View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by PolyU Institutional Repository
IEEE TRANSACTIONS ON MAGNETICS, VOL. 38, NO. 2, MARCH 2002 1033

Integrated RBF Network Based Estimation Strategy
of the Output Characteristics of Brushless DC Motors

S. L. Ho, Minrui Fei, W. N. Fu, H. C. Wong, and Edward W. C. Lo

~ Abstract—The circuit-field coupled model is very accurate butit  also produce results much faster when compared with the com-
:;Sf E?gﬂ?etgg%réa#])&gfsﬁlf;]egsc;grigufe)ggﬁl éht?\ g;ﬁgléﬁg’;rfg;rgigtrfa_ plicated numerical methods. Nonetheless, this technique is still
tion strategy based on an integrated radial basis funétion (RBF) n Its. early de\_/elopme.nt_ stage. The choice O_f the ANN structure
network is proposed in this paper. The strategy introduces new and |_ts assomate_d training procedures for different types of mo-
Conceptions of the network group that are being realized by three torsis thus a t0p|Ca| I’eseal‘ch area for fe”OW CO'researCherS.
steps, namely: 1) an adaptive RBF network is proposed for mod-  In this paper, an integrated radial basis function (RBF) net-
g“fﬁlg tﬂe ct:)enter netwokrkf 2) tdhg RBF networkdgg)g'r:) is then ll(lzed t% work trained by the computational results from the circuit-field
uild the base networks; and 3) an integrate network based .q,pled model for a multi-pole brushless dc motor is presented.
on the base network group is used subsequently to predict the non- . - .
trained output characteristics of the brushless dc motor. The proposed estimation str_ategy with & cent_er network and a
Index Terms—ANN, brushless dc motor, finite element, non- base network group has a high accuracy and it can produce re-
linear. radial basis function. ' ’ sults very quickly when compared to algorithms using the con-
' ventional field computation methods and the back propagation
(BP) network-based strategies [5]. Hence, the integrated RBF
. INTRODUCTION network can be applied to the real-time control and the optimum

HE MATHEMATICAL models of electric machines can design study of brushless dc motors with the same accuracy as
T be traditionally separated into circuit models and circuithat obtained in magnetic field computations using finite-ele-
field coupled models. The circuit model has constant paramet8#§nt modeling.
and can be solved quickly, but its accuracy is poor as the electro-
motive forces and inductances are dependent on the operajing zcyr-FiELD CouPLED MODEL FORTRAINING NETWORK
conditions of the motor [1], [10]. In the circuit-field coupled
model, the circuit equations of the stator windings and the mag-A circuit-field coupled time stepping finite-element method
netic field are coupled together by the flux-linkages and the§eEM) is used to simulate the operation of brushless dc mo-
equations are then solved simultaneously. When the impres#i@ [6]. The circuit equations are coupled to the voltage driven
stator voltages are known, the stator phase currents, the malgM of the motor, and hence the stator windings can be fed with
netic field distribution, and the output torque can be computeiie output voltages directly from the inverter. With the FEM
When the torque balance equation is coupled into the systédel, the effects of high-order harmonics, saturations, and rel-
equations, the dynamic performance of the motor can be co@tive movements of tooth-slots can all be directly included into
puted by using the time stepping method [2]. The circuit-fielthe system equations.
coupled model is very accurate but it is computationally inef- The integrated RBF network is only used to represent the re-
ficient. Therefore, the circuit-field coupled model is limited tdationship among stator voltages and currents, and to calculate
the application of off-line simulations. Thus, in real-time conthe output torque. When the magnitude of the impressed stator
trol, the circuit models are extensively used. voltageu,,, the normalized stator voltages, vz, anduc, the

However, it is now possible to perform the simulations aniptor positiond, and the rotor speed are known, the algorithm

also the real time control of electrical machines by using artvould then compute the stator phase curignt s, ic:, and the
ficial neural network (ANN) based techniques [3], [4]. Such autput torquel’. The nonlinear relationships of the inputs and
system does not require an analytical model and is not restrictbé outputs can be expressed as
by the assumptions in the conventional circuit models. It can

iA = fA(U'Av up, uc, 97 W, U’Tn)
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cance! addition

Fig. 1. Model of the radial basis function (RBF) network.

I1l. RBF NETWORK PRINCIPLE » Wi

The RBF network has a linear output layer and a simple strch- 5 Model of the adantive RBE network
ture with a nonlinear hidden layer that constructs the local ap'9' - vodetorihe adaptive network

proximations which correspond to the nonlinear input—output

mapping as given in (1) and (2) and Fig. 1. If the iterative process is to be stabilized, one sets
The base function of the hidden layer is defined as th#nm—oci(k) = 0. Moreover, the stability condition is
Gaussian base function satisfied wherjl — A\| < 1,i.e.,, 0< A < 2. In order to meet
_lle=¢51% 2 the monotonic attenuation condition of the changes;iit),
Oj(z) = ¢ 7 () onehas & A < 1.
wherec; is the center point of thg base function and; is the
selectable parameter controlling the width of the base function IV. ADAPTIVE RBF NETWORK PRINCIPLE

around the center point. For the inpu £™, only a few nodes Indeed, the approximating characteristics of the RBF network

near the center poir; are active. The nonlinear mapping fron]1 : X
. . : . ave a higher accuracy and an acceptable speed of computation
x to O,(z) is thus realized in the hidden layer.
The linear output layer realizesalinearinput—outputmappir\{vhen compared to that of thg BP networ!<. However, the rela-
. t%ely small number of nodes in the RBF hidden layer normally
as follows: L
" has a low accuracy, and hence one may not be able to minimize
Yy = Z w;;0;(x) ) the root-mean-square error_functlon. Consequently, the adaptive
= RBF network as proposed is used.
" In Fig. 2, J is the root-mean-square error function afftlis
wij(k + 1) ={ wij () +X [yf — vi(k)] O5(x) Z 0]2.(3;) the allowable maximum va!ue of. The bIockR refers to the
=t process of getting the functioh The block<?> is the process
(5) for comparing/ with J¢ to make the following decisions.
If J > J¢, thenn = n41 (the number of nodes in the hidden
layer is increased);
If J < J%andT =0, thenT =7 + 1 andn = n + 1 (the
initial state of the countéer’ is 0 and the number of nodes in the
hidden layer is increased).
If J < J¢andT > 0, thenn = n — 1 (the number of nodes
the hidden layer is reduced, and the adaptive process of RBF
is complete).
Consequently, the number of nodes in the hidden layer is de-
AN N g) Pbendenton the error functiahand it will be varied from a spe-
ci(k) = i — wi(k). 6 =R . )
cific minimum to a maximum. As the network with an adap-
From (4), one has tive structure is always designed to satisfy a specific accuracy,
n such algorithms are thus commonly employed to model a spe-
ei(k) =yl = > wi;(k)0;(x) (7) cial point network.
j=1

where
w;; linking weight between the®;(z) node in the hidden
layer and they; node in the output layer;
y¢ desired network output;
A learning rate.
When 0< A < 2, the convergence of the recurrence equati%\
(5) is assured as described below.
First, let

Substituting (6) into (5) and then into (8) yields V. RBF NETWORK GROUP PRINCIPLE

Ac;(k) = —Xei (k). 9) In (1) and (2), the common mappings is based on the rela-
tionship of the normalized stator input voltagg, v g, uc, the

Then one obtains - O
rotor positiond, and the outputs of stator phase currenti g,

Aci(k) = — Z Aw;;(k)O;(x) (8) ic,as well as the motor torqu€ at an impressed stator voltage
=1 with a magnitude of.,,, = u,,,. and a rotor speed = w,..
that is According to experimental results and the experiences of the
authors, the outputs,, g, ic, andZ are dependent on the
eilk+1) = (1= Nei(k). (10) inputsu, ug, uc, 4, um, andw in modes which are highly
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. . . ime- ing FEM com ions. With th me hi n layer,
nonlinear. Within a limited range, the changes of the curret e-stepping computations. With the same hidden laye

. . L {He integrated RBF network does not require any training data. It
and torque withy,,, or w are, to a first order of approximation,
mostly linear, as can be seen in Figs. 3 and 4, in which the d
are generated from FEM computations.
In order to increase the learning speed of the RBF netw
and improve the generalization ability of the integrated RB

only needs the weighting matrices of the linear layer of the RBF
zﬁt@iwork group that are used as the integrated network bases.

The integrated algorithm of the linear weighting matrices

sed on the network bases can be expressed as

networks, the concept of the RBF network group is proposed.(I) N *

The key of this new concept is that, based on the approximatg;” = Zﬂkwij 11)
piecewise-linear assumption within a certain range, one should k=1

model the center pointyf, = wum. andw = w,.) by orga- Wik — We N2 Uik — Ume \

nizing the RBF network adaptively, and then one could model#* ~ <T> - <d—2>

the adjacent and discrete poinis,{ = b1, Ump2, - - -, and ) )

Wm = Wmbl, Wmb2, -+ ) Dy the approximate RBF networks - exp <_ [(w — wm) n <um — Umbk> ]) (12)
which have the same number of hidden layer nodes and the w u

same parameters as the Gaussian base functions. The only dif- .
ference between the proposed algorithm with the RBF netwo‘w1ere the supersc_rlpII refers to the network o_f current output
is in the linear layer. Hence, the proposed RBF network groﬁ’f) torque outputk_ is the number _Of networks_m the RBF ne_t-
would also have the fast learning power of the approximate R rk group, andt is the center point networkz l.e., the "?‘O!ap“"e
networks and a good convergence characteristic. RBF nenNorkdl, d2 apdaw, Tu a.re undetermlngd coeficients;
the exponential function determines the weighting of the mutual
influence between the voltage magnitude and the rotor speed.
The larger the values @f ords, the smaller are their influences
Both the adaptive RBF network for modeling the center poiim the integrated RBF network. On the other hand, the larger the
and the RBF network group for modeling the adjacent pointalues ofs,, or ¢, the bigger are their influences in the inte-
are dependent on the training data from the circuit-field couplegated RBF network.

VI. INTEGRATED RBF NETWORK PRINCIPLE
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W, 12 V, 22 pole, 24 stator slots, with Nd—Fe—B magnets). In
the FEM computation, the FEM mesh has about 6000 nodes.
According to the learning data from the circuit-field coupled
time-stepping FEM computation, three types of experiments are
designed. It can be shown that fey,. = 10 V andw,. = 220

rpm, any computation accuracy of currents and torques can be
realized by using the adaptive RBF network. Moreover, if the
root-mean-square error of the adaptive RBF network is specified
to be less than 0.01 and if the node numhes fixed at 159

and 239 for, respectively, the currents and the torques, the error
of the RBF network group can be trained to be less than 0.03.
Lastly, if the integrated RBF network is synthesized from the
network bases from the RBF network group, it can be shown
that the target error of 0.05 can be reached within the range of

Fig. 5. Stator phase current obtained from the FEM computation and the€ (200 — ¢,240+¢) rpm andu,,, € (9—¢,114+¢) V. Figs. 5

integrated RBF network.
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and 6 are only the illustrations in the range.

VIIl. CONCLUSION

In order to resolve the computational inefficiency of the cir-
cuit-field coupled model, an estimation strategy based on an
integrated RBF network is proposed. The experimental results
show that the integrated RBF network is capable of fast learning,
e.g., the training time of the center network is about-925
s and the training time of each base network of RBF network
group is about 0.43 s. The real estimation or mapping takes
about 1.8 ms on a PC 330-MHz computer. Consequently, the
proposed estimation strategy should be very useful for the pre-
cision real-time control or optimal design of brushless dc motors
and many other applications.

Fig. 6. Output torque using the FEM computation and the integrated RBF

network.
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