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Abstract—Localization in mobile sensor networks is more chal-
lenging than in static sensor networks because mobility increases
the uncertainty of nodes’ positions. Most existing localization
algorithms in mobile sensor networks use Sequential Monte Carlo
(SMC) methods due to their simplicity in implementation. How-
ever, SMC methods are very time-consuming because they need to
keep sampling and filtering until enough samples are obtained
for representing the posterior distribution of a moving node’s
position. In this paper, we propose a localization algorithm that
can reduce the computation cost of obtaining the samples and
improve the location accuracy. A simple bounding-box method
is used to reduce the scope of searching the candidate samples.
Inaccurate position estimations of the common neighbor nodes
is used to reduce the scope of finding the valid samples and thus
improve the accuracy of the obtaineed location information. Our
simulation results show that, comparing with existing algorithms,
our algorithm can reduce the total computation cost and increase
the location accuracy. In addition, our algorithm shows several
other benefits: 1) it enables each determined node to know its
maximum location error, 2) it achieves higher location accuracy
under higher density of common nodes, and 3) even when there
are only a few anchor nodes, most nodes can still get position
estimations.

Index Terms—localization; bounding-box; wireless sensor net-
works; mobility; Sequential Monte Carlo methods

I. INTRODUCTION

Wireless sensor networks are becoming a reality and have
been used in many applications such as habitat monitoring[14],
long-term animal migration tracking [10] and animal state es-
timating and actuating [22]. In many applications, it is desired
to know the position information about the sensor nodes. For
example, the user needs to know where the data are collected
in order to perform data analyses or to determine what actions
should be taken. Also the node position information are used
in geographical routing protocols such as GPSR [11] and
clustering protocols such as EECS[24].

Traditional methods of obtaining the node position infor-
mation include attaching a GPS receiver in each node or
manually configure each node’s position. As the scale of
sensor networks becomes larger and larger, these methods are
becoming unfeasible for their high cost and inconvenience.
Many localization algorithms for sensor network have been
proposed [8], [7], [12], [20], [16], [13], [19], [23], [3], [21],
[18], [5]. These algorithms use some special nodes, called
anchor nodes, which know their positions to facilitate the

determination of the positions of the other nodes (called
common nodes). However, these algorithms are designed for
static sensor networks and are not applicable to mobile sensor
networks because of the following limitations:

1) in some algorithms [20], [16], [13], [23], common nodes
need to calculate the shortest paths to the anchor nodes
by using flooding, which results in high communication
cost.

2) in some algorithms [18], [7], [8], special hardware are
required for the anchor nodes and for measuring the
accurate distances between neighboring nodes.

3) some algorithms are centralized [20], [7], [5], [3], and
will cause high communication cost for disseminating
the results to all the common nodes.

4) some algorithms use iterative methods to improve loca-
tion accuracy [1], [21], which will result in both high
communication cost and high computation cost.

Localization algorithms specially designed for mobile sen-
sor networks have also been proposed [9], [4], [2], [25], [17],
but they all use the Sequential Monte Carlo (SMC) methods.
SMC methods are preferred in mobile sensor networks because
they are easy to implement and can exploit nodes’ mobility
to improve location accuracy. The idea of SMC methods is
to represent the posterior distribution of a common node’s
position using a set of weighted samples. In each time unit, a
common node predicts its new samples based on the samples
obtained in the last time unit and filters out the invalid samples
using the locations of the newly observed anchor nodes. After
obtaining enough samples, the node uses the weighted average
of all the samples as its position estimation. The procedure
repeats and the node can continuously update its position
estimation.

The main drawback of SMC methods is that they need
to keep sampling and filtering until obtaining enough valid
samples. This is very time consuming, and not suitable for
sensor networks where nodes have limited computation ability.
In this paper, we propose a localization algorithm which
outperforms the existing algorithms in terms of computation
cost and location accuracy. The proposed algorithm uses a
simple bounding-box method to reduce the scope of searching
for the candidate samples and uses inaccurate position estima-
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tions of the common neighbor nodes to improve the location
accuracy. Our simulation results show that, comparing with the
existing SMC-based localization algorithms, our algorithm can
significanly reduce the total computation cost and increase the
location accuracy.

Our algorithm have some other benefits. In addition to its
location information, each determined node also knows the
maximum location error. This may be required in some pro-
tocols such as geographical routing. Our algorithm performs
better in location accuracy in networks with a large number
of common neighbor nodes. In contrast, existing algorithms
rely on the ancor nodes to achieve high accuracy. Finally, in
our algorithm, even when there are only a few anchor nodes,
most common nodes can still be determined.

The rest of this paper is organized as follows. Section II
introduces necessary background knowledge, including the
network model and SMC-based localization algorithms which
we will compare with. Section III presents our algorithm
and describe how it can reduce the computation cost and
improve the location accuracy. Section IV analyzes the per-
formances of our algorithm in terms of location accuracy
and communication cost. Section V reports our simulation
results and compares the performanec of our algorithm with
exisitng algorithms introduced in section II. Finally, section
VI concludes this paper.

II. BACKGROUND

A. Network model

In this paper we consider mobile sensor networks where
both the anchor nodes and common nodes are mobile. The
time is assumed to be divided into discrete time units. Anchor
nodes know their exact positions at any time while common
nodes need to determine their positions in each time unit.

Both the anchor nodes and common nodes only have limited
knowledge about their mobility. They only know the maximum
speed vmax, which means that in each time unit a node can
move in any direction with speed v where 0 < v ≤ vmax, but
the exact value of v is unknown.

Two nodes can communicate with each other only if they
are within the communication range defined by the radius r. If
a node p can communicate with another node q, we say that q
is a 1-hop neighbor of p. If q is an anchor node, we say that q
is p’s 1-hop anchor neighbor ; if q is a common node, we say
q is p’s 1-hop common neighbor. If there is another node m
which cannot communicate with p but can communicate with
q, then we say that m is a 2-hop neighbor of p. For simplicity
in presentation and analysis, we assume that all messages are
received instantly. As described above, we assume the unit
disk model for connectivity. We will discuss the irregularity
of communication models in section V.

The positions of the nodes in the network are assumed to be
uniformly distributed in a 2-D deployment region. Assuming
the area of the deployment region is s and there are totally n
nodes including m anchor nodes, the density of all the nodes

ρn and the density of anchor nodes ρs are defined as

ρn =
n

s
, ρs =

m

s
(1)

respectively.
The node degree nd and anchor degree sd represent the

average number of the nodes and anchor nodes in a node’s
communication range and are defined as following1:

nd = ρn ∗ πr2 , sd = ρs ∗ πr2 (2)

The probability that there are k nodes in a given area a
follows a Poisson distribution:

Pr(k nodes in a) =
(ρna)k

k!
e−ρna (3)

Because we assume that all nodes’ coordinates are uniformly
distributed, using of Poisson distribution is reasonable as
explained in [15]. We will use equation (3) to derive a lower
bound on the expected location error in section IV.

B. Sequential Monte Carlo Localization(SMCL)

Sequential Monte Carlo methods are referred to a set of
simulation-based methods which provide a convenient ap-
proach to compute the posterior distributions [6]. The posterior
distribution is represented using a set of weighted samples,
and the samples are updated gradually as time goes. As for
localization in mobile sensor networks, the possible positions
of a common node is represented using a set of weighted
samples. In each time unit, the samples are updated based on
the samples obtained in the last time unit, and are validated
using the newly observed anchor nodes in the current time
unit.

The Sequential Monte Carlo Localization (SMCL)
algorithm, proposed in [9], is the first algorithm using SMC
methods for localization in mobile sensor networks. For each
common node, the operations in SMCL can be divided into
3 steps:

1) Initialization: N samples are randomly chosen from the
deployment region to represent possible positions of p,
denoted as L0 = {l10, l20, . . . , lN0 }.

2) Prediction: N new samples Lt are drown from Lt−1

using transition equation p(lit|lit−1). The transition equa-
tion p(lit|lit−1) is determined by the motion model or
other constraints.

3) Filtering: weights of new samples are computed as
p(lit|ot), where ot is the newly observed anchor nodes
in the current time unit. Samples whose wights equal to
0 are dropped. If the number of samples after filtering
step is less than N , go to step 2.

After obtaining N samples, p estimates its position as the
weighted average of all the samples.

1We use the term “degree” for consistency with [9], [2], [17].
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Fig. 1. How SMCL[9] works: 1) the left figure shows sample set Lt−1

at time t-1; 2) Prediction based on Lt−1 and filtering using newly observed
anchor nodes.

1) Transition equation: In SMCL[9], the transition equa-
tion is given by:

p(lt|lt−1) =
{ 1

πv2
max

if d(lt, lt−1) < vmax

0 otherwise
(4)

where d(lt, lt−1) is the distance between two samples lt and
lt−1. This means that for each sample lt−1 in the last time
unit, we randomly choose a point in the circle centering at
lt−1 with radii vmax as a candidate sample in the current time
unit.

2) Filtering: Candidate samples newly drawn in the predic-
tion step may be inconsistent with the new observations of the
anchor nodes in the current time unit denoted as ot. Denote
the possibility of observing ot given lt as p(ot|lt). If p(ot|lt) is
0, then lt should be dropped. In SMCL, the filtering condition
uses 1-hop and 2-hop anchor neighbors. Denote the set of all
1-hop anchor neighbors as S and the set of all 2-hop anchor
neighbors as T , then the filtering condition of lt is:

filter(lt) = ∀s ∈ S, d(lt, s) ≤ r ∧ ∀s ∈ T, r < d(lt, s) ≤ 2r.

SMCL is a straightforward application of SMC methods in
localization for mobile sensor networks. The probability for
a candidate sample to be dropped after filtering step is high,
especially when vmax or sd is large. Consequently, it is very
time-consuming, and especially un-suitable for wireless sensor
networks where nodes only have limited computation ability.

C. Monte Carlo Localization Boxed(MCB)

Fig.1 illustrates how SMCL works. There are two areas used
in SMCL: candidate samples area and valid samples area.
The candidate samples area is used to draw new candidate
samples and the valid samples area is used to filter out invalid
candidate samples. When candidate samples area is large and
valid samples area is small, candidate samples drawn in the
prediction step have high probability to be dropped. From
transition equation (4) and filtering condition (5) we know
that the candidate samples area will be large when vmax is
large and the valid samples area will be small when sd is
large. So SMCL will be very time-consuming when vmax or
sd is large.

To overcome this problem, [2] used a bounding-box method
to reduce candidate samples area. The idea is to constrain

Fig. 2. MCB[2]: new sample candidates are only drawn from the shadowed
area.

candidate samples into a much smaller area. The perfect
solution is only drawing candidate samples from the valid
samples area. However, the valid samples area is hard to
obtain. But we can construct an approximation of that area
using a bounding-box. Suppose a common node can commu-
nicate with n 1-hop anchor neighbors, then a bounding-box
(xmin, xmax, ymin, ymax) is built as following (see Fig.2):

xmin = maxn
i=1{xi − r}, xmax = minn

i=1{xi + r}
ymin = maxn

i=1{yi − r}, ymax = minn
i=1{yi + r} (5)

where (xi, yi) is the coordinate of the i’th 1-hop anchor
neighbor. 2-hop anchor neighbors can be used to reduce the
bounding-box further. When using 2-hop anchor nodes, we
should replace r with 2r in the above formulas.

Using this method, the probability for a candidate sample
to be reserved in the final sample set increases very much,
so the computation cost is reduced. For scenarios in which it
is difficult for SMCL to obtain enough samples (for example,
when vmax or sd is large) , MCB can also obtain enough
samples, so achieve higher location accuracy than SMCL.

D. MSL* and MSL

In [17] the authors proposed two algorithms, MSL* and
MSL, using position estimations of the common neighbor
nodes to improve location accuracy. The main idea is to assign
different weights to samples according to the relationship
between this sample and the samples of the common neighbor
nodes.

Similar to SMCL, MSL* and MSL also have three steps in
processing: initialization, sampling, and re-sampling.

Initialization: Same as in SMCL and MCB.
Sampling: In order to be useful in both mobile sensor

networks and static sensor networks, MSL* and MSL use a
transition equation different from (4). The transition is given
below:

p(lt|lt−1) =
{ 1

π(vmax+α)2 if d(lt, lt−1) < vmax

0 otherwise
(6)

where α is an empirically determined value. α is used to make
the algorithm also suitable for static sensor networks. In [17] α
is set to be 0.1r and we follow this setting in our simulations.
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After a sample candidate is chosen, its weight is computed
using 1-hop and 2-hop (anchor and common) neighbor nodes.
For a sample s of a node p, its weight ws(p) is computed
as the product of the partial-weights w′

s(q) corresponding to
each neighbor node q. That is,

ws(p) =
k∏

q=1

w′
s(q) (7)

where k is the number of 1-hop and 2-hop neighbor nodes of
p. w′

s(q) is computed as follows:

1) if q is p’s 1-hop anchor neighbor node, then

w′
s(q) =

{
1 if d(s, q) ≤ r
0 otherwise

2) if q is p’s 2-hop anchor neighbor node, then

w′
s(q) =

{
1 if r ≤ d(s, q) ≤ 2r
0 otherwise

3) if q is p’s 1-hop common neighbor node, then

w′
s(q) =

∑
qi

w(qi), where d(s, qi) ≤ r + vmax

where qi is q’s sample in the last time unit and w(qi) is
qi’s weight.

4) if q is p’s 2-hop common neighbor node, then

w′
s(q) =

∑
qi

w(qi), where r−vmax ≤ d(s, qi) ≤ 2r+vmax

where qi is q’s sample in the last time unit and w(qi) is
qi’s weight.

After N samples are obtained, their weights are normalized.
The weight of the i-th sample is normalized as :

wi(p)∑N
j=1 wj(p)

Re-sampling: The resampling step in MSL* and MSL
is different from that in SMCL and MCB. In MSL* and
MSL, each sample in the last time unit may be included
in the new sample set with a probability proportional to its
weight. Samples with higher weights have greater chance to
be reserved in the new sample set. New samples are drawn
using transition equation (6) only when there are not enough
samples inherited from sample set in the last time unit.

In MSL* a node uses sample sets of its common neighbor
nodes to weight its samples which results in high communi-
cation cost. To reduce the communication cost, the authors
propose a simplified version of MSL*, which is called MSL.
Instead of using full set of samples, MSL only uses position
estimations of common neighbor nodes to weight its samples.
For each common node there is a value called closeness
which is used to evaluate the quality of its position estimation.
The closeness value of a node p with N samples is defined as

closenessp =
∑N

i=1 wi

√
(xi − x)2 + (yi − y)2

N

where (x, y) is p’s position estimation and (xi, yi) is p’s i-th
sample. In MSL the partial-weight corresponding to a common
neighbor node q is defined as

w′
s(q) = b−closenessq

where b is set to 7 in [17] and we follow this setting in our
simulation. To further improve location accuracy, only those
common neighbor nodes with lower closeness values than p
are used in the weight computing step.

MSL* and MSL can achieve higher location accuracy than
SMCL. However, MSL* and MSL need high node density and
high anchor density to converge. Simultaneously, the property
of reserving most samples in the last time unit makes MSL*
and MSL more suitable for networks with low speed. In fact,
the location accuracy using MSL* and MSL is lower than
original SMCL when vmax is large, as reported in [17].

E. Other variants

There are some other variants of SMCL, for example, [4],
[25]. In [4] distances between common nodes and anchor
nodes were used in the filtering step in order to improve
location accuracy. However, this method requires additional
hardware to measure distances. We won’t compare our algo-
rithm with this algorithms because our algorithm has no such
requirements. In [25] the authors proposed a multi-hop version
of SMCL. In each time unit a common node obtains its shortest
paths to all anchor nodes by flooding and using these distances
to construct a candidate samples area and to do filtering. The
good news of [25] is that it can alleviate high radio irregularity
and can use much less anchors to localize all common nodes
in the network. The bad news is that it will result in very high
communication cost because it uses flooding.

In this paper we will compare our algorithm with SMCL,
MCB, MSL* and MSL. We won’t compare our algorithm with
algorithms proposed in [4], [25] because they either require
special hardware or use flooding.

III. OUR ALGORITHM

In this section we present our algorithm and explain how it
reduces computation cost and increases location accuracy. Our
algorithm also uses position estimations of common neighbor
nodes to improve location accuracy. However, different from
MSL* and MSL, it only uses location information of 1-hop
common neighbor nodes but using this information in both
prediction steps and filtering steps.

A. Reduce Bounding-box further

Let us recall how MCB reduces candidate samples area of
SMCL. In MCB a bounding-box is built using 1-hop and 2-hop
anchor neighbor nodes. Our first contribution is using 2-hop
anchor neighbor nodes’ negative effects to further reduce the
bounding-box. See Fig.3. q is p’s 2-hop anchor neighbor node,
then the overlapping region of the bounding-box of p and the
circle centering at q with radii r does’t contain p, otherwise
q will be p’s 1-hop neighbor node. So that region should be
eliminated.
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Fig. 3. Using 2-hop anchor neighbor nodes’ negative effects to further reduce
candidate samples area. The shadowed area should be eliminated.

Now suppose that each common node knows its maximum
error in x-axis errX and maximum error in y-axis errY (how
to compute them is explained in next subsection). Use Rt,p and
Et,p to denote node p’s real position and estimated position in
time unit t respectively. Suppose q is one of p’s 1-hop common
neighbor nodes in time unit t, then we have the following
relationship:

|Rt,p − Rt,q| ≤ r

|Rt,q − Rt−1,q| ≤ vmax

|Rt−1,q − Et−1,q|x ≤ errXq

|Rt−1,q − Et−1,q|y ≤ errYq

Where errXq and errYq are q’s maximum error in x-axis
and y-axis in the last time unit respectively. Suppose that the
bounding-box built using 1-hop and 2-hop anchor neighbor
nodes is (xmin, xmax, ymin, ymax), then it can be updated as
following (only take xmin as an example):

xmin = maxq∈Q{xmin, Ex
t−1,q − vmax − r − errXq}

where Q is the set of p’s 1-hop common neighbor nodes and
Ex

t−1,q is the x value of Et−1,q .
p’s position estimation in the last time unit can be used to

further reduce the bounding-box. Take xmin as an example:

xmin = max{xmin, Ex
t−1,p − vmax − errXp}

After the bounding-box is built, in prediction step candidate
samples are randomly chosen from the bounding-box.

Position estimations of common neighbor nodes are also
used in the filtering step in order to improve location accuracy.
Now the filtering condition is defined as:

filter′(lt) = filter(lt)∧d(lt, Et−1,q) ≤ vmax+r+errq,∀q ∈ Q

where Q is the set of p’s 1-hop common neighbor nodes
and errq =

√
errX2

q + errY 2
q . It can be seen that when

vmax becomes larger, the constraints introduced by common
neighbor nodes become weaker.

B. Compute and broadcast errX, errY

After we have obtained N valid samples, we can compute
the position estimation of a node p as the weighted average
of all its samples. Using the position estimation and the

Fig. 4. Computing errX and errY ; the biggest dot is (xe, ye). The right
figure shows a way to refine errX and errY with little risk.

Fig. 5. Lower bound of expected location error[13]. The summation of area
of I and area of II is about 4rz.

bounding-box 2, we can compute errXp and errYp. See Fig.4.

Suppose that a node p’s position estimation is (xe, ye)
and its bounding-box is (xmin, xmax, ymin, ymax), then it
is obvious that errXp is max(xe − xmin, xmax − xe) and
errYp is max(ye − ymin, ymax − ye). However, errXp and
errYp can be further refined. Suppose that p’s sample set
is {(x1, y1), . . . , (xN , yN )}. Let x′

min = min{x1, . . . , xN}
and we can further refine xmin of the bounding-box to be
(xmin + x′

min)/2. Do the same to xmax, ymin and ymax we
can get more refined errXp and errYp. This may introduce
some risks that the bounding-box doesn’t contain p’s real po-
sition. However, the possibility that this type of inconsistences
occur is very small. In fact, in our simulation with unit dist
connectivity model, the inconsistence only occurs for several
times in the whole simulation.

After p gets (xe, ye) and errXp, errYp, it broadcasts them
to its neighbor nodes and its common neighbor nodes will use
that information in the next time unit.

IV. ALGORITHM ANALYSIS

A. location accuracy

Our algorithm uses only local connectivity information
in each time unit’s prediction step and filtering step. [13]
proposed a method to estimate the lower bound on expected
location error for this type of algorithms. Although [17]
showed that this lower bound is not rigorous, it can still help
us gain some insights of how accurate an algorithm of this type
can achieve. We use it to derive a lower bound on expected
location error for our algorithm.

The main idea is to treat the distance a common node can
move without changing its connectivity as a random variable Z

2The bounding-box in the initialization step is set to be the deployment
region.
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and compute the expectation of Z. See Fig.5. The probability
that a node can move a distance z without changing its
connectivity information equals to the probability that there is
at least one node in I or II. Using our network model (section
II-A):

F (z) = 1 − e−ρn4rz

Because SMCL and MCB use only anchor neighbor nodes
within two hops, the lower bound on expected location error
for SMCL and MCB is:

E(z) =
∫ ∞

0

z d(1 − e−ρs12rz)

=
πr

12sd

Compared with SMCL, our algorithm also uses 1-hop
common neighbor nodes. So for our algorithm, the expected
location error is lower bounded by:

E(z) =
∫ ∞

0

z d(1 − e−(ρs8rz+ρn4rz))

=
πr

8sd + 4nd

However, the constraints introduced by common neighbor
nodes (vmax + r + err) are much weaker than the constraints
introduced by anchor neighbor nodes(r), so the real location
error will be much higher than this lower bound.

MSL* and MSL use both common neighbor nodes and
anchor neighbor nodes within 2 hops, and the lower bound
is given by πr

12nd
.

B. Communication cost

To find 1-hop anchor neighbor nodes, only anchor nodes
need to broadcast their position information and the corre-
sponding communication cost is O(m) in each time unit.
To find 2-hop anchor neighbor nodes, all nodes (including
anchor nodes) should re-broadcast neighbor anchor nodes’
position information they received. The corresponding cost is
O(n ∗ sd). Similarly, to find 1-hop and 2-hop (anchor and
common) neighbor nodes need O(n) and O(n∗nd) messages
respectively.

SMCL and MCB only use 1-hop and 2-hop anchor neighbor
nodes, so the total communication cost is O(m + n ∗ sd).
Our algorithm also uses 1-hop common neighbor nodes so
the total communication cost is O(n + n ∗ sd). The addi-
tional communication cost compared with SMCL and MCB
is O(n − m). For MSL*, it uses sample sets of 1-hop and
2-hop common neighbor nodes, so the communication cost is
O(m + n ∗ sd + (n − m) ∗ N + n(nd − sd) ∗ N) where N
is the number of samples. The 3rd term is used to get sample
sets of 1-hop common neighbor nodes and the 4th item is
used to get sample sets of 2-hop common neighbor nodes.
The communication cost of MSL is O(n + n ∗ nd).
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Fig. 6. Our algorithm converges faster than SMCL.

V. SIMULATION RESULTS

We obtained a copy of the simulator code from Hu and
Evans[9] and modified it to implement five algorithms: SMCL,
MCB, MSL*, MSL and our algorithm. The parameters are set
to be consistent with [9], [2], [17]. All nodes are uniformly
distributed in a 500m*500m region and r is set to 50m. Unless
otherwise specified, the default value of parameters are: nd =
10, sd = 1, vmax = .2r. The number of samples is set to
50. We use the degree of irregularity (DOI) [26] model to test
the effects of radio irregularity on location accuracy, and the
default value of doi is 0. For each experiment, we randomly
generate 10 networks and in each network we run 200 time
units. The results shown here are the average value of the 10
networks.

The key metric for evaluating a localization algorithm is
location accuracy. In this paper we use location error of a
common node to measure its location accuracy. A common
node’s location error is defined as the distance between its
real position and its estimated position measured as a multiple
in r. For an algorithm, we define its average location error as
the average of all its common nodes’ location error.

A. Convergence

Fig.6 shows how average location error of different al-
gorithms vary in each time unit. We can find out that our
algorithm and MCB converge faster than SMCL. This is
because in our algorithm and MCB most common nodes can
get their position estimation in the first several time units, so
the location error converges faster than in SMCL.

MSL* and MSL don’t converge in this scenario. The reason
may be that MSL* and MSL use common neighbors just
like using anchor neighbors, which requires that position
estimations of common nodes should be accurate enough. The
position estimations of common nodes are not very accurate
in this scenario, so MSL* and MSL don’t converge.
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Fig. 8. Computation cost when sd increases.

B. Computation cost

Our algorithm increases the probability that a sample candi-
date is reserved after filtering. However, using this probability
as the metric of evaluating computation efficiency is unfair
for SMCL and MCB because the filtering step in our algo-
rithm needs more computation cost. So we use the average
time needed to get a valid sample as the metric to evaluate
computation efficiency. We count time needed to get a valid
sample in the following way: to generate a sample candidate
costs 1 computation unit; in the filtering step (or the weight
computing step in MSL* and MSL), each comparison costs 1
computation unit. To be fair, we also count the time used to
build bounding-box in our algorithm and MCB: each min or
max operation costs 1 computation unit.

Fig.7 shows how vmax affects computation cost of different
algorithms. In Fig.7 we can find out that, as we have pointed
out in section II-B, the computation cost of SMCL increases
when vmax increases. The computation cost of our algorithms
reduces when vmax increases. This is because when vmax
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Fig. 9. Computation cost when nd increases.

increases, the constraints introduced by common neighbors
become weaker and more sample candidates are viewed as
valid samples in the filtering step. Our algorithms is a little
less computation efficient than MCB because we use common
neighbors in the filtering step. However, the location accuracy
of our algorithm is higher than MCB, which will be shown in
next subsection.

Fig.8 shows how sd affects the computation cost of different
algorithms. Also as we have pointed out in section II-B, the
computation cost of SMCL increases dramatically when sd

increases. This is due to two effects caused by the increase
of sd: it makes a sample candidate has high possibility to be
dropped and it also need more computation time in the filtering
step. Both our algorithm and MCB have less computation cost
than SMCL because the sample candidates area is reduced
dramatically using bounding-box.

However, because our algorithm also uses common neigh-
bors in the filtering step, the computation cost will increase
when nd increases. Fig.9 shows how nd affects the computa-
tion cost in different algorithms. We can see that computation
cost only grows slightly when nd grows. The reason is that
although large nd will increase computation cost in each
filtering step, the probability that a sample candidate is a valid
sample also increases because the sample area is also reduced
when nd increases. So the computation cost doesn’t grow very
much.

C. Location accuracy

According to our analysis in section IV-A, the location
accuracy of our algorithm and MSL* (MSL) will be improved
when nd increases. Fig.10 shows how location accuracy is
affected when nd increases in different algorithms.

¿From Fig.10 we can find out that in our algorithm the
average location error becomes smaller when nd increases.
nd has almost no effect on the location accuracy in SMCL.
There is a little improvement in location accuracy in SMCL
when nd increases from 5 to 10 because that some of 2-hop
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Fig. 10. Location accuracy improves when nd increases.
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Fig. 11. Location accuracy improves when sd increases.

anchor neighbors cannot be found when nd is less than 10.
When nd is higher than 10, nd has no effects on location
accuracy in SMCL. MCB has higher location accuracy than
SMCL because it also uses position estimation of itself in last
time unit to improve location accuracy.

As we have pointed out in section II-D, MSL* and MSL
need high anchor density and high node density to converge.
In the scenario presented here, location accuracy of MSL* and
MSL are even lower than original SMCL.

Using the analyses in section IV-A, we know that the
location accuracy will be improved when sd increases. Fig.11
shows how sd impacts location accuracy in different algo-
rithms. From Fig.11 we can find out that location accuracy
of all algorithms are improved when sd increases. When sd

is large, the improvement introduced by common neighbors
becomes smaller. However, our algorithm always outperforms
SMCL and MCB. The location accuracy of our algorithm
using anchor degree sd approximately equals to location
accuracy of SMCL using anchor degree sd + 0.5.
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Fig. 12. Location accuracy degrades when vmax increases.
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Fig. 13. Impact of Irregularity.

Nodes’ speed will also impact location accuracy of algo-
rithms. Fig.12 shows how vmax effects location accuracy in
different algorithms. We can see that when vmax increases, the
location accuracy of our algorithm degrades but still always
higher than other algorithms.

D. Impact of radio irregularity

We conduct simulations to test the impact of radio irregu-
larity on location accuracy in different algorithms. The results
are shown in Fig.13.

We use degree of irregularity (DOI) [26] to denote the
maximum radio range variation in the direction of radio
propagation. For example, if DOI=0.1, then the actual com-
munication range in each direction is randomly chosen from
[0.9r,1.1r]. From Fig.13 we can find out that both our al-
gorithm and SMCL can tolerate small DOI (≤ 0.2). For
MSL* and MSL, because they use both common neighbors
and anchor neighbors in 2-hops, they are more sensitive to
radio irregularity.
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VI. CONCLUSIONS

We have presented an efficient localization algorithm for
mobile sensor networks. The proposed algorithm improves
the performance of existing SMC-based algorithms. The main
drawback of these existing algorithms is high computation
cost. In our algorithm, using the bounding-box method, we can
reduce the scope of searching possible candidate samples, and
thus reduce the time for finding the set of valid samples. Also,
by using inaccurate position estimations of common neighbor
nodes, the location accuracy can be improved. Simulation
results show that our algorithm outperforms the existing SMC-
based algorithms in terms of computation cost and location
accuracy. We have also analytically derived the lower bound
on the location error. In addition to the above benefits, the pro-
posed algorithm has several other desirable features. Besides
its location information, each determined node also knows the
maximum location error. The algorithm can achieve higher
location accuracy under higher node density. Also, even when
there are only a few anchor nodes, most nodes can still get
the position estimations.

Comparing with the existing SMC-based algorithms, the
proposed algorithm incurs additional communication cost but
the cost is rather reasonable: O(n−m) in each time unit where
n and m are the number of all the nodes and the number of
anchor nodes in the network, respectively.
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