = start time of job i,

pi(σ) = ai − bsi(σ), actual processing time of job i,

Ci(σ) = completion time of job i,

Ei(σ) = max{0, d− Ci(σ)}, earliness of job i,

Ti(σ) = max{0, Ci(σ)− d}, tardiness of job i,

f(d, σ) =
∑

(αEi(σ) + βTi(σ) + γd), total penalty function, where α, β, γ

are the unit earliness, tardiness and due-date penalty, respectively.

In this paper, we consider the problem of finding the optimal combination

of the schedule σ∗ and the common due date d∗ that leads to the minimum

value of

f(d, σ) =
n∑

i=1

(αEi + βTi + γd).

Using the three field notation α|β|γ of Graham et al. [11], the problem can

be denoted as 1|pi(si) = ai − bsi, d|∑n
i=1(αEi + βTi + γd).

3

Preliminary analysis

We first present some elementary results. For any given schedule σ, we will

use σ(j) to denote the job in position j of σ, for j = 1, · · · , n. Define σ(0) = 0

and C0 = 0 The following property is easy to see.

Property 1. There exists an optimal schedule in which the machine is not

idle between the processing of the jobs.

Similar to Theorem 7.2 in [5], we have

Property 2. For any specified schedule σ, there exists an optimal due-date

d∗ = Cσ(K), where K is the smallest non-negative integer value greater than

or equal to nβ−nγ
α+β

, i.e., exactly K jobs are nontardy.

Proof. We first show that for any specified schedule σ, d∗ is equal to the

completion time of some job.

Consider a given schedule σ and d with Cσ(i) < d < Cσ(i+1), and let F be

the corresponding objective value. Define x = d − Cσ(i) and y = Cσ(i+1) −
d. Let F ′ and F ′′ be the objective value for d = Cσ(i) and d = Cσ(i+1),

respectively. Then,

F ′ = F + x(n− i)β − xiα− nγx (1)

and

F ′′ = F − y(n− i)β + yiα + nγy. (2)

Thus, we have F ′ ≤ F if (n − i)β ≤ iα + nγ, and F ′′ < F otherwise. This

implies that for any specified schedule σ, d∗ is equal to the completion time

of some job σ(k). Assume that d∗ = Cσ(k), and let Z be the optimal solution.

It is easy to see that d∗ = Cσ(0) if β ≤ γ. Otherwise, applying (1) to the

situation x = Cσ(k) − Cσ(k−1), we have k(α + β) ≤ nβ − nγ, a contradiction.

If β > γ, applying (1) and (2) to the situation x = Cσ(k) − Cσ(k−1) and

y = Cσ(k+1) − Cσ(k), respectively, we conclude that nβ−nγ
α+β

≤ k ≤ nβ−nγ
α+β

+ 1.

This implies that d∗ = Cσ(K). The result follows.

4

Due to Properties 1 and 2, we see that the total penalty for any given

schedule σ is equal to f(Cσ(K), σ). Introducing Cσ(K) = pσ(1) + pσ(2) + . . . +

pσ(K), we get

f(Cσ(K), σ) =
K∑

i=1

(α(i− 1) + nγ)pσ(i) +
n∑

i=K+1

β(n + 1− i)pσ(i). (3)

For notational convenience, we define the following:

mi = b
K∑

j=i

(α(j − 1) + nγ)(1− b)j−i + bβ
n∑

j=K+1

(n + 1− j)(1− b)j−i,

for 2 ≤ i ≤ K, (4)

mi = bβ
n∑

j=i

(n + 1− j)(1− b)j−i, for K + 1 ≤ i ≤ n, (5)

g1(b) = α + (α + nγ)b− bm3,

g2(b) = β((n− (K + 1))b− 1)− bmK+3,

h1(i) = α(i− 1) + nγ −mi+1, for 1 ≤ i ≤ K − 1,

h2(i) = (n + 1− i)β −mi+1, for K ≤ i < n.

It is easy to see from (2) and (3) that

mi+1 = (αi + nγ)b + (1− b)mi+2, for 1 ≤ i ≤ K − 1, (6)

mi+1 = β(n− i)b + (1− b)mi+2, for K ≤ i ≤ n− 2. (7)

Property 3. (1). If g1(b) > 0, then α + (αi + nγ)b − bmi+2 > 0, for

1 ≤ i ≤ K − 1.

(2). If g1(b) < 0, then α + (αi + nγ)b− bmi+2 < 0, for 1 ≤ i ≤ K − 1.

(3). If g1(b) = 0, then α + (αi + nγ)b− bmi+2 = 0, for 1 ≤ i ≤ K − 1.

Proof. (1). We proceed by induction on i. If i = 1, α + (αi + nγ)b− bm3 =

g1(b) > 0, the result follows. Assume that the result holds for the case i < k.

For the case i = k, by the induction hypothesis,

α + (α(k − 1) + nγ)b− bmk+1 > 0. (8)

Combining this with

mk+1 = (αk + nγ)b + (1− b)mk+2, (By (4)) (9)

5

we have

α + (αk + nγ)b− bmk+2

= α + (αk + nγ)b− bmk+1 − b2(αk + nγ)

1− b
(By (7))

> α + (αk + nγ)b− α + (α(k − 1) + nγ)b− b2(αk + nγ)

1− b
(By (6))

= 0.

The result of (1) follows.

(2) and (3). Similar to the proof of (1).

Property 4. (1). If g1(b) > 0, then for any optimal schedule σ, aσ(1) ≥
aσ(2) ≥ . . . ≥ aσ(K).

(2). If g1(b) ≤ 0, then there exists an optimal schedule σ such that aσ(1) ≤
aσ(2) ≤ . . . ≤ aσ(K).

Proof. (1). Assume that the schedule σ in which aσ(i) < aσ(i+1) (1 ≤ i ≤
K − 1) is optimal. Let σ′ be the schedule derived from σ by swapping i and

i + 1. Then,

Cσ(i+1) = aσ(i+1) + (1− b)aσ(i) + (1− b)2sσ(i),

Cσ′(i+1) = aσ(i) + (1− b)aσ(i+1) + (1− b)2sσ(i).

So Cσ(i+1) − Cσ′(i+1) = b(aσ(i+1) − aσ(i)) > 0. Combining this with (1), the

difference in the value of f(d, s) between the two schedules is as follows:

f(Cσ(K), σ)− f(Cσ′(K), σ
′)

= (α(i− 1) + nγ)pσ(i) + (αi + nγ)pσ(i+1)

−(α(i− 1) + nγ)pσ′(i) + (αi + nγ)pσ′(i+1) − bmi+2(aσ(i+1) − aσ(i))

= (α(i− 1) + nγ)(aσ(i) − bsσ(i)) + (αi + nγ)(aσ(i+1) − baσ(i) − b(1− b)sσ(i))

−(α(i− 1) + nγ)(aσ(i+1) − bsσ(i))− (αi + nγ)(aσ(i) − baσ(i+1) − b(1− b)sσ(i))

−bmi+2(aσ(i+1) − aσ(i))

= (α + (αi + nγ)b− bmi+2)(aσ(i+1) − aσ(i))

> 0, (By Property 3)

6

a contradiction to the optimality of σ. This completes the proof of (1).

(2). Assume that the schedule σ1 in which aσ1(i) > aσ1(i+1) (1 ≤ i ≤ K − 1)

is optimal. Let σ′1 be the schedule obtained from σ1 by swapping i and i + 1.

Then,

f(Cσ1(K), σ1)− f(Cσ′1(K), σ
′
1)

= (α + (αi + nγ)b− bmi+2)(aσ1(i+1) − aσ1(i))

≥ 0. (By Property 3)

So, σ′1 is an optimal schedule. Proceeding as above, we can get an optimal

schedule σ such that aσ(1) ≤ aσ(2) ≤ . . . ≤ aσ(K).

Property 5. (1). If g2(b) < 0, then β((n − i)b − 1) − bmi+2 < 0 for

K + 1 ≤ i < n.

(2). If g2(b) > 0, then β((n− i)b− 1)− bmi+2 > 0 for K + 1 ≤ i < n.

(3). If g2(b) = 0, then β((n− i)b− 1)− bmi+2 = 0 for K + 1 ≤ i < n.

Proof. (1). We proceed by induction on i. If i = K + 1, β((n − i)b − 1) −
bmi+2 = g2(b) < 0, the result follows. Assume that the result holds for the

case K + 1 ≤ i < k < n. We consider the case i = k. By the induction

hypothesis,

β((n− k + 1)b− 1)− bmk+1 < 0. (10)

Combining this with

bmk+1 = β(n− k)b2 + (1− b)bmk+2, (By (5)) (11)

we have

β((n− k)b− 1)− bmk+2

= β((n− k)b− 1)− bmk+1 − βb2(n− k)

1− b
(By (9))

< β((n− k)b− 1)− β((n− k + 1)b− 1)− βb2(n− k)

1− b
(By (8))

= 0.

7

The result of (1) follows.

(2) and (3). Similar to the proof of (1).

Property 6. (1). If g2(b) < 0, then for any optimal schedule σ, aσ(K+1) ≤
aσ(K+2) ≤ . . . ≤ aσ(n).

(2). If g2(b) ≥ 0, then there exists an optimal schedule σ such that aσ(K+1) ≥
aσ(K+2) ≥ . . . ≥ aσ(n).

Proof. (1). Assume that the schedule σ in which aσ(i) > aσ(i+1) (K + 1 ≤
i < n) is optimal. Let σ′ be the schedule derived from σ by swapping i and

i + 1. Then,

f(Cσ(K), σ)− f(Cσ′(K), σ
′)

= β(n + 1− i)(aσ(i) − bsσ(i)) + β(n− i)(aσ(i+1) − baσ(i) − b(1− b)sσ(i))

−β(n + 1− i)(aσ(i+1) − bsσ(i))− β(n− i)(aσ(i) − baσ(i+1) − b(1− b)sσ(i))

−bmi+2(aσ(i+1) − aσ(i))

= (β((n− i)b− 1)− bmi+2)(aσ(i+1) − aσ(i))

> 0, (By Property 5)

a contradiction. The result of (1) follows.

(2). Assume that the schedule σ1 in which aσ1(i) < aσ1(i+1) (K + 1 ≤ i < n),

is optimal. Let σ′1 be the schedule derived from σ1 by swapping i and i + 1.

Then,

f(Cσ1(K), σ1)− f(Cσ′1(K), σ
′
1)

= (β((n− i)b− 1)− bmi+2)(aσ1(i+1) − aσ1(i))

≥ 0. (By Property 5)

So, σ′1 is an optimal schedule. Proceeding as above, we can get an optimal

schedule σ such that

aσ(K+1) ≥ aσ(K+2) ≥ . . . ≥ aσ(n).

8

This completes the proof.

Property 7. (1). If g1(b) > 0, then h1(i) = a(i − 1) + nγ − mi+1 is an

increasing function of i (1 ≤ i ≤ K − 1).

(2). If g1(b) < 0, then h1(i) = α(i− 1) + nγ −mi+1 is a decreasing function

of i (1 ≤ i ≤ K − 1).

(3). If g1(b) = 0, then h1(1) = h1(2) = . . . = h1(K − 1).

Proof. (1). Since mi+1 = (αi + nγ)b + (1 − b)mi+2 for 1 ≤ i ≤ K − 1, we

have

h1(i + 1)− h1(i)

= αi + nγ −mi+2 − α(i− 1)− nγ + mi+1

= α + (mi+1 −mi+2)

= α + (αi + nγ)b + (1− b)mi+2 −mi+2

= α + (αi + nγ)b− bmi+2

> 0. (By Property (3))

This completes the proof of (1).

(2) and (3). Similar to the proof of (1).

Property 8. (1). If g2(b) > 0, then h2(i) = (n + 1 − i)β − mi+1 is an

increasing function of i (K ≤ i < n).

(2). If g2(b) < 0, then h2(i) = (n + 1− i)β −mi+1 is a decreasing function of

i (K ≤ i < n).

(3). If g2(b) = 0, then h2(K + 1) = h2(K + 2) = . . . = h2(n).

Proof. (1). Since mi+1 = bβ(n − i) + (1 − b)mi+2, for K ≤ i ≤ n − 2, we

have

h2(i + 1)− h2(i)

= (n− i)β −mi+2 − (n + 1− i)β + mi+1

9

= −β + (mi+1 −mi+2)

= −β + b(n− i)β + (1− b)mi+2 −mi+2

= (b(n− i)− 1)β − bmi+2

> 0. (By Property 5)

This completes the proof of (1).

(2) and (3). Similar to the proof of (1).

The following theorem is easily seen from Property 4 and Property 6.

Theorem 9. (1). If g1(b) > 0 and g2(b) < 0, then for any optimal schedule

σ, aσ(1) ≥ aσ(2) ≥ . . . ≥ aσ(K) and aσ(K+1) ≤ aσ(K+2) ≤ . . . ≤ aσ(n).

(2). If g1(b) > 0 and g2(b) ≥ 0, then there exists an optimal schedule σ such

that aσ(1) ≥ aσ(2) ≥ . . . ≥ aσ(K) and aσ(K+1) ≥ aσ(K+2) ≥ . . . ≥ aσ(n).

(3). If g1(b) ≤ 0 and g2(b) < 0, then there exists an optimal schedule σ such

that aσ(1) ≤ aσ(2) ≤ . . . ≤ aσ(K) and aσ(K+1) ≤ aσ(K+2) ≤ . . . ≤ aσ(n).

(4). If g1(b) ≤ 0 and g2(b) ≥ 0, then there exists an optimal schedule σ such

that aσ(1) ≤ aσ(2) ≤ . . . ≤ aσ(K) and aσ(K+1) ≥ aσ(K+2) ≥ . . . ≥ aσ(n).

A polynomial-time algorithm

We first sort and re-label the n jobs so that they are in non-increasing order of

their normal processing times, namely a1 ≥ a2 ≥ . . . ≥ an. In the following,

we present an O(n log n) algorithm for 1|pi(si) = ai− bsi|∑(αEi +βTi + γd).

Algorithm A.

Step 1: Initialization.

i = 1, j = 1, k = n, S1 = S2 = ∅,mn+1 = 0,

J = {1, 2, . . . , n}, K = dnβ−nγ
α+β

e.

Step 2: Compute the values of mj+1,mj+2,mj+K+2, and

g1(b) = α + (α + nγ)b− bmj+2,

10

g2(b) = β((n− (K + 1))b− 1)− bmj+K+2.

Step 3: If K = 1 and g2(b) ≥ 0, go to Step 8;

If K = 1 and g2(b) < 0, go to Step 5;

If K = n− 1 and g1(b) > 0, go to Step 5;

If K = n− 1 and g1(b) ≤ 0, go to Step 12.

Step 4: If g1(b) > 0 and g2(b) ≥ 0, go to Step 8;

If g1(b) ≤ 0 and g2(b) ≥ 0, go to Step 12;

If g1(b) ≤ 0 and g2(b) < 0, go to Step 16.

Step 5: Compute Lj,k = (j − 1)α + nγ −mj+1 − (n + 1− k)β + mk+1. If

Lj,k ≥ 0, set k := k − 1,mk+1 := bβ(n − k) + (1 − b)mk+1, S2 := S2 ∪ {i};
otherwise, set: j := j + 1,mj+1 := mj+1−(α(j−1)+nγ)b

1−b
, S1 := S1 ∪ {i}.

Step 6: i := i + 1

Step 7: If j = K +1, set S2 := J −S1. Let σ be the schedule obtained by

arranging the jobs in non-increasing order of their normal processing times

in S1, followed by arranging the jobs in non-decreasing order of their normal

processing times in S2, and d∗ = Cσ(K). STOP.

If k = K, set S1 := J − S2. Let σ be the schedule obtained by arranging

the jobs in non-increasing order of their normal processing times in S1, fol-

lowed by arranging the jobs in non-decreasing order of their normal processing

times in S2, and d∗ = Cσ(K). STOP. Otherwise, go to Step 5.

Step 8: k = K + 1.

Step 9: Compute Lj,k = (j − 1)α + nγ −mj+1 − (n + 1− k)β + mk+1. If

Lj,k ≥ 0, set k := k + 1,mk+1 := mk+1−b(n+1−k)β
1−b

, S2 := S2 ∪ {i}; otherwise,

set: j := j + 1,mj+1 := mj+1−(α(j−1)+nγ)b

1−b
, S1 := S1 ∪ {i}.

Step 10: i := i + 1

Step 11: If j = K +1, set S2 := J −S1. Let σ be the schedule obtained by

11

arranging the jobs in non-increasing order of their normal processing times

in S1, followed by arranging the jobs in non-increasing order of their normal

processing times in S2, and d∗ = Cσ(K). STOP.

If k = n + 1, set S1 := J − S2. Let σ be the schedule obtained by

arranging the jobs in non-increasing order of their normal processing times in

S1, and followed by arranging the jobs in non-increasing order of their normal

processing times in S2, and d∗ = Cσ(K). STOP. Otherwise, go to Step 9.

Step 12: i := n.

Step 13: Compute Lj,k = (j − 1)α + nγ −mj+1 − (n + 1 − k)β + mk+1.

If Lj,k ≥ 0, set k := k − 1,mk+1 := bβ(n − k) + (1 − b)mk+1, S2 := S2 ∪ {i};
otherwise, set: j := j + 1,mj+1 := mj+1−(α(j−1)+nγ)b

1−b
, S1 := S1 ∪ {i}.

Step 14: i := i− 1

Step 15: If j = K +1, set S2 := J −S1. Let σ be the schedule obtained by

arranging the jobs in non-decreasing order of their normal processing times

in S1, followed by arranging the jobs in non-increasing order of their normal

processing times in S2, and d∗ = Cσ(K). STOP.

If k = K, set S1 := J − S2. Let σ be the schedule obtained by arranging

the jobs in non-decreasing order of their normal processing times in S1, fol-

lowed by arranging the jobs in non-increasing order of their normal processing

times in S2, and d∗ = Cσ(K). STOP. Otherwise, go to Step 13.

Step 16: k := K + 1, i := n.

Step 17: Compute Lj,k = (j − 1)α + nγ −mj+1 − (n + 1− k)β + mk+1. If

K ≥ 0, set k := k + 1,mk+1 := mk+1−b(n+1−k)β
1−b

, S2 := S2 ∪ {i}; otherwise, set:

j := j + 1,mj+1 := mj+1−(α(j−1)+nγ)b

1−b
, S1 := S1 ∪ {i}.

Step 18: i := i− 1

Step 19: If j = K +1, set S2 := J −S1. Let σ be the schedule obtained by

arranging the jobs in non-decreasing order of their normal processing times

12

in S1, followed by arranging the jobs in non-decreasing order of their normal

processing times in S2, and d∗ = Cσ(dn
2
e). STOP.

If k = n + 1, set S1 := J − S2. Let σ be the schedule obtained by

arranging the jobs in non-decreasing order of their normal processing times

in S1, followed by arranging the jobs in non-decreasing order of their normal

processing times in S2, d∗ = Cσ(K). STOP. Otherwise, go to Step 16.

To determine the computational complexity of Algorithm A, we note that

Step 5, Step 9, Step 13 and Step 17 can be completed in O(n) time, while

Step 7, Step 11, Step 15 and Step 19 can be completed in O(n log n) time.

Hence, the overall time complexity of the algorithm is O(n log n).

Property 10. Let σ be an optimal schedule and Li,j = (i − 1)α + nγ −
mi+1 − (n + 1 − j)β + mj+1 (1 ≤ i ≤ K,K + 1 ≤ j ≤ n)). If Li,j > 0, then

aσ(i) ≤ aσ(j). If Li,j < 0, then aσ(i) ≥ aσ(j).

Proof. If Li,j > 0, suppose to the contrary that aσ(i) > aσ(j). Let σ′ be

the schedule derived from σ by swapping i and j. Then, f(Cσ(K), σ) −
f(Cσ′(K), σ

′) = Li,j(aσ(i)−aσ(j)) > 0. This is a contradiction. So, aσ(i) ≤ aσ(j).

Similar to above, we have aσ(i) ≥ aσ(j) if Li,j < 0.

For notational convenience, we define the following properties:

(P1). If Li,j > 0, then aσ(i) ≤ aσ(j). Moreover, if Li,j > 0 and aσ(i) = aσ(j),

then σ(j) < σ(i). If Li,j < 0, then aσ(i) ≥ aσ(j). Moreover, if Li,j < 0 and

aσ(i) = aσ(j), then σ(i) < σ(j).

(P2). aσ(1) ≥ aσ(2) ≥ . . . ≥ aσ(K) and aσ(K+1) ≥ . . . ≥ aσ(n). If aσ(i) = aσ(j),

then σ(i) < σ(j) if 1 ≤ i < j ≤ K, or K + 1 ≤ i < j ≤ n.

(P3). aσ(1) ≥ aσ(2) ≥ . . . ≥ aσ(K) and aσ(K+1) ≤ . . . ≤ aσ(n). If aσ(i) = aσ(j),

then σ(i) < σ(j) if 1 ≤ i < j ≤ K, and σ(i) > σ(j) if K + 1 ≤ i < j ≤ n.

(P4). aσ(1) ≤ aσ(2) ≤ . . . ≤ aσ(K) and aσ(K+1) ≤ . . . ≤ aσ(n). If aσ(i) = aσ(j),

then σ(i) > σ(j) if 1 ≤ i < j ≤ K, or K + 1 ≤ i < j ≤ n.

(P5). aσ(1) ≤ aσ(2) ≤ . . . ≤ aσ(K) and aσ(K+1) ≥ . . . ≥ aσ(n). If aσ(i) = aσ(j),

13

then σ(i) > σ(j) if 1 ≤ i < j ≤ K, and σ(i) < σ(j) if K + 1 ≤ i < j ≤ n.

(P6). If Ki,j = 0, then aσ(j) ≥ aσ(i). Moreover, if Ki,j = 0 and aσ(j) = aσ(i),

then σ(j) < σ(i).

(P7). If Ki,j = 0, then aσ(j) ≤ aσ(i). Moreover, if Ki,j = 0 and aσ(j) = aσ(i),

then σ(j) > σ(i).

The next property is easily seen from Algorithm A.

Property 11. Let σ be a schedule produced by Algorithm A.

(1) If g1(b) > 0 and g2(b) ≥ 0, then σ satisfies properties (P1), (P2) and (P6).

(2) If g1(b) > 0 and g2(b) < 0, then σ satisfies properties (P1), (P3) and (P6).

(3) If g1(b) ≤ 0 and g2(b) < 0, then σ satisfies properties (P1), (P4) and (P7).

(4) If g1(b) ≤ 0 and g2(b) ≥ 0, then σ satisfies properties (P1), (P5) and (P7).

Property 12. (1). If g1(b) > 0 and g2(b) ≥ 0, then there exists an optimal

schedule that satisfies properties (P1), (P2), (P6).

(2). If g1(b) > 0 and g2(b) < 0, then there exists an optimal schedule that

satisfies properties (P1), (P3), (P6).

(3). If g1(b) ≤ 0 and g2(b) < 0, then there exists an optimal schedule that

satisfies properties (P1), (P4), (P7).

(4). If g1(b) ≤ 0 and g2(b) ≥ 0, then there exists an optimal schedule that

satisfies properties (P1), (P5), (P7).

Proof. (1). Assume σ is an optimal schedule with properties (P1), (P2), the

result is easily obtained by Theorem 9 and Property 10. If there exist integers

i, j with 1 ≤ i ≤ K,K + 1 ≤ j ≤ n such that Li,j = 0 and aσ(i) > aσ(j) or

aσ(j) = aσ(i) and σ(j) > σ(i), let σ1 be a schedule derived from σ by swapping

i and j. Then, f(Cσ(K), σ)− f(Cσ1(K), σ1) = Li,j(aσ(i) − aσ(j)) = 0. So, σ1 is

an optimal schedule. By repeating the above procedure, we eventually obtain

an optimal schedule σ′ with properties (P1), (P2) and (P6).

14

(2), (3) and (4). Similar to the proof of (1).

Property 13. (1). If g1(b) > 0 and g2(b) ≥ 0, let σ, σ′ be two schedules with

properties (P1), (P2) and (P6), then σ(i) = σ′(i) for 1 ≤ i ≤ n.

(2). If g1(b) > 0 and g2(b) < 0, let σ, σ′ be two schedules with properties

(P1), (P3) and (P6), then σ(i) = σ′(i) for 1 ≤ i ≤ n.

(3). If g1(b) ≤ 0 and g2(b) < 0, let σ, σ′ be two schedules with properties

(P1), (P4) and (P7), then σ(i) = σ′(i) for 1 ≤ i ≤ n.

(4). If g1(b) ≤ 0 and g2(b) < 0, let σ, σ′ be two schedules with properties

(P1), (P5) and (P7), then σ(i) = σ′(i) for 1 ≤ i ≤ n.

Proof. (1). It suffices to prove that σ(i) = σ′(i) for 1 ≤ i ≤ K. We proceed

by induction on i. We distinguish two cases, depending on g2(b) > 0 or

g2(b) = 0.

Case 1. g1(b) > 0 and g2(b) > 0.

If i = 1 and there exists an integer j1 (K + 1 ≤ j1 ≤ n) such that L1,j1 = 0.

By Property 8, L1,j > 0 if K + 1 ≤ j < j1. Then, σ(1) = σ′(1) = j1 −K + 1.

If i = 1, and there exists no integer j (K + 1 ≤ j ≤ n) such that L1,j = 0,

then σ(1) = σ′(1) = 1 if L1,K+1 < 0. If L1,K+1 > 0, let j′1=max{j|K1,j >

0, K + 1 ≤ j ≤ n}, then σ(1) = σ′(1) = j′1 −K + 1.

Assume that for i < k, the result follows. We consider the case i = k.

If there exists an integer jk (K + 1 ≤ jk ≤ n) such that Lk,jk
= 0. By

Property 7 and Property 8, Lk,j < 0 if j > jk and Li,jk
> 0 if i > k. Then,

σ(k) =max{σ(k− 1), σ(jk− 1)}+ 2. Similarly, σ′(k) =max{σ′(k− 1), σ′(jk−
1)} + 2. By the induction hypothesis, σ(i) = σ′(i) for 1 ≤ i ≤ k − 1. This

implies that σ(jk−1) = σ′(jk−1). So, σ(k) = σ′(k). If there exists no integer

j (K + 1 ≤ j ≤ n) such that Lk,j = 0, let jk = K + σ(k − 1)− (k − 1), then

σ(k) = σ′(k) = σ(k−1)+1 if Lk,jk+1 < 0. If Lk,jk+1 > 0, let j′k =max{j|Lj,k >

0}, then σ(k) = σ′(k) = σ(k − 1) + (j′k − jk) + 1.

Case 2. g1(b) > 0 and g2(b) = 0.

15

If L1,K+1 ≥ 0, then by Property 7, L1,K+2 ≥ 0, . . . , L1,n ≥ 0. So, σ(1) =

σ′(1) = (n−K) + 1. If L1,K+1 < 0, then σ(1) = σ′(1) = 1.

Assume that for i < k, the result follows. We consider the case i = k. If

Lk,K+1 = 0, then by Property 7 and Property 8, Lk−1,K+1 < 0, Lk−1,K+2 <

0, . . . , Lk−1,jk
< 0, and Lk,jk+1 = . . . = Lk,n = 0. So, σ(k) = σ(k − 1) + (n−

K) + 1. Similarly, σ′(k) = σ′(k − 1) + (n − K) + 1. Then, σ(k) = σ′(k).

If Lk,K+1 < 0, then L1,K+1 < 0, L2,K+1 < 0, . . . , Lk−1,K+1 < 0, so σ(k) =

σ′(k) = k. If Lk,K+1 > 0 and Lk−1,K+1 > 0, then σ(k) = σ(k − 1) + 1.

Similarly, σ′(k) = σ′(k − 1) + 1. By the induction hypothesis, σ(k − 1) =

σ′(k − 1). So σ(k) = σ′(k). If Lk,K+1 > 0 and Lk−1,K+1 < 0, then σ(k) =

σ(k − 1) + (n − K) + 1. Similarly, σ′(k) = σ′(k − 1) + (n − K) + 1. So,

σ(k) = σ′(k). This completes the proof.

Theorem 14. Algorithm A computes in time O(n log n) an optimal solution

to the problem 1|pi(si) = ai − bsi, d|∑(αEi + βTi + γd).

Conclusions

This paper studies a single machine due-date scheduling problem of jobs with

decreasing start-time dependent processing times. Our objective is to mini-

mize the sum of earliness and tardiness. We show that the optimal schedule

can be found in O(n log n) time. Future research may consider more general

deterioration types.

Acknowledgments

This research was supported in part by The Hong Kong Polytechnic Univer-

sity under grant number G-YW81. The second author was also supported

by the National Natural Science Foundation of China under grant number

10101010.

16

References

[1] Alidaee, B., 1991. Single machine scheduling with nonlinear cost func-

tions. Computers and Operations Resarch 18(3), 317-322.

[2] Alidaee, B., Womer, N.K., 1999. Scheduling with time dependent pro-

cessing times: review and extentions. Journal of the Operational Re-

search Society 50, 711-720.

[3] Bachman, A., Cheng, T.C.E., Janiak, A., Ng, C.T., 2002. Scheduling

start time dependent jobs to minimize the total weighted completion

time. Journal of Operational Research Society 53, 688-693.

[4] Baker, K.R., Scudder, G.D., 1990. Sequencing with earliness and tardi-

ness penalities: a review. Operations Research 38, 22-36.

[5] Brucker, P., 1995. Scheduling Algorithms. Springer, New York.

[6] Cheng, T.C.E., Ding, Q., 1998. The complexity of scheduling starting

time dependent tasks with release date. Information Processing Letter

65, 75-79.

[7] Cheng, T.C.E., Ding, Q., Lin, B.M.T., 2004. A concise survey of schedul-

ing with time-dependent processing times. European Journal of Opera-

tional Research 152, 1-13.

[8] Cheng, T.C.E., Chen, Z.L., Shakhlevich, N.V., 2002. Common due date

assignment and scheduling with ready times. Computers and Operations

Research 29, 1957-1967.

[9] Gordon, V., Porth, J.-M., Chu, C.B., 2002. A survey of the state-of-art of

common due date assignment and scheduling research. European Journal

of Operational Research 139, 1-25.

17

[10] Gordon, V.S., Porth, J.-M., Chu, C.B., 2002. Due date assignment and

scheduling: SLK, TWK and other due date assignment models. Produc-

tion Planning and Control 13, 117-132.

[11] Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.,

1979. Optimization and approximation in deterministic sequencing and

scheduling: a survey. Annals. of Discrete Mathematics 3, 287-326.

[12] Mosheio, G., 1991. V-shaped policies for scheduling deteriorating jobs.

Operations Research 39(6), 979-991.

[13] Mosheiov, G., 1994. Scheduling jobs under simple linear deterioration.

Computers and Operations Research 21(6), 653-659.

[14] Ng, C.T., Cheng, T.C.E., Bachman, A., Janiak, A., 2002. Three schedul-

ing problems with deteriorating jobs to minimize the total completion

time. Information Processing Letters 81, 327-333.

18

