
The bounded single-machine parallel-batching

scheduling problem with family jobs and release

dates to minimize makespan

Q.Q. Nong1, C.T. Ng2,∗, T.C.E. Cheng2

1Department of Mathematics, Zhengzhou University, Zhengzhou, Henan 450052,

People’s Republic of China
2Department of Logistics, The Hong Kong Polytechnic University, Hung Hom,

Kowloon, Hong Kong, People’s Republic of China

Abstract. We consider the problem of scheduling family jobs with release dates on a bounded batching
machine. Our objective is to minimize the maximum completion time of the jobs (i.e., the makespan).
We deal with two variants of the problem. One is the identical job size model, in which the machine can
process up to b jobs simultaneously as a batch. The other is the non-identical job size model, in which
each job has a size no more than 1 and the machine can handle a number of jobs simultaneously as a batch
as long as the total size of the jobs does not exceed 1. In this paper we first present a 2-approximation
algorithm for the former model and a polynomial time approximation scheme (PTAS) for the case when
the number of distinct families is constant; and then derive an approximation algorithm with a worst-case
ratio of 5/2 for the latter model.

Keywords: single-machine scheduling; worst-case analysis; approximation algorithm; family; batching

1 Introduction

We are given a set J of n jobs that belong to m different families, F1, . . ., Fm. Each job Jj

has a processing time pj and a release date rj before which it cannot be scheduled. The given
machine is a parallel-batching machine. The jobs are processed in batches, where a batch is a
subset of the given jobs, and we require that jobs from different families cannot be placed in the
same batch. The processing time of a batch B, p(B), is equal to the maximum processing time
among the jobs in it, i.e., p(B) = max{pj : Jj ∈ B}. A batch can start processing only after
each job in it is released. Our objective is to partition J into batches and decide a sequence
of the starting times of the resulting batches such that the maximum completion time of the
jobs (i.e., the makespan), max1≤j≤n Cj , is minimized, where Cj is the completion time of job Jj .
Two variants of the problem are considered. One is the identical job size model, in which the
machine can process up to b (b < n) jobs simultaneously as a batch. Following [3], this model is
denoted by

1|family-jobs, rj , b < n|Cmax.

The other is the non-identical job size model, in which each job Jj has a size sj ≤ 1 and the
machine can handle a number of jobs simultaneously as a batch as long as the total size of the

∗Corresponding author. E-mail address: lgtctng@polyu.edu.hk (C.T. Ng)

1

jobs does not exceed 1. According to [3], this model is expressed as

1|family-jobs, rj , size, b = 1|Cmax.

The parallel-batching scheduling problem is motivated by the burn-in operations in semicon-
ductor manufacturing, in which a batch of integrated circuits are placed in an oven and exposed
to a high temperature to test their thermal standing ability. The circuits are heated inside the
oven until all the circuits are burned. The burn-in times (processing times) of the circuits may
be different. When a circuit is burned, it has to wait inside the oven until all the circuits are
burned. Therefore, the processing time of a batch of circuits is equal to the longest processing
time of the circuits in the batch. Usually, batching jobs yields efficiency gain, i.e., it is cheaper
or faster to process jobs in batches than to process them individually.

Many parallel-batching scheduling problems are NP -hard, i.e., for many of them there does
not exist any polynomial time algorithm unless P = NP . Researchers therefore turn to studying
approximation algorithms for these kinds of problems. The quality of an approximation algo-
rithm is often measured by its worst-case ratio: the smaller the ratio is, the better the algorithm
will be. We say that an algorithm H has a worst-case ratio ρ (or is a ρ-approximation algorithm)
if for any input instance, it always returns in polynomial time of the input size a feasible solution
with an objective value not greater than ρ times of the optimal value. Furthermore, a family of
approximation algorithms is called a polynomial time approximation scheme (PTAS) if, for any
fixed ε > 0, at least one of the algorithms has a worst-case ratio no more than 1 + ε.

Many problems similar or related to 1|family-jobs, rj , b < n|Cmax have been addressed by
different researchers. Yuan et al. [13] proved that the problem 1|family-jobs, rj , b = ∞|Cmax, in
which a machine can process an infinite number of jobs simultaneously, is strongly NP -hard,
and they gave two dynamic programming algorithms and a 2-approximation algorithm for the
problem. Lee and Uzsoy [8] studied the problem 1|rj , b < n|Cmax, which is strongly NP -hard
[4], and they presented a number of heuristics. Deng et al. [5] presented a PTAS with time
complexity O(42/εn8/ε+1b2/ε/ε4/ε−2) for the problem 1|rj , b < n|Cmax. Lee et al. [7] considered
the problem P |b < n|Cmax and developed a (4

3 − 1
3M)-approximation algorithm, where M is the

number of batching machines. Li et al. [11] solved the problem P |rj , b < n|Cmax by establishing
a PTAS for it.

If all the jobs have identical processing times and are released at the same time and m = 1,
then the problem 1|family-jobs, rj , size, b = 1|Cmax is the one-dimensional bin packing problem.
The bin packing problem is strongly NP -hard [6] and there is no approximation algorithm
with a worst-case ratio less than 3/2 unless P = NP [9]. Uzsoy [12] proposed a number of
heuristics for the problem 1|size, b = 1|Cmax, but he did not analyze their worst-case ratios.
Zhang et al. [14] analyzed these heuristics and showed that two of them have a worst-case ratio
no greater than 2. In the same paper, Zhang et al. also proposed an approximation algorithm
with a worst-case ratio of 7/4 for the problem 1|size, b = 1|Cmax. Li et al. [10] developed a
2 + ε-approximation algorithm with time complexity O(n log n + (1/ε3 − 1/ε + 2)1/ε+1) for the
problem 1|rj , size, b = 1|Cmax, where ε > 0 can be sufficiently small.

In this paper we first present a 2-approximation algorithm for the problem 1|family-jobs, rj , b <
n|Cmax. We then restrict our discussion to the case where the number of families is constant,
and propose a PTAS for this case. Finally, we provide a 5/2-approximation algorithm with time
complexity O(n log n) for the problem 1|family-jobs, rj , size, b = 1|Cmax.

2

2 Problem 1|family-jobs, rj, b < n|Cmax

In this section we consider the problem 1|family-jobs, rj , b < n|Cmax. We will present a 2-
approximation algorithm for the problem and a PTAS for the special case in which the number
of distinct families is constant. Before explaining our algorithms, we first describe the FBLPT
(Full Batch Large Processing Time) algorithm.

Algorithm FBLPT

For i = 1 to m, do as follows:
(1) Sort the jobs in Fi in non-increasing order of their processing times and obtain a job list;
(2) If there are more than b jobs in the job list, then place the first b jobs in a batch and

iterate. Otherwise, place the remaining jobs in a batch.

If all the jobs are released at the same time and there is only one family, then Algorithm
FBLPT is a polynomial time algorithm for the problem 1|family-jobs, rj , b < n|Cmax, i.e.,

Lemma 2.1[2] Algorithm FBLPT optimally solves the problem 1|b < n|Cmax in O(n log n)
time. 2

The following theorem is an easy generalization of Lemma 2.1.
Theorem 2.2 Algorithm FBLPT optimally solves the problem 1|family-jobs, b < n|Cmax

in O(n log n) time. 2

We apply Algorithm FBLPT to the job set J and obtain a set of batches. Denote by P the
total processing time of these batches. Given an instance of 1|family-jobs, rj , b < n|Cmax, we
denote by opt its optimal value, and by C(π) the objective value of a feasible solution π. Define
rmax = max1≤j≤n{rj}. The following bounds for opt are easy to establish:

Lemma 2.3 max{rmax, P} ≤ opt ≤ rmax + P . 2

2.1 A heuristic

We say that a batch B is available at time t if t ≥ max{rj : Jj ∈ B} and the batch has not yet
been assigned to the machine. Consider the following algorithm:

Algorithm H1

Step 1: Use Algorithm FBLPT to partition the jobs in J into batches.
Step 2: Whenever the machine is idle and there is a batch available, assign the batch to

the machine.

Theorem 2.4 Algorithm H1 is an approximation algorithm with a worst-case ratio of 2
for the problem 1|family-jobs, rj , b < n|Cmax.

Proof. Let π be the schedule produced by Algorithm H1. Then,

C(π) ≤ rmax + P ≤ 2max{rmax, P} ≤ 2opt,

3

Where the last inequality holds from Lemma 2.3. 2

The result of Theorem 2.4 is the best possible, i.e., the worst-case ratio of Algorithm H1

cannot be less than 2. The tightness example given in Theorem 4.3.2 of [13] shows this result.
We omit this example here and refer the reader to [13].

2.2 A PTAS

In this subsection we assume that m is fixed, and we propose a PTAS for this case. To accomplish
this, we make a series of transformations of the input instance such that its structure is simplified.
Each transformation may increase the objective value by 1+O(ε), where ε is a positive number.
When we describe such a transformation, similar to [1], we say that it produces 1 + O(ε) loss.

Define δ = ε max{rmax, P}. Then, by Lemma 2.3, δ ≤ εopt. The lemma below guarantees
that we need to concern about only a small number of distinct release dates.

Lemma 2.5 With 1 + ε loss, we can assume that all the release dates in an instance are
multiples of δ, and the number of distinct release dates is at most b1/εc+ 1.

Proof. Given an instance of the problem 1|family-jobs, rj , b < n|Cmax, we round every
release date down to the nearest multiple of δ. Then the optimal value of the resulting instance
is not greater than that of the original one. Let π∗ be an optimal schedule of the rounded
instance. Increase the starting time of each batch in π∗ by δ. It is easy to verify that this gives
a feasible schedule of the original instance with makespan increasing by δ ≤ εopt. On the other
hand, since δ = ε max{rmax, P} and hence rmax ≤ 1

ε δ, there are at most b1/εc+1 distinct release
dates in the rounded instance. Thus the result follows. 2

One can see that all the jobs in J can be scheduled in the time interval [0, rmax + P]. We
partition this time interval into k = d rmax+P

δ e disjoint intervals in the form [Ri, Ri+1], where
Ri = (i − 1)δ for each 1 ≤ i ≤ k − 1 and Rk = rmax + P . Since δ = ε max{rmax, P}, we have
k ≤ 2/ε + 1. Note that each of the first k − 1 intervals has a length δ, and the last one has a
length at most δ. By Lemma 2.5, we can assume that every job in J is released at some Ri

(1 ≤ i ≤ b1/εc + 1). We say that a job is short if its processing time is smaller than εδ; and
long, otherwise.

2.2.1 Dealing with the short jobs

In this part we concentrate on the case in which all the jobs are short and m is constant. Based
on the idea of [10], we present a very simple and easy to analyze approximation scheme for this
case.

Denote by Fij the subset of jobs in Fi that are released at Rj (1 ≤ j ≤ b1/εc + 1) for the
rounded instance. Our PTAS runs as follows:

Algorithm Short

Step 1: For j = 1 to b1/εc+ 1:

Apply Algorithm FBLPT to
m⋃

i=1
Fij and obtain a set of batches.

4

Step 2: Consider the batches obtained in the above step. Start the processing of a batch
whenever the machine is idle and there is a batch available.

Theorem 2.6 If all the jobs are short and m is constant, then Algorithm Short is a PTAS
for the problem 1|family-jobs, rj , b < n|Cmax.

Proof. Let π be the schedule produced by Algorithm Short. Suppose that B1
ij , B

2
ij , . . . , B

kij

ij

are the batches in π whose jobs are from Fij (1 ≤ i ≤ m, 1 ≤ j ≤ b1/εc+1). For each 1 ≤ x ≤ kij ,
denote by q(Bx

ij) the processing time of the shortest jobs in Bx
ij if Bx

ij is full; and set q(Bx
ij) = 0,

otherwise. Without loss of generality, assume that p(B1
ij) ≥ p(B2

ij) ≥ · · · ≥ p(Bkij

ij). Then, by

the features of Algorithm FBLPT, we conclude that B1
ij , B

2
ij , . . . , B

kij−1
ij are full and

q(Bx
ij) ≥ p(Bx+1

ij) (1)

for each 1 ≤ x ≤ kij − 1. Consider a schedule, denoted by π′, which is obtained by modifying π
as follows:

• For each batch Bx
ij in π, reduce the processing time of each job in it to q(Bx

ij);

• The machine processes the resulting batches greedily, i.e., start the processing of a batch
whenever the machine is idle and there is a batch available.

Then we have

C(π) ≤ C(π′) +
m∑

i=1

b1/εc+1∑

j=1

kij∑

x=1

(p(Bx
ij)− q(Bx

ij)). (2)

Inequality (1) implies that the second term on the right-hand-side of (2) is bounded above by

m∑

i=1

b1/εc+1∑

j=1

p(B1
ij) < m · (b1/εc+ 1) · εδ ≤ m(1 + ε)δ ≤ m(ε + ε2)opt, (3)

where the above inequalities are from the facts that p(B1
ij) < εδ and δ ≤ εopt. On the other

hand, we claim that C(π′) ≤ opt. To see this, let t be the latest idle time point prior to C(π′)
in π′. Then t is the starting time of some batch and each job processed after t must be released
at or after t. Moreover, each batch scheduled in [t, C(π′)] is full and the processing time of each
job in the same batch is identical and is no more than its original value. Thus the claim holds.
The claim, together with (2) and (3), implies that C(π) ≤ opt + m(ε + ε2)opt, completing the
proof of the theorem. 2

2.2.2 General case

By the job interchange argument, we obtain the following lemma, which plays an important role
in our PTAS.

Lemma 2.7 Consider an instance of 1|family-jobs, rj , b < n|Cmax. There exists an optimal
schedule satisfying the following properties:

5

• Each batch B contains as many as possible the longest available jobs that have processing
times no greater than p(B).

• The batches starting in the same interval are obtained by applying Algorithm FBLPT to
the jobs in the interval.

• The batches processed in the same interval are scheduled in non-increasing order of their
processing times. 2

The following lemma is useful:
Lemma 2.8 With 1+2mε+mε2 loss, we can assume that no batch contains both the short

jobs and long jobs.
Proof. Let π∗ be an optimal schedule. By Lemma 2.7, the batches starting in the same

interval are obtained by applying Algorithm FBLPT to the jobs in the interval, for each family
there is at most one batch containing both the short jobs and long jobs in each time interval.
Recall that the processing times of the short jobs are less than εδ and there are at most 2/ε + 1
time intervals occupied by π∗. Replacing each of these batches by two batches, one containing
the short jobs only and the other containing the long jobs only, would increase the makespan of
π∗ by at most εδ · (2/ε + 1) ·m ≤ (2mε + mε2)opt. 2

Suppose that there are l distinct processing times, L1, L2, . . . , Ll, of the long jobs. Suppose
further that L1 > L2 > · · · > Ll.

Subsection 2.2.1 has offered an effective way to schedule the short jobs. We now turn
to dealing with the long jobs. Our basic idea is to perform enumeration. To do this, we
first define a family configuration with respect to a family Fi and a schedule π, by a vector
(c1, c2, . . . , ck), where ch (1 ≤ h ≤ k) is a l-tuple (yh1, yh2, · · · , yhl), which means that there
are yhj batches of Fi with processing time Lj starting in the time interval [Rh, Rh+1]. We
then define a machine configuration as a tuple (v1, v2, · · · , v]), where] is the number of family
configurations to consider, and vj is the number of families with configuration j. By Lemma
2.7, when a machine configuration is given, the jobs and their processing order in each interval
will be definitely defined. We say a machine configuration is feasible if it is possible and each
batch in it can start in the interval as defined by the configuration.

We find in the sequel that if we round the processing times of the long jobs as stated in
the following lemma, then, with a little change in the objective value, the number of all the
possibilities of machine configurations is bounded by a polynomial in n and m when ε is fixed.

Lemma 2.9 With 1 + 2ε + ε2 loss, we can assume that all the processing times of the long
jobs are multiples of ε2δ.

Proof. Round the processing time of each long job up to the nearest multiple of ε2δ.
Consider an optimal schedule of the original instance. Recall that the processing time of a long
job is at least εδ and the length of each interval is at most δ. Thus, each interval can process
at most 1/ε long jobs. Therefore, replacing the processing time of each long job by the rounded
one will increase the objective value by at most

ε2δ · 1
ε
· k ≤ ε2δ · 1

ε
· (2/ε + 1) ≤ ε(2 + ε)opt,

6

where the inequalities are from the facts that k ≤ 2/ε + 1 and δ ≤ εopt. 2

Corollary 2.10 With 1 + 2ε + ε2 loss, the number of distinct processing times of the long
jobs, l, is bounded by 1/ε3 − 1/ε + 1.

Proof. Each long job Jj satisfies εδ ≤ pj ≤ P . Recall that δ = ε max{rmax, P}. Thus,
εδ ≤ pj ≤ P ≤ 1

ε δ. Noting further that in the rounded instance, all the processing times of the
long jobs are multiples of ε2δ, we conclude that there are at most

(
1
ε
δ − εδ)/ε2δ + 1 = 1/ε3 − 1/ε + 1

distinct processing times of the long jobs. 2

Corollary 2.11 With 1 + 2ε + ε2 loss, the number of distinct machine configurations is at
most (m + 1)], where] = (1 + l + · · ·+ l1/ε)2/ε+1.

Proof. Consider a family configuration (c1, c2, . . . , ck) of a rounded instance. Recall that

ch = (yh1, yh2, · · · , yhl) (1 ≤ h ≤ k). Define ||ch|| =
l∑

j=1
yhj . Then, ||ch|| ≤ 1/ε, since there

are at most 1/ε long batches processed in each interval. One can find that the total num-
ber of the possibilities of ch is bounded by 1 + l + · · · + l1/ε. Thus, there are no more than
(1+ l+ · · ·+ l1/ε)k ≤ (1+ l+ · · ·+ l1/ε)2/ε+1 family configurations. Since a machine configuration
is described by a tuple (v1, v2, · · · , v]) with 0 ≤ vj ≤ m, there are at most (m+1)], a polynomial
of m, machine configurations. 2

We here present our algorithm.

Algorithm H2

Step 1: Round the release dates and processing times. (1) Round each release date down
to the nearest multiple of δ; (2) Round the processing time of each long job up to the nearest
multiple of ε2δ.

Step 2: Schedule the long jobs. Obtain all the feasible machine configurations.
Step 3: Schedule the short jobs. Schedule the short jobs by running Algorithm Short in the

spaces left by the long jobs. If a short batch crosses an interval, then stretch the interval with
length εδ such that the batch can finish in the interval.

Step 4: Select the best solution. Among all the schedules obtained above, select the one
with the minimum makespan.

Theorem 2.12 Algorithm H2 is a PTAS for the problem 1|family-jobs, rj , b < n|Cmax when
m is constant.

Proof. Since Algorithm H2 tries all the feasible possibilities to schedule the long jobs, there
is at least one with a machine configuration consistent with that of the optimal schedule. On the
other hand, Step 1 and Step 3, rounding and running Algorithm Short to schedule the short jobs
and stretch the intervals with the short jobs crossing, respectively, yield at most 1+O(mε) loss.
Thus, Algorithm H2 is a 1+O(mε)-approximation algorithm. Note that the time complexity of
the algorithm is O(n log n + n · (m + 1)]). The theorem follows. 2

7

3 An Approximation Algorithm for 1|family-jobs, rj, size, b = 1|Cmax

In this section we provide an approximation algorithm with a worst-case ratio of 5
2 for the

problem
1|family-jobs, rj , size, b = 1|Cmax.

Before describing the algorithm, we first present a variant of FBLPT algorithm, which will be
used later.

Algorithm FBLPT-size

For i = 1 to m, do the following:
(1) Index the jobs in Fi in non-increasing order of their processing times;
(2) Place the job with the longest processing time in a batch. If the batch has enough room

for the next job in the job list, then put the job in the batch; otherwise, place part of the job
in the batch such that the batch is completely full and put the remaining part of the job at the
head of the remaining job list and continue. 2

A job is called a split job if it is split in size. Note that in the problem 1|family-jobs, rj , size, b =
1|Cmax, splitting is not allowed. We say that a job is big if its size is larger than 1

2 ; and small,
otherwise.

Now we are ready to describe an approximation algorithm for 1|family-jobs, rj , size, b =
1|Cmax. The algorithm consists of two steps. The first step is assigning each big job to a batch
and processing the resulting batches greedily. The second step is first assigning the small jobs
to batches by Algorithm FBLPT-size, and then moving the split jobs out and rearranging them
in new batches and processing the bathes greedily.

Algorithm H3

Step 1: Process the big jobs. Let J1, J2, . . . , Jx be the set of the big jobs. Without loss of
generality, assume that r1 ≤ r2 ≤ · · · ≤ rx. Put each big job in a batch. Process J1 at time r1

and Jj (2 ≤ j ≤ x) at time max{rj , Cj−1}.
Step 2: Process the small jobs.
(1) Assign the small jobs to batches by Algorithm FBLPT-size.
(2) For i = 1 to m, do the following: Assume that it results in u batches B1

i , B2
i , . . . , Bu

i for
the jobs in Fi in (1). Let Ji1 , Ji2 , . . . , Jiq (q ≤ u−1) be the set of split jobs in these batches, where
pi1 ≥ pi2 ≥ · · · ≥ piq . Remove all the split jobs from B1

i , B2
i , . . . , Bu

i . For v = 1, 2, . . . , dq/2e,
put Ji2v−1 and Ji2v together in a new batch Bu+v

i .
(3) From time Cx onwards, process the resulting batches greedily.

Without loss of generality, suppose that p(B1
i) ≥ p(B2

i) ≥ · · · ≥ p(Bu
i). As before, we use opt

and C(π) to denote the optimal value and the makespan of schedule π, respectively. Evidently,
we have a lower bound on opt.

Lemma 3.1 opt ≥ max{rmax, Cx}.
Proof. Obviously, opt ≥ rmax. Note that one batch can only contain at most one big job

8

and the first step of the above algorithm processes all the big jobs greedily. Thus, opt ≥ Cx,
and the result follows. 2

Zhang et al. [14] proved that if all the jobs can be split in size, then Algorithm FBLPT-size
is a polynomial time algorithm for the problem 1|size, b = 1|Cmax, a special case in which all the
jobs are released at the same time and m = 1. In fact, the result still holds when m is arbitrary.
Note further that the optimal value of an instance of 1|family-jobs, rj , size, b = 1|Cmax will not
increase if all the jobs in it are allowed to be split in size. It implies the following lemma:

Lemma 3.2
m∑

i=1

u∑
j=1

p(Bj
i) ≤ opt.

Lemma 3.3 pi2v−1 ≤ p(B2v
i).

Proof. Suppose that the first part of Ji2v−1 is placed in Bj
i . Then, j ≥ 2v − 1, and thus

B2v
i contains a part of Ji2v−1 . Hence, pi2v−1 ≤ p(B2v

i). 2

By Lemma 3.2 and Lemma 3.3, we have the following corollary:

Corollary 3.4
m∑

i=1

dq/2e∑
v=1

p(Bu+v
i) ≤ 1

2opt.

Proof. By our algorithm, we have p(Bu+v
i) = pi2v−1 . Recall that p(B2v

i) ≤ p(B2v−1
i) and

q ≤ u− 1. By Lemma 3.3,

dq/2e∑

v=1

pi2v−1 ≤
dq/2e∑

v=1

p(B2v
i) ≤ 1

2

u∑

j=1

p(Bj
i).

Thus,
m∑

i=1

dq/2e∑

v=1

p(Bu+v
i) =

m∑

i=1

dq/2e∑

v=1

pi2v−1 ≤
1
2

m∑

i=1

u∑

j=1

p(Bj
i) ≤

1
2
opt,

where the last inequality holds from Lemma 3.2. 2

Theorem 3.5 The worst-case ratio of Algorithm H3 is 5
2 .

Proof. Let π be the schedule produced by Algorithm H3. Then,

C(π) ≤ max{Cx, rmax}+
m∑

i=1

u∑

j=1

p(Bj
i) +

m∑

i=1

dq/2e∑

v=1

p(Bu+v
i) ≤ opt + opt +

1
2
opt =

5
2
opt,

completing the proof of the theorem. 2

Acknowledgements

This research was supported in part by The Hong Kong Polytechnic University under grant
number A628 from the Area of Strategic Development in China Business Services.

9

References

[1] F. Afrati, E. Bampis, C. Chekuri, D. Karger, C. Kenyon, S. Khanna, I. Milis, M. Queyranne, M. Skutella,
C. Stein and M. Sviridenko, Approximation schemes for minimizing average weighted completion time with
release dates, Proceedings of the 40th Annual IEE Symposium on Foundations of Computer Science, New
York, October, 1999, 32-43.

[2] J.J. Bartholdi, unpublished manuscript, 1988.

[3] P. Brucker, Scheduling Algorithms, Springer-Verlag, Berlin, 2001.

[4] P. Brucker, A. Gladky, H. Hoogeveen, M.Y. Kovalyvov, C.N. Potts, T. Tautehahn and S.L. van de Velde,
Scheduling a batching machine. Journal of Scheduling, 1(1998), 31-54.

[5] X. Deng, C.K. Poon and Y. Zhang, Approximation algorithms in batch processing, Lecture Notes in Computer
Science, 1741(2000), 153-162.

[6] M.R. Garey and D.S. Johnson, Computer and Intractability: A Guide to the Theory of NP -completeness,
Freeman, San Francisco, 1979.

[7] C.Y. Lee and R. Uzsoy, Minimizing makespan on a single batch processing machine with dynamic job arrivals,
International Journal of Production Research, 37(1999), 219-236.

[8] C.Y. Lee, R. Uzsoy and L.A. Martin Vega, Efficient algorithms for scheduling semiconductor burn-in opera-
tions, Operations Research, 40(1992), 764-775.

[9] J.K. Lenstra and D.B. Shmoys, Computing near-optimal schedules, Scheduling Theory and its Application,
Wiley, New York, 1995.

[10] S. Li, G. Li, X. Wang and Q. Liu, Minimizing makespan on a single batching machine with release times
and non-identical job sizes, Operations Research Letters, 33(2005), 157-164.

[11] S. Li, G. Li and S. Zhang, Minimizing makespan with release times on identical parallel batching machines,
Discrete Applied Mathematics, 148(2005), 127-134.

[12] R. Uzsoy, A single batch processing machine with non-identical job sizes, International Journal of Production
Research, 32(1994), 1615-1635.

[13] J.J. Yuan, Z.H. Liu, C.T. Ng and T.C.E. Cheng, The unbounded single machine parallel batch scheduling
problem with family jobs and release dates to minnimize makespan, Theoretical Computer Science, 320(2004),
199-212.

[14] G. Zhang, X. Cai, C.Y. Lee and C.K. Wong, Minimizing makespan on a single batch processing machine
with nonidentical job sizes, Naval Research Logistics, 48(2001), 226-240.

10

