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A Fast Global Optimizer Based on Improved CS-RBF
and Stochastic Optimal Algorithm
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An improved compactly supported radial basis function is proposed as a response surface model in the study of computationally
heavy design problems. A new interpolation formula is introduced to enhance the interpolation accuracy on boundary derivatives and
the proposed response surface model is then combined with stochastic algorithms in the design of a fast global optimizer. Numerical
results are reported to demonstrate the generality and the robustness of the proposed works.
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I. INTRODUCTION

DEVELOPMENT and utilization of stochastic or heuristic
optimal algorithms in the design optimization of electro-

magnetic (EM) devices have advanced rapidly in the last three
decades, mainly because of the need to address the multimodal
nature of objective functions. Compared with their deterministic
counterparts, the stochastic algorithms are computationally ex-
pensive since thousands of function evaluations are generally
required before one can find the optimal solution. Moreover, de-
sign problems of EM devices usually involve sophisticated and
tedious computer simulations. For example, it is very common
to use finite-element analysis (FEA), repetitively, so as to eval-
uate the performance of an EM device. Consequently, one faces
the dilemma of whether to give priority to computation burden
or accuracy when selecting the most suitable optimal algorithm
in solving computationally heavy design problems with multi-
modal objective functions.

To reduce the number of function evaluations involving com-
putationally heavy procedures without sacrificing the computa-
tion accuracy, a lot of efforts are devoted to the use of response
surface models or methodologies (RSM) and their applications
in the development of rapid global optimizers [1], [2]. By recon-
structing computational heavy design problems from the data
on a set of sample points using RSM, one can solve the recon-
structed problem efficiently. Obviously, the final solution ob-
tained depends strongly on the RSM being used. To date, the
most popular RSMs used in the study of EMs are those based
on globally supported radial basis functions (RBFs) because of
their interpolating power in dealing with both grid and scat-
tered data. However, global RBFs have the inherent drawbacks
of having the need to manipulate the full interpolation matrices.
Due to difficulties in processing full matrices, the sample points
of available RSMs could not exceed an upper limit [3]. More-
over, when the spacing between sample points is very small,
the interpolation matrix becomes very ill-conditioned as well,
giving rise to numerical singularity and low numerical accu-
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racy. To circumvent the drawbacks of globally supported RBFs,
the compactly supported RBF (CS-RBF) is improved and used
to design an RSM for constructing a computationally heavy
objective function. To enhance the interpolation accuracy for
(partial) derivatives on boundaries of the solution domain, a
new interpolating formula is introduced. Finally, the proposed
CS-RBF-based RSM is combined with stochastic algorithms in
the design of a fast global optimizer.

II. INTERPOLATION USING CS-RBF

A. Compactly Supported RBF

In essence, the pioneering work cocerning CS-RBFs is at-
tributed to Wu [4] and Wendland [5] in the mid 1990s. The
functions of CS-RBFs are strictly positive definite in for all
values of which are less than or equal to some fixed value
and can be constructed with any desired degree of smoothness

. The family of CS-RBFs, constructed by Wendland, is used
in the proposed study because, for a specific space dimension ,
these functions posses the lowest positive degree among all of
the piecewise polynomials of CS-RBFs which are positive def-
inite on having a given order of smoothness. Generally, a
CS-RBF is expressed as

(1)

where is a prescribed polynomial, is the Eu-
clidean norm, and denotes equality up to a constant factor.
For example

(2)

It should be pointed out that the CS-RBF function, which is
positive definite in , is also positive definite in .
The explicit formulae for Wendland’s CS-RBFs, , which
possesses smooth continuous derivatives

, is the size of the space dimensions) for , are
given in Table I for the convenience of fellow researchers.

B. Interpolation Using CS-RBF

The interpolation of a function using CS-RBFs can be imple-
mented simply due to their positively definite property. Mathe-
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TABLE I
EXPLICIT FORMULAE OF SOME WENDLAND’S CS-RBFs.

matically, the reconstruction of a function on
the basis of its values at a set of sample points

in terms of some CS-RBF is

(3)

As observed in [6], although the interpolation of a function
using (3) performs very well in the inner region of the param-
eter space, it will give rise to significant errors in the derivatives
on the boundary. To solve this problem, the information of the
derivatives on the boundary is incorporated, and the interpola-
tion becomes

(4)

where is the number of the total sample points, is the
number of the boundary sample points used only for derivative
fitting, is the first-order derivatives of with respect to
the radial variable .

The coefficients and are determined from the following
matrix equation:

(5)

where is the first-order derivative of function with respect
to the radial variable at boundary point , and

(6)

where is the second-order derivatives of with re-
spect to the radial variable .

It should be noted that the available information of (partial)
derivatives is related to the coordinate variables rather than to
the radial one. Therefore, one should derive the radial deriva-
tives as required by (5) with respect to their coordinate variables.
For example, if the partial derivative of function with the th
coordinate variable of Cartesian system is given, then the
derivative of function with respect to the radial variable ,
can be determined from

(7)

For high dimensional problems, the partial derivatives may
include numerical errors if they are determined using a numer-
ical approach. Therefore, the computed derivatives of a function
with respect to the radial variable on the same sample point may
not be identical if partial derivative with a different coordinate
direction is used in (7). In such a case, the averaged value of the
derivatives obtained from the derivative information of different
coordinate directions is used. Also, because of the compactly
supported nature of CS-RBFs, the coefficient matrix in (5) is
sparse. Hence, the addition or removal of some sample points
causes only a local change in the interpolation results.

In many high dimensional problems, the partial derivatives
of the objective function for different coordinates may vary sig-
nificantly. In such cases, the interpolation performances of the
CS-RBFs as formulated in (4) are often degraded. To eliminate
this problem, an improved CS-RBF with the introduction of a
scale parameter is proposed. The high dimensional CS-RBFs
being proposed are defined as

(8)

where is a scale parameter which is inversely proportional
to the th partial derivative of the function at the point .

C. Merit of the Proposed CS-RBF Interpolation

To show the merit and the generality of the proposed CS-RBF
in function interpolations, a two-dimensional (2-D) mathemat-
ical function as defined below is deliberately designed with
the partial derivative of the -coordinate variable being much
smaller than that of the -coordinate variable. Moreover

(9)

For comparative purpose, this mathematical function is re-
constructed using the proposed CS-RBF with and without the
scale parameter as defined in (8). The CS-RBF used in this
case study is a simple one with smoothness and with being
equal to or smaller than 3, and is defined as

(10)

For elucidative simplicity, the derivative term as defined on
the right side of (4) is deliberately excluded. In the numerical
implementations, the scale parameters for and are set,
respectively, to 1 and 0.05. Twelve equidistant points in each
coordinate direction are used as sample points. To evaluate the
performances of different interpolation schemes, the following
metrics are used:

(11)

(12)

where and are the exact and computed values, respec-
tively, of the test function at sample point using an interpola-
tion scheme; is the number of observation points.

In the evaluation, 40 equidistance sample points along each
coordinate direction are used as observing points to calculate
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Fig. 1. Error distribution of the interpolated mathematical function using the
proposed CS-RBF with scale parameters.

Fig. 2. Error distribution of the interpolated mathematical function using the
proposed CS-RBF without scale parameters.

these matrices. The error distribution of the interpolated func-
tions using the proposed CS-RBF with and without the scale pa-
rameter are shown, respectively, in Figs. 1 and 2, and the corre-
sponding performance comparison results are given in Table II.

From this case study, it is obvious that, even if a very simple
CS-RBF is used, the interpolation errors of the proposed
CS-RBF is very small, whereas those of the same one without
a scale parameter are too large for the interpolated function to
be used as a response surface when the function has significant
differences in the derivatives of different coordinate directions.
In other words, the example is a good demonstration of the
robustness and generality of the improved CS-RBF.

III. EFFICIENT OPTIMIZER BASED ON IMPROVED CS-RBF

A. RSM Based on Multistep CS-RBF Interpolations

Generally, the sample points of an objective function should
be distributed irregularly in the parameter space such that the
point densities are higher in regions where the local optima are
likely to exist. Thus, every CS-RBF should have the ability to
adjust its support according to the point density around it. Cor-
respondingly, the CS-RBFs are of the form for
( will be called the resolution parameter hereafter). For this
purpose, the multistep method as proposed in [7] is used in this
paper. Thus, one shall first decompose the set of sample points

into a nested sequence as follows:

(13)

with the subset of being given as

(14)

and the interpolation problem is then decomposed into steps
as described below.

TABLE II
PERFORMANCE COMPARISON OF DIFFERENT INTERPOLATION SCHEMES

Starting with , one will match the error function at the
th step as

(15)

on by computing the coefficients of the th interpolant

(16)

after the value of of the basis function has been chosen.
It follows naturally that:

(17)

The details of the numerical implementations of this multi-
step method are referred to [7]. This approach allows one to
choose a relatively large scale at the lowest level to capture the
overall behavior of the function, and by decreasing it during the
process of the procedure, finer and finer details of the function
are obtained step by step, thereby providing a hierarchical con-
struction procedure with reasonable computing time. The res-
olution parameter of the proposed CS-RBF at a substep is de-
termined in such a way that the influence of a CS-RBF covers
at least 20 sample points. Also, a cluster algorithm is used to
decompose the sample points into a nested sequence of subsets
[7].

B. Efficient Optimizer Based on the Improved CS-RBF

For the efficient solution of computationally heavy design
problems, an iterative procedure using the improved CS-RBF
based RSM and stochastic algorithms is proposed by the fol-
lowing steps.

Step 1) Generate a set of sample points; compute the ob-
jective function/derivative values using computa-
tionally heavy algorithms at these sample/boundary
points. Decompose the sample points into a nested
sequence of subsets.

Step 2) Reconstruct the optimal problem using the proposed
CS-RBF, and solve it using a stochastic method,
report the searched local/global optimal solutions.

Step 3) Solve directly the original optimal problem using
a deterministic method starting from the searched
local optimal solutions to find the final ones.

IV. NUMERICAL EXAMPLE AND CONCLUSIONS

To validate the proposed algorithm in solving computation-
ally heavy design problems, the proposed CS-RBF is used to
solve the Team Workshop problem 22 of a superconducting
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Fig. 3. Schematic diagram of the SMES.

TABLE III
FINAL OPTIMAL RESULTS SEARCHED BY USING THE PROPOSED METHOD

TABLE IV
FINAL OPTIMAL RESULTS SEARCHED BY USING THE PROPOSED METHOD

magnetic energy storage (SMES) configuration with eight free
parameters, as shown in Fig. 3. The problem is formulated as

minimize

subject to

(18)

where Energy is the stored energy in the SMES device,
is a measure of the stray

fields which is evaluated along 22 equidistant points of line
and line of Fig. 3 as follows:

(19)

In the numerical implementation, 2000 sample points are first
generated using a simulated algorithm on the original problem
in which the objective function is obtained using finite-element
simulations. These sampling points, together with 80 additional
ones which are uniformly distributed on the boundaries for
derivative fitting, and their function values are then used to
reconstruct the optimal problem using a CS-RBF

. The problem is then solved efficiently
using a tabu search method to find the close solutions of the
“optimal ones.” Finally, the simplex method is run directly on
the original problem to find the final solution. It is found that 35
iterations are required before the simplex algorithm converges,
and the final solutions are reported in Tables III and IV. The dis-
tributions of the computed magnetic flux density along line
and line is depicted in Fig. 4. It should be pointed out that the
dimensional sizes of different parameter spaces are all scaled to

Fig. 4. Distribution of the magnetic flux density along line A and line B.

in this case study in our numerical implementation. From
these numerical results, it is clear that the proposed fast optimal
algorithm can virtually reach the same optimal solutions as
those obtained by the Institut für Grundlagen und Theorie der
Elektrotechnik, Graz University of Technology (IGTE), which
validates the feasibility of the proposed method in solving
computationally expensive engineering design problems.

In summary, the proposed fast optimal algorithm is: 1) more
computationally efficient and robust when compared with glob-
ally supported RBF-based ones because of its compact support
nature and its ability to eliminate the ill-conditioned problems
of the interpolation matrices; 2) can obtain the “best” tradeoff
between accuracy and efficiency of an interpolation when com-
pared to available CS-RBF-based ones because of its multilevel
interpolation capability. Hence, the proposed method is not only
very promising for rapid and robust global optimizations for EM
design problems; it is also ideal for general engineering prob-
lems in which the objective/constraint functions must be deter-
mined by using computationally expensive algorithms such as
three-dimensional finite-element analysis.
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