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Weak Formulation of Finite Element Method Using
Wavelet Basis Functions

S. L. Ho, Shiyou Yang, and H. C. Wong

Abstract—This paper details the development of the weak form
formulations of finite element type methods using wavelets as
basis functions. Such approaches are different from most wavelets
based ones that are derived from the strong form. The advantages
of the proposed formulation are that there is no need to enforce
natural boundary conditions and that the lower order derivatives
of the wavelet bases are involved in the connection coefficients.
Various approaches to deal with essential boundary and interface
conditions are investigated, and algorithms to compute the associ-
ated connection coefficients are derived. To validate the proposed
method, two numerical examples are described.

Index Terms—Connection coefficient, Galerkin approach,
wavelet bases, wavelet-Galerkin method, weak form.

I. INTRODUCTION

SUBSEQUENT to the success of the applied mathemati-
cians to use Wavelet Basis Functions (WBFs) as a new tool

for local time–frequency analysis, the electrical engineers have
also reported success in using WBFs to solve electromagnetic
problems [1]–[3]. However, most dedicated formulae are de-
rived from the strong form and are unfortunately rather diffi-
cult to enforce the natural boundary conditions. Moreover, as
the higher order differentials of the basis function are involved
in the connection coefficients in the strong form, the connec-
tion coefficients do vary greatly because of the oscillatory na-
ture of the differentials of the wavelet bases, thereby resulting
in numerical instability.

As it is well known, there are two main obstacles in applying
wavelet-Galerkin methods to solve differential and integral
equations; namely (1) the difficulty to impose boundary condi-
tions, since both scaling and wavelet functions do not satisfy
the Kronecker delta criterion; (2) the complexity in computing
the connection coefficients, because each equation requires
a different type of connection coefficients that are dictated
by the various terms in the equation. Moreover, the implicit
representation of both scaling and wavelet functions as well
as their high oscillatory natures can give rise to programming
complexities. This paper will demonstrate how one could
develop a weak form formulation of the finite element method
by using the wavelets as basis functions, which will alleviate, at
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least partly, some of these difficulties. Algorithms to compute
the corresponding connection coefficients are also described.

II. FORMULATION

For general engineering problems, a Poisson equation in a
two-dimensional region enclosed by a boundaryis:

(1)

(2a)

(2b)

where .

A. General Formulation

The residual of (1) is

(3).

The general form of the weighted residual then becomes

(4)

where is the weighting function.
Selecting the scaling function as both

the shape and weighting functions, we approximate by

(5)

where
is the resolution,

and are integers, and
is the one dimensional Daubechies’
scaling function,

and it can be determined from the following two scale relation

(6)

where is a finite even integer.
One then reads

(7)

where , are also integers.
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Transforming the second order differentials in (7) into first
order ones by means of integration by parts, one gets

(8)

Then (8) can be written as

(9)

where

(10)

(11)

For a rectangular elementwith sides parallel to the- and
-axes with varying between to and within the limits

of to , the contributions of the elementare

(12)

(13)

Fig. 1. Schematic diagram of interfaces.

Fig. 2. Jump function and its derivative.

B. Interface Condition Approximation

While the high order continuity that the wavelet-Galerkin
method inherits from the wavelet/scaling functions can be con-
sidered a blessing because it provides solutions with smooth
derivatives, it can also be a disadvantage in engineering prob-
lems involving multiple materials (i.e., where the coefficients in
the PDE are discontinuous along the interface of different ma-
terials), because this will result in solutions with discontinuous
derivatives along the interface. This discontinuity in the deriva-
tives introduces spurious oscillations, and a special technique is
required to approximate this derivative discontinuity. Here the
idea of a jump function approach, which is similar to that used
in meshless methods [4], is introduced in the proposed method.

This approach introduces additional shape functions, the
jump functions, in sub-regions where discontinuities appear.
For example, if the interface of two different materials coin-
cides with line , as shown in Fig. 1, the approximation
of (5) is:

(14)

where is the jump function which will generate the
discontinuous (normal) derivatives along the interface, and
will be determined in the same way as that for . The jump
function used in this paper is of the form

(otherwise).
(15)

where , is a measure to control the
support of the jump function.

Fig. 2 shows the typical shapes of the jump function and
its derivatives for the case of and . From
this figure it can be seen that the jump function generates
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discontinuous derivatives while ensuring the continuity of the
approximated functions.

C. Enforcement of Essential Boundary Conditions

Due to the fact that both the scaling and wavelet functions
do not satisfy the Kronecker delta criterion, the enforcement of
the boundary conditions for wavelet-Galerkin type methods is
quite awkward when compared with other types of finite el-
ement methods. Fortunately, the natural boundary conditions
are included in the discretized formulations for the proposed
method, thus only a special treatment is needed for the essen-
tial boundary conditions. For the solution to satisfy the
essential boundary condition (2b), the coefficients and
must also satisfy the following relations

(16)

where is the node number in boundary, and is
the coordinates of theth node.

As a result, the number of the equations of (9) and (16) is
greater than the freedom of the coefficients. The least squares
technique is used to determining the coefficients uniquely.

III. COMPUTATION OF CONNECTION COEFFICIENTS

As described earlier in this paper, if one applies wavelet-
Galerkin methods to solve both differential and integral equa-
tions, one requires different types of connection coefficients,
such as those formulated in (10)–(13). In addition to the con-
nection coefficients reported in [5], the following ones are also
required for the proposed method, i.e.,

(17)

(18)

A. Algorithm

This section will develop algorithms and procedures for
computing the values of (17) and (18) at arbitrary points for the
reasons as were described in [5].

The algorithm for computing has being divided into
two steps.

Step 1) Compute
The values of can be determined by [6]

(19)

where

-

(20)

Step 2) Compute for
For any , the values of can be

determined using according to the following
relationship

(21)

where .
Thus the computation of at arbitrary point values is

dominated by that of . The values of at dyadic points
and points are given in [6]. The following only
describes the computations of at arbitrary points

. In doing that, one can define
a vector such that

(22)

(23)

Then one has .
According to the following two scale relationship

(24)

one obtains

(25)

(26)

where,

and

Thus for an arbitrary , one could assume its approx-
imation of the dyadic expansion be

(27)

where or 1.
If one defines a shift operator

(28)

Application of the two scale relation of (24)–(27) yields

(29)

If , then the application of (29) times
yields

(30)
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Fig. 3. The computed results of some typical connection coefficients.

where

According to (30), the procedure for computing at ar-
bitrary points is

1) compute , ;
2) for , determine the value of to approximate

for with suitable precision;
3) compute

Then the value of at an arbitrary point can
be determined from according to (22)–(23).

Performing integration by parts successively fortimes on
(18) yields

(31)

where

(32)

So the computation of is replaced by that of
and as reported in [5].

B. Numerical Results

Some typical numerical results of the aforementioned con-
nection coefficients for the Daubechies scaling function with

computed by using the proposed algorithms and pro-
cedures are given in Fig. 3.

IV. NUMERICAL EXAMPLES

Two numerical examples are investigated to validate the pro-
posed method.

Fig. 4. The comparison of analytical and numerical solutions in linex = y.

Fig. 5. Electrical machine rotor, filled by current-carrying conductor.

A. A 2-D Test Problem with Analytical Solutions

This simple example presents the comparison of the numer-
ical results obtained using the proposed method with analytical
ones. The problem is to find the solution of

(33)

The exact solution of (33) is . Fig. 4 gives the com-
parison of the numerical and the analytical solutions on the line

. In the numerical computations, one uses the Daubeiches
scaling function with ; and , both varying from

to 0, resulting total 25 basis functions to represent the shape
and weighting functions. From these results, it can be seen that
only 25 functions can approximate the solution with acceptable
precisions.

B. A 2-D Magnetostatic Problem

The second example is to investigate the feasibility of the pro-
posed method in solving electromagnetic field problems. The
problem is to calculate the magnetic fields of an electrical con-
ductor lying in a rotor slot, as shown in Fig. 5. Because of sym-
metry, only half of the region is analyzed. The boundary value
problem is then formulated as

(34)
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Fig. 6. Equipotential lines of the electrical machine rotor problem.

The solution of this problem by using the proposed wavelet-
Galerkin method with Daubechies scaling function of
is given in Fig. 6. Only four rectangular elements are needed
for this specific problem. In the numerical calculation, the res-
olution parameter is set to 2, and only ten equi-distance sample
points along the boundary are used to enforce the zero
essential boundary condition. The total linear equation set is of
the order of 1126, and the CPU time needed to compute the so-
lution is about 38 seconds on a Pentium III 600 MHz Clock.
These computed results show the advantages of the proposed
method over those wavelet formulations based on strong form,
in that the proposed method requires no special treatment when

imposing the natural boundary conditions, thus resulting in sim-
plicity in both computation and programming.

V. CONCLUSION

A weak form formulation, including the technique for dealing
with discontinuous derivatives and the approach for enforcing
essential boundary conditions, of wavelet-Galerkin methods is
derived in this paper. The computations of the associated con-
nection coefficients at arbitrary point values are also investi-
gated. Numerical results on both the test and a practical field
problem demonstrate the feasibility of the proposed method to
study practical field problems.

REFERENCES

[1] G. Pan, “Orthogonal wavelets with application in electromagnetics,”
IEEE Trans. Magn., vol. 32, no. 3, pp. 975–983, 1996.

[2] B. Z. Steinberg and Y. Leviation, “On the use of wavelet expansions in
the method of moment,”IEEE Trans. AP, vol. 41, no. 5, pp. 610–619,
1993.

[3] J. C. Goswami, A. K. Chan, and C. K. Chui, “On solving first-kind inte-
gral equations using wavelets on a bounded interval,”IEEE Trans. AP,
vol. 43, no. 6, pp. 614–622, 1995.

[4] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl, “Mesh-
less methods: an overview and recent developments,”Comput. Methods
Appl. Mech. Engrg., vol. 139, pp. 3–47, 1996.

[5] S. Y. Yang, G. Z. Ni, S. L. Ho, J. M. Machado, M. A. Rahman, and H. C.
Wong, “Wavelet-Galerkin method for computations of electromagnetic
fields—computation of connection coefficients,”IEEE Trans. Magn.,
vol. 36, pp. 644–648, July 2000.

[6] M. Q. Chen, C. H. Wang, and Y. P. Shih, “The computation of wavelet-
Galerkin approximation on a bounded interval,”Int. J. Numer. Methods
Engrg., vol. 39, pp. 2921–2944, 1996.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 14, 2009 at 11:05 from IEEE Xplore.  Restrictions apply.


