
1 

Analysis of postponement strategy for perishable items by 

EOQ-based models 

J. Lia,c, T.C.E. Chengb,∗, S.Y. Wanga 

aInstitute of Systems Science, Academy of Mathematics and Systems Sciences, 

Chinese Academy of Sciences, Beijing, 100080, China 
bDepartment of Logistics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

cDepartment of Mathematics, Qufu Normal University, Qufu, Shandong, 273165, China 

 

 

Abstract 

 

This paper develops EOQ-based models with perishable items to evaluate the impact of a 

form postponement strategy on the retailer in a supply chain. We formulate models for a 

postponement system and an independent system to minimize the total average cost function 

per unit time for ordering and keeping n  perishable end-products. An algorithm is given to 

derive the optimal solutions of the proposed models. The impact of the deterioration rate on the 

inventory replenishment policies is studied with the help of theoretical analysis and numerical 

examples. Our theoretical analysis and computational results show that a postponement 

strategy for perishable items can give a lower total average cost under certain circumstances. 

 

Keywords: Postponement strategy; Economic-order-quantity model (EOQ); Perishable items; 

Inventory management 

 

 

1. Introduction 

 

Postponement, also known as late customization or delayed product differentiation, refers to 

delaying some product differentiation processes in a supply chain as late as possible until the 

supply chain is cost effective (Garg and Lee, 1998). Postponement  is one of central features of 

mass customization (van Hoek, 2001). It has been reported that postponement strategy is 

highly successful in a wide range of industries that require high differentiation, e.g., high-tech 
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industry, food industry, and fashion industry, etc. One practical example is Hewlett-Packard 

Development Company.  HP produces generic printers in its factories and distributes them to 

local distribution centers, where power plugs with appropriate voltage and user manuals in the 

right language are packed. They have saved a lot of money every year by adopting the 

postponement strategy (Lee, 1998).  

However, postponement is not an omnipotent strategy. It has both advantages and 

disadvantages. The advantages include following the JIT principles of production, reducing 

end-product inventory (Brown et al., 2000), making forecasting easier (Ernst and Kamrad, 

2000), and pooling risks (Garg and Tang, 1997). The high cost of redesigning and 

manufacturing generic components is the main drawback of postponement (Lee, 1998). Thus, 

evaluation of postponement structures is an important issue. Many qualitative and quantitative 

models have been developed to evaluate the cost-effectiveness of postponement strategy under 

different scenarios. Details can be found in the review articles by van Hoek (2001), and Wan et 

al. (2003a). Recent quantitative models include, but are not limited to, those by Lee (1996), 

Garg and Tang (1997), Garg and Lee (1998), Ernst and Kamrad (2000), Aviv and Federgruen 

(2001), Ma et al. (2002), Su (2005), and Reiner (2005). They evaluated the cost and benefits of 

applying postponement in a large variety of stochastic settings. If demand is deterministic, e.g., 

because there is a long-term supply contract between a manufacturer and its customers, the 

benefits due to economies of scope from risk pooling do not exit. It is necessary to develop 

deterministic models to evaluate postponement. Recent deterministic models include, among 

others, those by Wan et al. (2003b, 2004), and Li et al. (2005). Wan et al. (2003b, 2004) 

analyzed pull postponement using EOQ-based models and EPQ-based models. They showed 

that the postponed customization of end-products will result in a lower total average cost under 

certain circumstances. Li et al.  (2005) considered EPQ-based models with planned backorders. 

They showed that a postponement system can outperform an independent system under certain 

circumstances and identified the key factors for postponement decisions. 

All of the above models assumed that the inventoried items can be stored indefinitely to 

meet future demands. However, certain types of products either deteriorate or become obsolete 

in the course of time. Perishable products are commonly found in commerce and industry, for 

example, fruits, fresh fish, perfumes, alcohol,  gasoline, photographic films, etc. For these kinds 

of products, traditional inventory models are no longer applicable. An early study of perishable 

inventory systems was carried out by Whitin (1957). Since then, considerable effort has been 

expended on this line of research. Comprehensive surveys of related research can be found in 

Nahmias (1982), Raafat (1991), and Goyal et al. (2001), where relevant literature published 
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before the 1980s, in the 1980s, and in the 1990s was reviewed, respectively. Recent studies 

before 2004 can be found in Song et al. (2005). 

One of the focuses of the research on perishable products is interaction and coordination in 

supply chains (Song et al., 2005). For example, Goyal and Gunasekaran (1995) developed an 

integrated production- inventory-marketing model for determining the economic production 

quantity and economic order quantity for raw materials in a multi-stage production system. 

Yan and Cheng (1998) stud ied a production-inventory model for perishable products, where 

they assumed that the production, demand and deterioration rate are all time-dependent. They 

gave the conditions for a feasible point to be optimal. Arcelus  et al. (2003) modeled a profit-

maximizing retail promotion strategy for a retailer confronted with a vendor's trade promotion 

offer of credit and/or price discount on the purchase of regular or perishable products. 

Kanchanasuntorn and Techanitisawad (2006) investigated the effect of product deterioration 

and retailers’ stockout policies on system total cost, net profit, service level, and average 

inventory level in a two-echelon inventory–distribution system, and developed an approximate 

inventory model to evaluate system performance. There are many papers addressing the 

interaction and coordination between inventory and marketing, financing, distribution, and 

production. To the best of our knowledge, there exists no paper studying the interaction 

between inventory and postponement in a supply chain with perishable items. In this paper we 

will use the EOQ-based model with perishable items to analyze postponement to fill this gap in 

the literature. 

In this paper we study a supply chain involving a retailer and n  customers. The retailer 

orders n  different products in response to the demands of the customers. It is assumed that the 

n  perishable end-products are manufactured from the same raw material or semi-manufactured 

products. The end-products belong to the same product category, but they have slight 

differences and the customization process can be delayed after ordering. The retailer can order 

the n  perishable  end-products independent ly in an independent system. However, the retailer 

may order the material or semi-manufactured product and finish the customization itself, i.e., 

customization is postponed after ordering.  The ordering decisions can be combined.  This can 

be viewed as a postponement system. For example, retailers of a soft drink supplier can order 

concentrated syrup and mix it with carbonated water in-house to make different soda products 

for sale at their retail stores. In this case, the retailers make only one decision to acquire the 

concentrated syrup rather than making many different decisions to acquire different products 

marketed by the soft drink supplier. 



4 

The objective of this paper is to investigate whether or not the postponement system can 

outperform the independent system with perishable items. We formulate two models to 

describe the supply chain, and give an algorithm to derive the optimal ordering strategies. We 

also investigate the effect of product deterioration on the total cost of the retailer and on 

inventory replenishment policies. Some numerical examples are provided to illustrate the 

theoretical results. We show that postponement strategy can give a lower total average cost 

under certain circumstances with perishable items. The results presented in this paper provide 

insights for managers that guide them to find a proper tradeoff between postponement and non-

postponement. 

The rest of this paper is organized as follows. In the next  section we describe the notation 

and assumptions used throughout this paper. In Section 3 we establish a mathematical model to 

evaluate the impacts of inventory deterioration rate on inventory replenishment policies. We 

then provide a simple algorithm to find the optimal replenishment schedule. In Section 4 we 

show that a postponement system can outperform an independent system under certain 

circumstances. In Section 5 some numerical examples are provided to illustrate the theoretical 

results. Finally, we conclude the paper, and suggest some directions for future research in 

Section 6. 

 

2. Notation and Assumptions 

  

We assume that the demand rates of the end-products are independent and constant. The 

unsatisfied demands (due to shortage) are completely backlogged. So we formulate two EOQ-

based models to describe the supply chain. In the first model, the retailer orders the n  

perishable end-products independent ly with different schedules, so there are n  EOQ decisions. 

However, in the second model customization is postponed after ordering, and the ordering 

decisions can be combined so that a single EOQ decision is made. This practice can be viewed 

as a form postponement strategy.  

Definitions of the notation of this paper are presented below. 

l i  = end-product, 1,2, ,i n= L , 

l iλ  = demand rate of end-product i , 0iλ > ,  

l θ  = deterioration rate of end-products and raw materials, 0,θ ≥  

l c  = common variable production cost, 0c > , 
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l k  = common fixed ordering cost, 0k > , 

l h  = common unit holding cost per unit time, 0h > ,  

l b  = unit backorder cost for end-products, 0,b >  

l p  = common extra unit customization cost, 0p > ,  

l ( )I t  = inventory level at time t , 

l iT  = total cycle time for end-product i , 0iT > ,  

l it  = the time up to which the inventory of end-product i  is positive in a cycle,  

l ( , )i iC T t  = total average cost per unit time for ordering and keeping end-product i , 

l TC  = total average cost per unit time for ordering and keeping n  end-products in an 

independent system, 

l TCP  = total average cost per unit time for ordering and  keeping n  end-products in a 

postponement system (excluding the customization cost ). 

In addition, the following assumptions are imposed on the models: 

1. The replenishment rate is infinite and the lead time is zero. 

2. The end-product demand rates iλ  are deterministic and constant.  

3. Shortages are allowed and completely backlogged. 

4. All the end-products are produced from the same type of raw materials and the ratio of raw 

material to end-product is 1:1. 

5. An extra customization process cost per end-product p  is incurred if the customization 

process is delayed. The lead-time for customization is negligible. 

6. The distribution of the deterioration time of the items follows the exponential distribution 

with parameter θ , i.e., a constant rate of deterioration. 

7. Deterioration of the raw materials and end-product is considered only after they have been 

received into inventory, and there is no replacement of deteriorated inventory. 

 

3. Model formulation 

 

Based on the above assumptions, the inventory level of an end-product at time t , ( )I t , is 

governed by the following differential equation: 
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        0

0

( ) , 0 ,( )
, ,

I t t tdI t
t t Tdt

θ λ

λ

− − ≤ ≤
= 

− ≤ ≤
                                                                                        (1) 

with the boundary condition 0( ) 0I t = , where 0t  is the time up to which the inventory level is 

positive in a cycle, and T  is the cycle length. The solution of (1) is 

0( )
0

0 0

( 1) , 0 ,
( )

( ), .

t te t t
I t

t t t t T

θλ θ
λ

− − ≤ ≤
= 

− − ≤ ≤
                                                                                   (2) 

( )I t  follows the pattern depicted in Fig. 1.  

Based on (2), we obtain the total average cost per unit time for ordering and keeping the 

end-product as follows 

0 2
0 0

0 2

( )( 1) ( )
( , | ) .

2

tc h e t b T tk
C t T c

T T T

θλ θ θ λ
θ λ

θ
+ − − −

= + + +                                             (3) 

The necessary conditions for the minimum value of 0( , | )C t T θ  are 

        0

0

( , | )C t T
t

θ∂
∂

0
0( )( )( 1)t b t Tc h e

T T

θ λλ θ
θ

−+ −
= + 0,=                                                            (4) 

        0( , | )C t T
T

θ∂
∂

0 2 2
0 0

2 2 2 2

( )( 1) ( )
2

tc h e t b T tk
T T T

θλ θ θ λ
θ

+ − − −
= − − + 0.=                                       (5)  

After rearranging the terms in (4) and (5), we get 

0 00 2
0 0

2 2

1 ( 1)( )( 1)
0,

( ) 2

t tte t t ek c h e
c h b

θ θθθ θ
λ θ θ θ θ

− − −+ −
− − + + =

+
                                                (6) 

0

0
( )( 1)

0.
tc h e

T t
b

θθ
θ

+ −
− − =                                                                                               (7) 

 

Lemma 3.1. If 0c hθ + > , then the point ( *
0 0,t > * 0T > ) that solves (6) and (7) simultaneously 

exists and is unique. The point ( *
0 ,t *T ) is also the unique global optimum for the problem 

0 0min{ ( , | ) : 0 }C t T t Tθ < < < ∞ . 

 

Proof. Our lemma is a special case of Propositions 2 and 3 of Dye et al. (2005).    □ 

 

Thus *
0t  can be uniquely determined as a function of θ , say *

0 ( )t t θ= , and *T  can be 

uniquely determined as a function of θ , say * ( )T T θ= . This also implies that * *
0( , | )C t T θ  can 

be uniquely determined as a function of θ , say * *
0( , | ) ( ( ), ( ) | )C t T C t Tθ θ θ θ= . 
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Theorem 3.1. µ
0 0( ) ( ( ), ( ) | ) min{ ( , | ) : 0 }C C t T C t T t Tθ θ θ θ θ= < < < ∞@  is an increasing and 

continuous function of θ  in [0, )+∞ ,  and  µ
0

lim ( ) 2 ( )C c k hb b h
θ

θ λ λ
→

= + + . 

 

Proof. Recalling that the power series for xe  is 
0
( !)n

n
x n

∞

=∑ , we have 

0( , | )C t T θ

0
20

0 0
2

( )
( )( 1)

( )!
2

n

n

t
c h t

b T tk nc
T T T

θ
λ θ θ

λ
λ

θ

∞

=

+ − −
−

= + + +
∑

 

                         

2
2 0

20
2 0

( )
( )

( )! .
2

n

n

t
t c h

b T tk nc
T T T

θ
λ θ

λ
λ

−∞

=

+
−

= + + +
∑

                                              (8) 

For 0θ ≥ , it is obvious that 0( , | )C t T θ  is an increasing function of θ  for each fixed value 

of 0 0t >  and 0T > . If 1 2θ θ< , we have 

        µ µ
2 2 2 2 2 2 1 1 1 1 1( ) ( ( ), ( ) | )> ( ( ), ( ) | ) ( ( ), ( ) | ) ( ).C C t T C t T C t T Cθ θ θ θ θ θ θ θ θ θ θ= ≥ =  

Thus, µ ( )C θ  is an increasing function of θ  in [0, ).+∞  Let 

0 00 2
0 0

1 0 2 2

1 ( 1)( )( 1)
( , , ) ,    

( ) 2

t tte t t ek c h e
f t T

c h b

θ θθθ θ
θ

λ θ θ θ θ
− − −+ −

− − + +
+

@  

0

2 0 0
( )( 1)

( , , ) .
tc h e

f t T T t
b

θθ
θ

θ
+ −

− −@  

For 
h
c

θ > − , we have 

0 0
01

0
0

( )( 1)
,

t t
tf c h e e

t e
t b

θ θ
θλ θ

λ
θ

∂ + −
= +

∂
 1 0,

f
T

∂
=

∂
 

0
2

0

( )
1 ,

tf c h e
t b

θθ∂ +
= − −

∂
 2 1,

f
T

∂
=

∂
 

from where we deduce that 

1 1

0 1

2 2 0

0

0.

f f
t T f
f f t
t T

∂ ∂
∂ ∂ ∂

= >
∂ ∂ ∂
∂ ∂

 

From the implicit function theorem, we know that ( )t θ  and ( )T θ  are continuous functions 

of θ  in [0, ),+∞  respectively. Moreover, 0( , | )C t T θ  is a continuously differentiable real 
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function for 00 t T< < , and h cθ > − . Thus, µ ( )C θ  is also a continuous function of θ  in 

[0, )+∞ . 

Because µ ( )C θ  is continuous in [0, )+∞ , we have 

µ
0

lim ( )C
θ

θ
→

µ(0)C=
0

2 2
0 0

0

( )
min { }

2 2t T

ht b T tk
c

T T T
λ λ

λ
< < < ∞

−
= + + +

2
= .

k hb
c

b h
λ

λ +
+

    □ 

 

Theorem 3.2. ( )t θ   is a decreasing function of θ   in [0, )+∞ , and ( ) 2 ( ( ))t kb h b hθ λ≤ + . 

 

Proof. ( )t θ  is the unique solution of equation (6). After rearranging the terms in (6), we get 

( )
k

c hλ θ +

0 0 0 2
0 0

2 2

1 ( 1) ( )( 1)
2

t t te t t e c h e
b

θ θ θθ θ
θ θ θ
− − − + −

= − + +  

0 2
2 1
0 0 2

1

1 1 ( )( 1)
( )( ) .

! ( 1)! 2

t
i

i

c h e
t t

i i b

θθ
θ

θ

+∞
−

=

+ −
= − +

+∑                                                  (9)  

The left side of (9) is a decreasing function of θ , and the right side of (9) is an increasing 

function of θ  for each fixed value of 0 0t > . When θ  increases, ( )t θ  must decrease in order to 

satisfy equation (9). So ( )t θ  is a decreasing function of θ  in [0, ),+∞  and 

( ) (0) 2 ( ( ))t t kb h b hθ λ≤ = + .     □ 

 

Because *
0t  and *T  cannot be determined in a closed form from (6) and (7), we have to 

determine them numerically using the following algorithm. 

Algorithm 3.1. 

Step1. Obtain the value of *
0t  by solving the nonlinear equation (6) with the help of some 

mathematical software such as MatLab or Mathematica. 

Step2. Compute *T  by using (7). 

Step3. The corresponding optimal cost per unit time * *
0( , | )C t T θ  is obtained by (3). 

Remark 3.1. If 2 ( ( ))kb h b hθ λ +  is small enough, we can give an approximate optimal 

solution of (3). We can approximate 0teθ  by the first three terms in its power series. Then, we 

have 0( , | )C t T θ 2 2
0 0( ) (2 ) ( ) (2 )k T c c h t T b T t Tλ λ θ λ≈ + + + + − . This is the classical EOQ 

model. By the EOQ formula, we can obtain that the approximate optimal cost is 

2 ( ) ( )c k h c b b h cλ λ θ θ+ + + + . From the approximate optimal cost, we can find that 
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deterioration effectively adds an additional component to the  holding cost, i.e., from h  to 

h cθ+ . 

 

4. The postponement and independent systems  

  

Now we discuss the postponement system and the independent system.  In the independent 

system the raw materials are ordered independently (i.e., without postponement). The total 

average cost for ordering and keeping the n  end-products is 
2

2
1 1

( )( 1) ( )
( ) ( , | ) .

2

itn n
i i i i i

i i i
i i i i i

c h e t b T tk
TC C t T c

T T T

θλ θ θ λ
θ θ λ

θ= =

 + − − −
= = + + + 

 
∑ ∑              (10) 

    In the form postponement system, all the raw materials are ordered together (i.e., postponing 

the customization process) and the  demand rate is $
1 2 nλ λ λ λ= + +L . The total average cost for 

ordering and keeping the n  end-products is given by (excluding the customization cost) 

µ
µ

$ $
µ

$ µ
µ

2

2

( )( 1) ( )
( , | ) .

2

tk c h e t b T t
TCP t T c

T T T

θλ θ θ λ
θ λ

θ

+ − − −
= + + +

$ $ $$                                                        (11) 

The difference in the optimal total average cost per unit time of the two systems is defined 

as * * *( ) ( )z TCP TCθ θ= − . 

 

Theorem 4.1 There exists a 0θ >  such that for any 0 θ θ≤ ≤ , * *( ) ( )TCP TCθ θ< , i.e., the 

postponement system can give a lower total average cost than the independent system. 

 

Proof. Because µ ( )C θ  is continuous in [0, )+∞ , we have  

$ $
* *

0

2
lim ( ) (0) ,

k hb
TCP TCP c

b hθ

λ
θ λ

→
= = +

+
                                                                    (12) 

$* *

0
1

2
lim ( ) (0) .

n
i

i

k hb
TC TC c

b hθ

λ
θ λ

→
=

= = +
+∑                                                                     (13) 

Wan et al. (2003) have proved that (12) (13) 0− < . So there exists a 0θ >  such that for any 

0 θ θ≤ ≤ , * *( ) ( )TCP TCθ θ< .    □ 
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Remark 4.1. If θ  is small, we can obtain an approximate optimal cost as Remark 3.1. Then 

*z ≈
1 1

2 ( ) ( ) .
n n

i ii i
k h c b b h cθ θ λ λ

= =
 + + + − 
 ∑ ∑  From this equation, we see that the 

postponement system can outperform the  independent system, and the absolute value of *z  

becomes larger when θ  becomes larger. 

 

5. Numerical examples and sensitivity analysis 

 

We give some numerical examples to illustrate how the  deterioration rate impacts on the 

minimum total average cost and postponement. To illustrate the results, we consider the 

example in Padmanabhan and Vrat (1995). 

Example 1. In order to study how various  deterioration rates affect the optimal cost of the 

EOQ model, deterioration sensitivity analysis is performed. The value of the deterioration rate 

varies as follows: (0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.20, 0.30,0.40, 0.50, 0.60). The demand rate 

is λ = 600, the common variable ordering cost c  is 5, the common fixed ordering cost k  is 

250, the common unit holding cost h  per unit time is 1.75, and the unit backorder cost b  is 3 

(all in appropriate units). 

   Applying the solution procedure in Section 3, we derive the results shown in Table 1 and Fig. 

2, from which the following observations can be made. 

1 µ ( )C θ  is an increasing and concave function of θ  in [0, )+∞ . 

2 ( )t θ  is a decreasing function of θ  in [0, )+∞ . 

3 *tθ  is less sensitive to θ . The reason is that ( )t θ  is a decreasing function of θ . 

 Example 2.  In order to study how various  deterioration rates affect the difference in cost 

between the postponement system and the independent system, we assume that there are 

eleven end-products. For the eleven products, we assume that 1 550,λ =  2 560,λ =  3 570,λ =  

4 580,λ =  5 590,λ =  6 600,λ =  7 610,λ =  8 620,λ =  9 630,λ =  10 640,λ =  11 650.λ =  The other 

related data are the same as the data of Example 1. Applying the solution procedure in Section 

3, we obtain the results of the  sensitivity analysis with these parameters, which are shown in 

Table 2 and Fig. 3, from which the following observations can be made. 

4 The postponement system yields savings in the total average cost.  

5 The absolute value of *z  becomes larger when the deterioration rate becomes larger. 

6 The absolute value of * *z TC  becomes larger when the deterioration rate becomes larger. 
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Observations 5 and 6 imply that the larger the deterioration rate is, the more cost-effective 

the postponement strategy is. 

 

6. Conclusions  

 

In this paper an EOQ model for deteriorating items with a constant deterioration rate θ  was 

developed. We showed that the postponement strategy outperforms the independent strategy 

when θ  is small. Our numerical experiments showed that the difference between the two 

strategies will become larger when θ  becomes larger. We assumed that the deterioration rate 

of the raw materials is the same as that of the end-products. But the raw materials, such as IC 

chips, are easy to be used for other products by design changes, the deterioration rate of the 

raw materials is often smaller than that of the end-products. So postponement can yield more 

savings in total average cost in practice. Now we consider the extra customization cost in a 

postponement system. It is obvious that the average customization cost per unit time is 

1

n
ii

p λ
=∑ . The difference in the optimal total average cost per unit time between the two 

systems is *
1

n
ii

z p λ
=

+ ∑ . So postponement is more cost-effective if *
1

n
ii

z p λ
=

+ ∑ 0< . One 

potential future research direction is to study the impact of postponement on stochastic models 

with perishable products. 
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Table 1 

The impact of deterioration rate on inventory replenishment policies 

θ  0 0.02 0.04 0.06 0.08 0.10 0.20 0.30 0.40 0.50 0.60 

*t  0.548 0.526 0.505 0.486 0.468 0.453 0.385 0.336 0.299 0.269 0.244 

*tθ  0 0.011 0.020 0.029 0.037 0.045 0.077 0.100 0.119 0.134 0.147 

µ ( )C θ  3576 3587 3597 3606 3515 3625 3661 3690 3713 3733 3750 

 

 

Table 2 

The impact of deterioration rate on the difference in cost between the two systems  

θ  0 0.02 0.04 0.06 0.08 0.10 0.20 0.30 0.40 0.50 0.60 

- *z  4422 4506 4585 4659 4730 4796 5083 5309 5493 5646 5775 

*
*

z
TC  0.112 0.114 0.116 0.118 0.119 0.120 0.126 0.131 0.135 0.138 0.140 
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Fig. 1. Graphical representation of inventory level 

 

 

Fig. 2. The impact of deterioration rate on the total cost 

 

 
Fig. 3. The impact of deterioration rate on the difference in cost between the two systems 




