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The compactly supported radial basis function (CS-RBF) is improved and used to design a new response surface model. The model is
incorporated into stochastic global optimal methods to develop a fast and efficient global optimal design strategy with the main target
to reduce the number of function calls that involve computationally heavy procedures such as, for example, the repetitive usage of finite
element analysis which is generally required in solving inverse problems. In order to employ a multistep method to automatically adjust
the support of the CS-RBF to realize the “best” tradeoff between computational efficiency and accuracy, a cluster algorithm is proposed
to decompose the sample points into a nested sequence of subsets. To validate the proposed algorithm, typical numerical results on two
different examples are reported.

Index Terms—Compact support, optimal design, radial basis function, response surface methodology.

I. INTRODUCTION

DESIGN problems in electrical engineering usually in-
volve elaborate and sophisticated computer simulations,

involving typically computationally heavy procedures such as
the repetitive usages of finite-element (FE) analysis in finding
solutions of electromagnetic fields. Also, due to the multimodal
and ill-conditioned natures of objective/constraint functions,
the incorporation of global optimizers such as simulated an-
nealing, genetic, evolutionary, tabu search, and particle swarm
optimization methods into the computer simulation algorithm
are inevitable. Compared to their deterministic counterpart
methods, it is well known that a serious drawback of all the
aforementioned stochastic optimal algorithms is their heavy
computation burdens, i.e., at least thousands of iterations are
generally required. The heavy computational burdens with
these computer simulations often make the stochastic op-
timal methods impractical or impossible in the study of some
practical design problems that require computationally heavy
procedures. However, the preclusive use of stochastic optimal
methods in the computer simulations for some design problems
will inevitably degrade the quality of the final solutions. Thus,
to reduce the number of function calls involving computa-
tionally heavy procedures such as the time-consuming FE
simulations without sacrificing the accuracy of the numerical
solutions, increasing efforts have recently been given to the
developments of response surface models or methodologies
(RSM) and their applications in the development of rapid
global optimizations of electromagnetic devices in the study of
computational electromagnetics [1]–[7].
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Mathematically, a response surface model is an interpola-
tion technique that fits a multidimensional function to its func-
tion values at some finite sample points on an arbitrary func-
tion domain. By using this technique, one will first discrete the
decision variables into a set of sample points and then com-
pute the function values at these points by using numerically
heavy techniques such as finite-element analysis. The optimal
problem is then reconstructed by using the selected response
surface model and solved efficiently. The important point to note
in this process is that the reconstructed RSM will calculate the
objective and constraint functions swiftly and efficiently. Conse-
quently, some computationally heavy design problems in elec-
trical engineering that could not be solved hitherto can now be
solved by means of these new techniques.

During the past two decades, the globally supported radial
basis functions (RBFs) have undergone intensive researches
and enjoyed considerable successes as a technique for multi-
variate interpolation of both scattered and grid data [8]–[10].
Unlike other interpolating functions, RBFs are not restricted
to problems with only uniform data spacing. Due to their
excellent interpolating performances, the globally supported
RBFs are widely used in computational electromagnetics for
reconstructing RSMs. However, although the RSMs based
on global RBFs serve as very simple means to fit functions
sampled at scattered data points in an arbitrary dimension,
they inevitably suffer from a drawback of requiring a full
interpolation matrix which is associated with all global inter-
polation methods, because the interpolated value is influenced
by the complete set of data. On the other hand, in view of the
approximation behavior, it is obvious that a higher density of
sample points should yield a better approximation and hence
it will be desirable to have as many sample points as possible.
The evaluation of the reconstructed function will then be
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dependent on a large number of points and is therefore very
computationally expensive. The resulting condition number of
the interpolation matrix is also very large, sometimes leading
to numerical singularity of the interpolation matrix [9]. To
circumvent the drawbacks associated with the application of
globally supported RBFs in the function fitting, the multilevel
method [11], the RBF modification of Shepard’s method [12],
and the CS-RBFs [13], among others, are potentially worthy of
further studies. Moreover, the CS-RBF approach is the simplest
one in numerical implementations.

On the other hand, to make the best use of the function values
of the limited number of sample points, the sample points should
be distributed in the feasible parameter space in an irregular pat-
tern so that the point densities are higher in regions where the
local optima are likely to exist. This kind of irregular sample
distributions renders the use of CS-RBFs with a fixed support
radius or seize infeasible, as the finding of the right scale be-
comes very awkward and difficult.

In this paper, the CS-RBF is improved and used to design a
RSM for constructing computationally heavy objective or con-
straints functions because of its simplicity in numerical imple-
mentation, as well as because of its efficiency and accuracy in
interpolations. To automatically adapt the support seize (scale
parameter) of the CS-RBFs according to the densities of the
sample points, a cluster algorithm to decompose the sample
points into a nested sequence of subsets, together with the multi-
level method, is proposed. The flexibility, accuracy, robustness,
and the merits as well as disadvantages of the proposed method
are elucidated by numerical results reported in this paper.

II. A CS-RBF BASED RSM

A. Radial Basis Function Interpolation

Although RBFs are extensively used in recent years in com-
putational electromagnetics, there is still a lack of a general in-
troduction in both terminology and mathematical consistency.
Let and suppose a scale function

be a continuous function with . A
radial basis function on is a function defined in the form

(1)

where is the Euclidean norm.
In general, the reconstruction of an objective or constraint

function on the basis of its values at a set
of sample points in terms of some
radial basis function is

(2)

The coefficients are determined from the following matrix
equation:

(3)

where is called the interpolation matrix.
Clearly, to guarantee that (3) is solvable, the interpolation

matrix must be invertible. A sufficient condition for the in-

terpolation matrix to be invertible is that the basis functions
is positive definite on . Unfortunately, not all

globally supported RBFs satisfy this condition, thus some poly-
nomials should generally be added to (2) for a mathematically
consistent implementation [14], although the interpolation form
of (2) is commonly used by fellow researchers in the computa-
tional electromagnetics community.

As described previously, the main drawback associated with
the use of globally supported RBFs is that the interpolation ma-
trix is full. Due to their inefficiency in dealing with a full ma-
trix, the sample points of the available RSMs could not exceed
an upper limit of, for example, a few thousands such as 2500 as
mentioned in [15]. Although this upper iteration limit is also the
limit of the repetitive usages of FE analysis in general for inverse
problems, this limit hinders the wide application of globally sup-
ported RBF based RSMs in electrical engineering. Moreover,
when the spacing between sample points is very small, the in-
terpolation matrix will become very ill-conditioned, leading to
serious numerical singularity and degradation in the numerical
accuracy. To overcome these problems, the CS-RBFs are im-
proved and used in this paper.

The pioneering work about CS-RBFs is attributed to Wu [16],
and its generalization reported by Wendland [13] in the mid-
1990s. These functions of CS-RBF are strictly positive definite
in for all values of less than or equal to some fixed value
and can be constructed with any desired degree of smoothness

. The family of CS-RBFs constructed by Wendland [13] is
used in this paper, since for a specific space dimension , these
functions posses the lowest positive degree among all piece-
wise polynomial compactly supported radial functions which
are positive definite on having a given order of smoothness.
Generally, a CS-RBFs is expressed in the form

(4)

where is a prescribed polynomial, denotes
equality up to a constant factor. For example

(5)

The details about the CS-RBFs on an arbitrary dimension
are referred to in [13]. It should be pointed out that a func-
tion which is positive definite in is also positive definite in

. It should also be emphasized that the interpolation
of CS-RBFs can be implemented in a simple way as formulated
in (2) without any additional polynomial term due to their pos-
itive infinite property.

B. A RSM Based on Improved CS-RBFs

As demonstrated in [17], although the interpolation of the ob-
jective/constraint function using (2) performs very well in the
inner region of the parameter space, it will give rise to significant
errors in the derivatives on the boundary. To solve this problem,
the information of the derivatives on the boundary of the param-
eter space is incorporated into (2), and the interpolation becomes

(6)
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where is the number of the total sample points, and is the
number of the boundary sample points used only for derivative
fitting.

The coefficients and are determined from the following
matrix equation:

(7)

where

(8)

Due to the compactly supported nature of the proposed
RBFs, the interpolation matrix is sparse. Thus, the addi-
tion or removal of some sample points causes only a local
change in the interpolation results. Further research shows that
the performances of the RBFs as formulated in (4) is often
overshadowed in many practical engineering design problems
that have large dimensions in which the objective/constraint
functions have significant differences in the “curvatures” of
directions of different decision variables. To address this issue
in real engineering problems, an improved CS-RBF with the
introduction of curvature parameters is proposed. Mathemati-
cally, the high-dimensional RBFs being proposed is defined as

(9)

where is the dimension of the decision parameters, is a
curvature parameter which controls the “curvature” of the re-
constructed function in the th direction at the point .

Furthermore, to guarantee good numerical performances for
the solution of (7), the sample points on the boundary for fitting
function values should generally be different from those for fit-
ting function derivatives. Thus, the density of the sample points
in the boundaries should be higher than that of the inner regions
in their neighborhoods. In numerical implementation, some of
these boundary points are used for fitting function values, while
the others are used for fitting derivatives.

C. A Cluster Algorithm to Decompose the Sample Points Into
a Nested Sequence of Subsets

As explained in the introduction, to make the best use of
the function values of the limited number of sample points,
the sample points should be distributed in the feasible param-
eter space in an irregular pattern such that the point densities
are higher in regions where the local optima are likely to exist.
Thus, every CS-RBF should have the ability to adjust its sup-
port according to the point density around it. Correspondingly,
the CS-RBFs are of the form for ( will be
called the scale parameter hereafter). When deciding the scale
parameter of a CS-RBF, one must keep in mind that: 1) if the
scale is too low, the interpolation will be very poor and 2) on

the other hand, if the scale is too large, the interpolation matrix
is no longer sparse enough to make its inversion efficient, and
this is indeed the main reason for choosing CS-RBFs.

Therefore, a reasonable selection of the scale parameter is the
best tradeoff of the accuracy and efficiency of the interpolation.
Consequently, a multistep method as proposed in [18] is used in
this paper. The multistep method is a hierarchical method which
uses interpolation levels based on a nested sequence decom-
position of subsets of the sample points. For the convenience of
understanding the cluster algorithm as proposed in this paper,
one shall recap the multistep methods as described in the fol-
lowing paragraphs.

Let be a set of sample points in a
domain with the corresponding function values

. One shall first decompose the set into a nested
sequence

(10)

of the subset of

(11)

and the interpolation problem is decomposed into steps by
the following steps.

Starting with , at the th step one matches the error
function

(12)

on by computing the coefficients of the th interpolant

(13)

after the scale of the basis function has been chosen.
It follows naturally that

(14)

This approach allows one to choose a relatively large scale at
the lowest level to capture the overall behavior of the function,
and by decreasing it during the process of the procedure, finer
and finer details of the function is obtained step by step, pro-
viding a hierarchical construction procedure with an acceptable
computing time. In other words, this approach allows one to ad-
just the support of the CS-RBFs according to the point density,
with a reasonable tradeoff between interpolation efficiency and
accuracy, that would still result in an improvement in the in-
terpolation quality. Thus, one needs to decompose the sample
points into a nested sequence of subsets. For this purpose, a
cluster algorithm is proposed.

First, the parameter space is divided into a discrete grid ac-
cording to a user predefined precision parameter. The discrete
grid is recorded as a binary string. When a sample point is gen-
erated, its location in the grid is determined by repeatedly bi-
secting the range of it in each direction and to identify the spe-
cific half range that contains the solution. The corresponding
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bit of the strings is then set to a logical 1. Once the total sample
points, , are generated and the binary string is assigned, the
maximum distances, , among every two
neighborhood points for each coordinate direction, will be eval-
uated and the algorithm will begin to decompose the sample
points into a nested sequence of subsets,

, by using the following algorithm.

Cluster Algorithm: Generation of the first subset . Use
the point of the first nonzero logical 1 in the left bottom of
the hyper-box as a vertex and taking as the edge length
of the th direction; construct a hyper-box; Propagate from the
vertexes of this hyper-box, construct, one by one, the defined
hyper-boxes until the nonzero logical 1s of the grid are covered
by the vertexes of the hyper-boxes; The subset is then con-
sisting of the vertex points of the total hyper-boxes whose values
in the binary string are logical 1s; Set the bits of the binary string
corresponding to points in to logical 2s;

Repeat

Step 1. Halve the edge length of the hyper-boxes of the
previous step to construct new hyper-boxes, find logical
1s of the vertex points, add the corresponding points to

and set the bit values of the binary string to logical 2s;
Step 2. Let . If the number of sample

points in is less than a threshold value prescribed
by the user, go to Step1; otherwise, continue the
decomposing process for next level;

Until all the bits of the binary string are equal to logical 2s or
0s.

III. A FAST OPTIMAL STRATEGY BASED ON COMBINATIONS OF

THE PROPOSED CS-RBF AND STOCHASTIC METHODS

To accelerate the speed of stochastic optimal algorithms for
solving computationally heavy design problems, a strategy
based on the combination of the improved CS-RBF based RSM
and stochastic algorithms is proposed and is described as:

Initialization: Generate a number of sample points; Compute
the objective/constraint function values using computationally
heavy algorithms such as FE analysis at these sample points;
determine the value of the derivatives of the objective/con-
straint functions on the boundary sample points. Decompose
the sample points into a nested sequence of subsets;

Step 1: Reconstruct the optimal problem using the multistep
method based on the proposed CS-RBF based RSM;

Step 2: Solve the reconstructed optimal problem by a
stochastic method, then report all the searched
local/global optimal solutions;

Step 3: Solve the original optimal problem by using a de-
terministic method starting from the newly searched
local optimal solutions to find the final ones.

As explained previously, to make the best use of the function
values of the limited number of sample points, the sample points
should be distributed in the feasible parameter space in an irreg-
ular pattern such that the point densities are higher in regions
where the local optima are likely to exist. To this end, different
adaptive approaches to add nodes in the optimization process
are proposed by fellow researchers [2], [7]. In this paper, a rela-
tively simple simulated annealing algorithm is proposed to run

first on the computationally heavy optimal problem to generate
the sample points because the simulated annealing algorithm
has some “intelligence” in generating new points, i.e., intensi-
fying points in regions where the local optima exist. Of course,
when the number of the total sample points is of the order of a
few hundreds, a well engineered simulated annealing algorithm
is unlikely to step into the stage of generating sampling points
“intelligently.” In such cases, one should deliberately design a
“less-well” engineered simulated annealing algorithm by setting
a relatively small control parameter (temperature) in the process
of generating sample points.

IV. NUMERICAL EXAMPLES

A. Validation

A mathematical function as formulated in (15) is deliberately
designed with a significant difference in the “curvatures” among
different variable directions to elucidate the interpolation power
of the proposed RSM using the improved CS-RBFs. Specifically

(15)

For comparative purpose, this mathematical function is re-
constructed by using three different response surface models,
i.e., the proposed CS-RBF based one, the proposed CS-RBF
based one with the scale parameter as defined in (9) being de-
liberately precluded, and a globally supported RBF based one.
The CS-RBF used in this paper is

(16)

and the globally supported RBF used is

(17)

To reconstruct this mathematical function, the simulated an-
nealing algorithm is first used to generate 495 sampling points
for fitting the function values, and 11 equidistance sampling
points in each boundary are used for fitting derivatives on the
boundary, resulting in a total number of 535 sample points. The
distribution of these 535 sample points in the feasible decision
variable space is depicted in Fig. 1. The mathematical function
is then reconstructed by using the aforementioned three RSMs,
respectively. To evaluate the performances of different RSMs,
the following deviances are used:

Deviance-A (18)

Deviance-B (19)

where and are, respectively, the close-form solution
and the predicated value of the test function at sample point
by using a RSM; is the number of observing points.

In the evaluation, 41 equidistance sampling points along each
coordinate direction (a total of 1681 observing points) are used
as observing points to calculate theses deviances, and the corre-
sponding numerical results of the deviances of the reconstructed
functions from the close-form expression are given in Table I.
Moreover, for illustration purposes, the reconstructed functions
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Fig. 1. Distribution of the 535 sample points for the mathematical test
function.

TABLE I
DEVIANCE COMPARISON OF DIFFERENT RSMS FOR THE TEST FUNCTION

Fig. 2. Reconstructed mathematical function using the proposed RSM.

using different RSMs as well as the close-form expression are
shown in Figs. 2–5.

From these numerical results, it is clear, at least for this test
function, that:

1) Introducing a scale parameter into the CS-RBF based
RSM will significantly improve the performance of the
RSM model when the reconstructed function has signifi-
cant “curvatures” in different coordinate directions.

2) The performances of the proposed CS-RBF based RSM
are comparable to those of the specific globally supported
RBF based one but the computational efficiency of the
former is much higher than that of the later when the
number of simple points is large.

3) In addition to attractive performances in terms of de-
viances (numerical accuracies), the proposed RSM

Fig. 3. Reconstructed mathematical function using the proposed RSM with
the scale parameter being deliberately precluded.

Fig. 4. Reconstructed mathematical function using the specific globally
supported RBF.

Fig. 5. Illustration of the close-form mathematical function.

is also very robust in producing the stationary points
(local/global optima) as demonstrated by the figures.
This merit is the most important feature when applying
RSM to solve a practical engineering design problem.
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Fig. 6. Mesh used for finite-element analysis.

B. Case Study

To test the feasibility of the proposed fast optimal strategy in
solving computationally heavy design (inverse) problems, the
torque ripple minimization problem of a prototype squirrel cage
induction motor drive fed from a PWM inverter at rated oper-
ating conditions as reported in [19] is selected as the case study.
Mathematically, this optimal problem is formulated as

(20)

where is the number of switching angles within one quarter
period of the PWM inverter; is the th switching angle; is
the th component of the electromagnetic torque; ,
and are related to the switching frequency of the power
electronic elements and the operating conditions.

To consider the nonlinear property of the magnetic materials
and the relative movement between the stator and the rotor,
the iterative procedure based on a time-stepping (complex) FE
method coupled with the external circuit model of [19] is used
to compute the steady state electromagnetic fields and the per-
formance criteria.

As outlined in the previous section, in the numerical im-
plementation of the proposed strategy, the following steps are
executed.

1) The simulated annealing algorithm is first used to gen-
erate 1200 sample points in the feasible regions of
decision variables in such a way that the points are
densely populated around the local optimal points. More-
over, 68 sample points which are uniformly distributed on
the boundaries for derivative fitting are also desired. The
corresponding objective/constraint function (including
derivatives of those boundary points) values are deter-
mined using the computationally heavy approach of the
time-stepping (complex) FE method coupled with the
external circuit model. The mesh used in the FE analysis
is given in Fig. 6.

2) The optimal problem is then reconstructed using the pro-
posed CS-RBF based RSM and solved by using a tabu

TABLE II
PERFORMANCE COMPARISON OF THE PROPOSED AND TRADITIONAL

APPROACHES FOR THE CASE STUDY

Fig. 7. Steady-state electromagnetic torques. (a) and (b) are, respectively, the
torque before and after the optimization of the proposed strategy.

search algorithm to find the “nearly” optimal solution.
The improved tabu search method as proposed by the au-
thors is used in this phase, and the details about the algo-
rithm are referred to in [20]. The CS-RBF used in this step
is a positive definite one with 4 smoothness on ,
and is defined as

(21)

The iterative number used by the tabu search method
on the reconstructed optimal problem is 9052.

3) Finally, a simplex method is run directly on the original
computationally heavy design problem by starting from
these searched “nearly” optimal solutions to find the final
optimal solution.

For the performance comparison, this problem is also solved
directly by using a traditional strategy, i.e., the computationally
optimal problem is directly solved by the tabu search method.
The final optimal solutions of a prototype PWM inverter-fed
motor with six switching angles within one quarter period of
the PWM inverter obtained by different methods, together with
their performance comparison, are given in Table II. The profiles
of the electromagnetic torques and phase currents of the stator
before and after the optimizations are shown in Figs. 7 and 8,
respectively.

From these numerical results, it is obvious that:
1) the final optimal results obtained by the two different op-

timal approaches are nearly the same;
2) the number of the FE analysis of the proposed method is

less than one fifth of that needed by the chosen stochastic
optimal method commonly used by fellow researchers;

3) an additional searching process of the improved tabu
method is required on the reconstructed optimal problem
for the proposed rapid optimal strategy to reach the
final solutions, resulting in an iterative cycle with 9052
iterations.
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Fig. 8. Stator current profiles of the machine. (a) and (b) are, respectively, the
torque before and after the optimization of the proposed strategy.

However, since the CPU time for a function call on the recon-
structed problem is negligible compared to that of a function call
in which the FE simulation is involved, the enhancement of the
computational efficiency of the proposed optimal scheme is sig-
nificant. Therefore, these numerical results confirm that the pro-
posed approach is very efficient in solving optimal problems in
which the objective/constraint function must be determined by
means of computationally heavy approaches such as the 3-D FE
analysis. In short, the proposed work provides a reliable alterna-
tive for fast and efficient optimizations of complex engineering
design problems.

V. CONCLUSION

A new response surface methodology based on an improved
compactly supported radial basis function which gives the
available RBFs a reasonable compromise on computation
efficiency and accuracy is proposed. When the CS-RBF is
combined with stochastic global optimal methods, an efficient
and accurate global optimizer is realized. The issues associ-
ated with its numerical implementation such as the adaptive
regulation of the scale parameter of the CS-RBFs are also fully
addressed. By way of comparison and testing, the accuracy,
efficiency, and the advantages of the proposed algorithm for
solving engineering inverse problems is positively confirmed.
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