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Inclusion of Interbar Currents in a Network-
Field Coupled Time-Stepping Finite-Element
Model of Skewed-Rotor Induction Motors

S. L. He, H. L. Li, and W. N. Fu

Abstract— In order to include the interbar currents of
skewed-rotor inductor motors in finite-element analysis, a
three-dimensional (3-D) model is wsually necessary, In thig
paper a two-dimensional multislice time-stepping finite element
method of skewed-retor induction motors is presented to solve
such complicated 3-D problems. It is shown that the network
of the rotor cage is coupled to finite-clement equations so that
the interbar corrents in the rotor can be taken into account,
By arranging the unknowns and mesh-current equations
ingeniously, the resnltant coefficient matrix of the global
system equations are made symmetrical. Compared with 3-D
finite-element methods, the computation time for solving field
equations with the proposed method is significantly shorter. The
model can be used to estimate the high-order harmonic stray
losses in induction motors, A comparison between computed
and tested results is also given.

Index Terms—Finite element methods, induction motors.

1. INTRODUCTION

NDUCTION moters are one of the most widely used

machines to convert electrical energy to mechanical energy.
Many researchers have studied their peiformances using finite-
element methods (FEM). Most analyses were limited to two-
dimensional (2-D} due to its simplicity compared with its
three-dimensional (3-D) counterpart [1]. Williamson, in his
review paper [2] presented in 1994, pointed out that if 2-D
models are used, the following attributes of a real machine,
due to its inherently 3-D nature, were still difficult to study
accurately:

1) the stator end windings;

2) the rotor end rings;

3) rotor skew (if present);

4) radial ventilation ducts (if present);

3) interbar currents.

Due to the advance in 2-D time stepping FEM in recent
years, it is now possible to couple external circuit equations
into the global system equations to have a more precise
analysis. One can now partially take the effect of the stator
end windings and the rotor end rings into account by including
the end-winding resistances and inductances [3]-[4].
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In order to deal with the problems of skewed rotor bars,
a 2-D multislice model has been developed [5]. A set of
nonskewed 2-D models, each corresponding to a section taken
at different positions along the axis of the machine, is used
to model the skewed rotor. In order to ensure that the current
flowing in the bars of one slice is the same as that flowing in
the bars of every other slices of the same rotor bar, one could
carry out the field sclutions simultaneously for all the slices.
Piriou et al. [6] used this method to simulate a permanent
magnet synchronous machine. Gyselinck er al. [7] used the
multislice method to simulate the steady-state operation of a
squitrel cage induction motor. Boualem ef al. [8] also used
the multislice approach to simulate the operation of a squirrel
cage induction motor. This model was further developed by
the authors so that the formulas of the 2-D multislice model
is very similar to that of normal 2-D FEM, and the work to

“develop the software could be simplified [9].

To tackle the problems involving the interbar currents of
skewed rotor cage motors, the authors have presented a 3-
D time stepping FEM model [10]. A 2-D multistice FEM
was coupled into the 3-D model when determining the stator
current and the reluctivity of the iron material at each time
step, With such approach the 3-D model was reduced into a
current driven linear problem, thereby simplifying the system
equations considerably to result in big savings in computation
time,

However, compared to 2-D models, the 3-D models still
need a large amount of computation time in solving practical
problems. The computation required in the pre- and post-
processing of 3-D FEM data is also complex. It would be
highly desirable if 2-D models can be applied.

In this paper a new multislice time stepping FEM meodel
which couples the network circuits of the rotor cege into
system equations is presented. The interbar currents can be .
included by introducing the interbar resistances in the network.
By choosing the unknowns and mesh-current equations inge-
niously the resultant coefficient matrix of the global system
equations becomes symmetrical and the interbar currents can
either be included or excluded easily in the program according
to user’s option. The investigated domain can span one pole or
one pair of poles, With the proposed algorithm most induction
motors which have no radial ventilation ducts can be solved
using this model, although 3-D FEM is still necessary to
compute the end-winding impedances if very high accuracy
in studying the end-winding fields is required.
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The proposed method has been used to estimate the interbar
loss of an 11 kW skewed rotor induction motor, A compatison
between the resuits using the 2-D FEM and the 3-D FEM is
given. The method is also further used to estimate the high-
order harmonic stray losses. A comparison between computed
and tested results will also be reported.

II. BASIC EQUATIONS AT EACH DOMAIN l

The following assumptions are made:

1) there are no leakage fluxes in the outer surface of the
stator core and in the inner surface of the rotor core;

2) because the iron cores are laminated, the eddy currents in
the iron cores are neglected in the mathematical model;

3) the stator end-winding effect and the rotor end-ring
effect are considered by coupling the electrical circuits
into the FEM equations;

4) to-consider the skewed rotor bars, the motor in the axial
direction is divided into A slices, with the rotor bars
in each slice offset from each other by (1/M)th of the
total skewing angle. In each slice the magnetic vector
potential has an axial component only, Magnetic field is
present only in planes normal to the machine axis. Hence

the characteristic of the electromagnetic field of each

slice is 2-D. The relationship between slices in the stator
-is based on the principle that the current flowing in the
conductors of one slice is the same as that which flows
in-the same conductors of every other slice. Likewise,
the relationship in the rotor is based on the principle that
the network of the rotor cages should satisfy Klrchhoff’
current and Kirchhoff’s voltage laws.

The basic equations in the domains of iron cote, air-gap,
and stator conductor are the same as the corresponding 2-
D multislice model. For the sake of completeness, these
equations will be summarized below as well.

In Iron Cores and Air-gap Domains
According to the siated assumptions, the field equation in
the iron domains and in the air-gap is

V x (W x 4) = 0 0

where A is the axial component of the magnetic vector
- potential -and » is the reluctivity of the material.

In Stator Conductor Domain
In the stator conductor domain, the field equation is

Vx(viA):F%S:O 2

where ig is the stator phase current and S is the total cross-
sectional area of one turn on one coil side. The “F” sign
becomes “—" for the “go” side of the conductor and it becomes
“+” for the “return” side of the conductor.

A stator circuit of one phase is shown in Fig. 1. The stator
circuit equation of one phase is

. ' di
@+R11.S'+Laa‘% = yg _ (3)
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Fig. 1. A stator circuit of cne phase.

Bar #

Slice m Umn l Lbmn

Fig. 2. A slice of rotor bar.

where Ry is the total stator resistance of one phase winding
and L, is the inductance of the end windings. The induced

electromotive force is [9]
OA oA
ZL40 - i
0 /f 2La) @
Qn

e = '? . [
m=k 9;
where the rotor is divided into an even number of M slices in
the axial direction while m stands for the mith slice; [y = {/M
and [ is the axial length of the iron core; 27 and 07 are,
respectively, the cross-sectional areas of the “go” and “return”
side of the phase conductors of the coils.
Substituting (4) into (3), the stator circuit equation is

04
/ - f/
ot Q-

+Rii, + L

M
Lot

5 m=1

dis
7 di .

The field equation (2) and the circuit equation (5) can be
combined to give rise to the basic formulas in the stator
conductor domain. Here vg is the exciting source, 4 and i3
are the unknowns.

=y, (3)

In Rotor Conductor Domain

The Maxwell’s equations applied to the domain in the nth
bar of the mth slice (Fig. 2) will give rise to the following:

94 o
gt
where 1,y i8 the voltage between the two terminals of the

nth bar on the mth slice.
The total current in the nth bar of the mth- shce is

'an .
tpmn = O ﬂ ( 8t Tt ) any | . (7}

A network of the rotor cage is shown in Fig. 3. For

Vx(wWxA+o Unn = 0 (6)

. normal operating frequencies (i.e., 50.or 60 Hz), the inductive

component of the interbar impedance can be-neglected [11].
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Fig. 3. Equivalent circuit for a rotor cage network.

Two adjacent bars are connected by the end-ring resistances
and inductances at the two end rings as well as by the interbar
resistances along the axial length of the rotor, The end-ring
impedances can be computed using traditional methods or 3-
D FEM [12], [13]. The interbar resistance can be determined
according to {14] and [15]. Depending on whether the selected
solution domain is spanning one pair of pole pitch or one pole
pitch, bar 1 and bar (N + 1) can be connected, respectively,
by virtue of the periodicity boundary condition or antipetiodic
condition.

For a network of the rotor cage having M slices and
N bars (Fig. 3), the graph has (M + 1) x N nodes and
M x N+{M+1)x N branches. The current distribution can be
specified in terms of [M x N4+ {M+1)xN]-[(M+1)x N]+1
or M x N +1 independent rotor currents. By tracing the loops
for the mesh currents in the clockwise direction, the M x N
mesh currents (labeled ip1,4m2,. . imn,m = 1,..., M)
used to describe the circuits are as shown in Fig, 3. The merit
of this choice is that even if the interbar currents are ignored,
the proposed method is still applicable. Another independent
current is a circulating current 4, in one of the end rings. For an
induction motor with two complete end rings, the application

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 14,

of Kirchhoff’s voltage law around two end rings and each loop
of interbars (the loop is between the two adjacent slices parallel
to the end rings) will give rise to 4, = 0. This will immediately
reduce the number of unknown rotor currents by one.

The branch currents of the rotor bars can be expressed as

Z‘h.qfn'l 1 0 0 :Fl 211
ihmZ -1 1 0 0 12
fhms | = - |0 -1 1 0 i13
TN 0 0 -1 1 N
1 0 0 Fl1 tm1
—1 1 O 0] z'mQ
_xlo -1 1 0| |ims| (8
0 0 -1 1 PN
where  d11,410,. ., 58 a1, Ema, . bmn, (M =

2,...,M) are the mesh currents. When m = 1, K = 0. For
m > 1, K = 1. If the domain to be investigated spans over
one pair of poles, the “F” sign in (8) should be “—.” If the
studied domain is one pole, then the “F” sign should be “+.”
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Substituting (8) into (7) one obtains the branch equations as

/f (-5~ ) e

0 0 F1 Fi11
—1 1 0 0 i12
+l0 =11 o 0| e
0 0 -1 1 i1
1 0 0 F17 [im1
-1 1 0 0 fm2
+K|0 -11 im3 | =0 9)
0 0 -1 11 limny
where m = 1,2,+-+,M and n = 1,2,... N. There are totally

M x N branch equauons
The total number of M x N mesh-current equat1ons can be

further established by considering the locp 411,412, .., 01N
1 -1 0 - 0
0 1 =1 «o 0f [um
Yolo o o1 0| [ tma
Z 0 0 1 0
m=1 ' '
0 0 U N
Fl 0 0- 1
diny
ill 1
i12 12
+ (—ZRk)f . + (-——2Lk)I dt
N ’&1:N
b4
d?g/[]
; i
o d
+(—Rp)I +(=L)I| dt | =0
Lisen diyn
dt
(10)

where Ry, Ly, are the resistance and inductance of the rotor
end rings, respectively. I is a N X N unit diagonal matrix.

For the 100D im1,ima, .+ imy (=2, .., M — 1)
1 =1 0 - 0 ‘ :
0 1 -1 v 0 [um Ym—1)1
0 0 1 o 0f|ume Um—1)2
0 0 1 -0 .| FERI :
0 0 UmN i(m—l)N
Fi 0 0 1
iml im+1)1
i ime1)2
w(=2m)1 | | R TR 20
Lima: imt+1)N
1y

where R; is the mterbar res1stance When m =2, K = 0 If
m > 2, then K =1. T
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For the loop ias1,%872, .+ v 200N
1 -1 0 - 0 _
0 1L -1 0| [uan [
0 0 1« 0| tare KT
0 0 UMN ?:1N
FL OO 0 . 1
diny
E.lf bM—-1)1
22 b -1)2
(L | @ | 4 Rer| Y
diin HM-1)N
di
dip
] 2
b | [din
+(-Ry—-R-d)I| " | +(-Lx)] Tdt | =0.
dt
‘ (12)

The magnetic field equation (6) together with the branch
equation (9) and the mesh-current equations (10)—(12} will
give rise to the basic governing formulas in the rotor conductor
domain, '

III. GLOBAL SYSTEM EQUATIONS

The potential can be expressed as the sum of the shape
functions times the nodal potential .

M.
A=3" NiA;
g=1
where there are M, nodes in the element and N; are the shape
functions.
Using the Galerkin method, one has the intergral equations
of the field problems. In the iron cores and aif-gap domains

(13)

_ associated with (1), one has

v ,
aN; 0 ZNJ J+az
Oz Oy

6‘ A
EFVZNJ,

7=1

[ =

In the stator conductor domams associated with (2), one has

=0.

M M

//BNiZNA+8N_8 ZNA

+N( 3)] dQ = 0. (15)..

In the rotor bar domains associated with (6), one hias

ON;, 8 X aN a M
/f [m 5 Z NjA; + 2 Zl N A,
pre
5 M o
ol 5 NjAj = Ni( 7= thmn | | 2 =0. (16)
J=1 M

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 14, 2009 at 10:34 from IEEE Xplore. Restrictions apply.



4222

Discretizing (14)-(16), (5), (9), and coupling (10)-(12)
together, one obtains the following global system equations:

Cyy €12 Cis O A
0 .022 0 0 ig
0 0 Cas Cal|w
0 0 Cp Cullg
1
Dy o0 0 o074k 07
Dy Doy 0 0 Bt | o P
Dy 0 0 0 & “lo an
0 0 0o D ¢ 0
_ 41 g_R
La

where the first line of the submatrix is the magnetic field
equations; the second line is the stator circuit equations; the
third line is the branch equations of the rotor bars; the last
‘line is the mesh~current equations of the rotor network. The
unknowns [A] are the magnetic vector potentials; {is] are the
stator phase currents; [u] are the voltages of the rotor bars on
each slice, and [ip] are the mesh-currents in the rotor network.
The elements of the coefficient matrix are

ON; ON;
Glla?_/f V(@a: dr +

e

Djh‘j 2[/ O'Nz'Nj dQ
ne .

i and j are the node numbers in (18) and (19). In the iron cores
as well as in the air—gap and stator conductors, Dy;; = 0

S/Ndﬂ

Dm,_ig / N; o,

ON; 9N;
dy Oy

) dar (18)

(19}

Choig = (20$)

Q@1

i is the node number and j§ is the stator conductor number
in (20) and (21), In (20), for the *go” side of the stator
conductors, the. “F” sign is “—” whereas it becomes “+”
for the “return” side. In (21), for the “go” side of the stator
conductors, the “£” sign is “+" whereas it becomes “~" for
the “return” side. Moreover

' IEEE TRANSACTIONS ON MAGNETICS, VOL. 35, NO. 3, SEPTEMBER 1999

where (g and D299 are 3 x 3 matrices associated with the
three phases in the stator windings

f N—dﬂ

Dayji = — ]] o N; dd.
X 4

In (24) and (25), ¢ is the node number and j'is the rotor
bar number of each slice ‘

o8 5 g diagonal
O = |2 2L 2
|t Tu

Claig = (24)

(25)

(26)

In (M x NI {MxN)

where S is the area of the cross section of one rotor bar, The
matrix Cyq in (17) is given in (27) shown at the bottom of the
page, and all the submatrix in (27} are the same as follows:

Cagqany = v+ = Cagpyy = -+ = Cagqrany
1 0 0 1
-1 1 o 0
=0 -1 1 .-~ 0 (28)

In (28) the “F” sign should be “—" if the domain to be
investigated spans over one pair of poles, It becomes “+”
if the studied domain is one pole. Moreover,

Cus =CT,,. (29)
By virtue of the characteristics of (29), it is now possible to -
modify the global system equations to make them to become

symmetrical as described below. See (30) shown at the bottom

of the following page. Moreover

~2LI 00 ~Lid
0 00 . 0
Dy = 0 00 0
~LxI 00 Ll Jaxmyxaxny
(31)

where Cyy and Dyy are symmetrical matrices with M x M
submatrices; I is a N x N unit diagonal matrix,
The vector on the right-hand side is

— T .
022‘ — [Rl R2 R ]dmgonal (22) | P2 = ['UA 'f.)B VUC] (32)
Dyy=(Ls L, L,|§agenet {23) where v4,vp, and ve are the three stator phase voltages.
034(11) 0 0 0
Casayy  Caaany 0 0 .
Clyq = | O34 Cly(ag) 0 ' @7
Caaarn) 0 0 0 Caamrmy H (rxNyx (M=)
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IV. SOLUTION OF SYSTEM EQUATIONS

Using Backward Euler’s method to discretize the time
variable, one obtains the recurrence formulas of the kth step
for the time stepping process as follows:

r Dk: .
Ofl"“zlt—l Ch Chy 0 -‘ ,
Dk Ok + Di 0 0 Ak
T |
Ds, 0 Ck ck, b
At 33 34Dk %
0 0 Cly Ch+ 52|
0 D 0 0 0 7r4a!
_ | P N L |Ds Dk 0 0 | [T
0 At|D§ 0 0 0 ||ut!
0 0 0 0 DiJLéE
' : (33)
Noting that
At { Doy
—E(—z%) = Chgiy (34)
and
At f Dy
ORI

where 41, D11, Css, Cyq, Dy are symmetrical submaltrices.
By making use of the properties of (29) and multiplying
(—At/lpe) to the second rows of the submatrixes in (33),
multipling (At/ly) to the third and fourth rows of the
submatrixes in (33), the coefficient matrix of the system
equations will become symmetrical. .
After the mesh of each slice is generated, the nodes,

elements, etc. in the FEM model are renumbered slice by slice

continually. Therefore, the data structure of the resultant FEM
becomes 2-D. The number of total unknown magnetic vector
potentials is NP x M (where NP is the number of nodes
with unknown magnetic vector potentials on one slice). In the
stator conductor domains there are three unknown stator phase
currents, Each stator conductor should be identified according
to its phase location although one does not need to take care of
which slice it belongs to. In the rotor conductor domain, there
are M x N unknown branch voltages and M x N unknown
mesh currents. Each rotor bar at the different slices should be
identified because the rotor voltages of the various slices are
different although they belong to the same bar.

The total number of unknowns are NP x M + 3+ M x

N + M x N. If the last (M — 1) x N are unknowns, that
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Fig. 5. Flux plot when the motor is in full load operation.

included in the system equations, the interbar currents will be
neglected.

For steady-state problems, the complex network-field cou-
pled multislice FEM model is solved first to give an initial
guess of A(0),is(0),u(0), and ig(0). At each time step,
the Newton—Raphson method coupled with the incomplete
Cholesky conjugate gradient (ICCG) algorithm are used to’
solve the system of large nonlinear equations.

During the time stepping process, the rotor FEM mesh is
moved in accordance with the rotor movement. The mesh
rotation techniques have already been reported in [9].

V. EXAMPLE

The proposed network-field coupled FEM modeling has
been used to simulate the steady-state operations of a skewed
rotor induction motor (11 kW/380 V, 50 Hz, four poles, 48
stator slots, 44 rotor slots, A connection, rotor bars skew 1.3
stator sfot pitch). The time step size is 0,038 ms, The sclution
domain of the FEM is one pole pitch, The 2-D FEM mesh
of each slice has 1626 nodes and 2 655 elements (Fig. 4). A
typical flux plot is given in Fig. 5.

The computed interbar current losses with different slice

is, the unknowns 4,1, 4ma,. .« dmn (= 2,..., M), ate not numbers are listed in Table I. The CPU time given in Table I
—2R, I 0 0 ~ Ryl
0 —2R, I Rl 0
Cua = 0 R; I 2R, R;T 0 (30)
—RiI 0. 0 R —(Ba+ R Jemyxasiy
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TABLE 1 TABLE 111
COMPARISON OF COMPUTED INTER-BAR LOSSES COMPARISON OF COMPUTED INTER-BAR LOSS WHEN
WHeN CHOOSING DIFFERENT SLICE NUMBER THE ROTOR BARS SKEW DIFFERENT ANGLES
Slice Number _ Unknown Number CPU Time (s) Inter-bar loss (W) Skewed Angle of Rotor Bars Inter-bar loss(TV)
1 1370 1.8 0.0 0.0 stator slot pitch 0.09°
2 2737 49 259 0.3 stator slot pitch 4.97
3 4104 10.7 17.2 0.6 stator slot pitch 7.18 -
4 5471 - 185 161 1.0 stator slot pitch 10.93
5 6838 26.9 14,5 1.3 stator slot pitch 12.51
6 8205 36.3 13.6 1.6 stator slot pitch 14.15
7 9572 471 13.2
8 10939 576 128 :
9 12306 -~ 69.5 12.5 TABLE IV
COMPARISON OF COMPUTED AND MEASURED STRAY LOSSES (W)
Computed Tested
TABLE 1I
COMPARISON OF COMPUTED INTER-BAR CURRENT Eddy-current Stray Loss 1359
Losses WHEN UsiNg 2-D FEM anp 3-D FEM (W) Hysteresis Stray Loss 7.6
Stator Copper Stray Loss 2.7
2-D Network-field COuple FEM - 125 Rotor Copper Smy Loss 8.2
3-DFEM 10.8 Inter-Bar Current Loss 12.5
Total 166.9 173.6
30
— o
20 | The developed 2-D modeling is also used to study the
interbar current loss versus different skewing angles in the
+ 0 rotor bars, The computed results are in Table IIL It can be
o, seen that as the skew angle increases, the interbar current loss
E will also. increase.
S -0 By using the time stepping method, one can obtain the
waveforms of currents and the distributions of the magnetic
i flux densities in the time domain with the propesed 2-D
30 ‘ , , ) algorithm. These computed results can be further used to
0 5 10 15 20 25 estimate the stray losses in the motor, The formulas which are-
Time {ms) required for estimating the stray losses are directly dependent
Fig. 6. Computed stator phase current waveforms at full-load operation, on the actual Chang‘?s of currents and magnetic flux densities
: ' waveforms as described by the authors [10]. The computed
a0 full-load results of the motor are shown in Table IV. The
computed stray losses are very close to the tested results
20 | obtained by the reverse rotation method [16].
10 |
£ Vi, CoNCLUSION
E o - : .
g The proposed multislice 2-D time stepping FEM model
S 0 . which includes the effect of skewing in the rotor bars is a
further development of modeling induction machines. By cou-
20| pling the rotor cage network circuits into the field equations,
40 ‘ , , ‘ one can include an analysis of an essentially 3-D interbar
0 § - 10 1B 20 25 currents in the proposed 2-D model. In addition, the model

Time (ms)

Fig. 7. Measured stator phase current waveforms at full-load operation.

is the average time to solve the system equations at each time
step on a Pentium I1/300 MHz. The comparison between the
results using 2-D netwotk-field coupled FEM and the 3-D
FEM which has been reported by authors in [10] is given in
Table 11, Tt shows that in order to obtain an accurate estimation

of the interbar loss with a 2-D model, the motor should be.

divided into about nine slices axially. A typical computed
stator current waveform and the corresponding measured ones
are shown in Figs. 6 and 7, respectively.

cati take into account the other difficult problems such as
eddy-currents, saturation, and rotor movement, as well as other
nonsinusoidal quantities directly in the system equaiions. The
method has resulted in a large reduction in computing time
when solving an essentially 3-D problem. It will provide a
powerful tool for studying the behavior of electric machines,
especially when the effects of skewing in the rotor bars as well
as interbar currents are to be included.
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