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Integrated RBF Network Based Estimation Strategy
of the Output Characteristics of Brushless DC Motors

S. L. Ho, Minrui Fei, W. N. Fu, H. C. Wong, and Edward W. C. Lo

Abstract—The circuit-field coupled model is very accurate but it
is computationally inefficient in studying the output performance
of brushless dc motors. In order to resolve the problem, an estima-
tion strategy based on an integrated radial basis function (RBF)
network is proposed in this paper. The strategy introduces new
conceptions of the network group that are being realized by three
steps, namely: 1) an adaptive RBF network is proposed for mod-
eling the center network; 2) the RBF network group is then used to
build the base networks; and 3) an integrated RBF network based
on the base network group is used subsequently to predict the non-
trained output characteristics of the brushless dc motor.

Index Terms—ANN, brushless dc motor, finite element, non-
linear, radial basis function.

I. INTRODUCTION

T HE MATHEMATICAL models of electric machines can
be traditionally separated into circuit models and circuit-

field coupled models. The circuit model has constant parameters
and can be solved quickly, but its accuracy is poor as the electro-
motive forces and inductances are dependent on the operating
conditions of the motor [1], [10]. In the circuit-field coupled
model, the circuit equations of the stator windings and the mag-
netic field are coupled together by the flux-linkages and these
equations are then solved simultaneously. When the impressed
stator voltages are known, the stator phase currents, the mag-
netic field distribution, and the output torque can be computed.
When the torque balance equation is coupled into the system
equations, the dynamic performance of the motor can be com-
puted by using the time stepping method [2]. The circuit-field
coupled model is very accurate but it is computationally inef-
ficient. Therefore, the circuit-field coupled model is limited to
the application of off-line simulations. Thus, in real-time con-
trol, the circuit models are extensively used.

However, it is now possible to perform the simulations and
also the real time control of electrical machines by using arti-
ficial neural network (ANN) based techniques [3], [4]. Such a
system does not require an analytical model and is not restricted
by the assumptions in the conventional circuit models. It can
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also produce results much faster when compared with the com-
plicated numerical methods. Nonetheless, this technique is still
in its early development stage. The choice of the ANN structure
and its associated training procedures for different types of mo-
tors is thus a topical research area for fellow co-researchers.

In this paper, an integrated radial basis function (RBF) net-
work trained by the computational results from the circuit-field
coupled model for a multi-pole brushless dc motor is presented.
The proposed estimation strategy with a center network and a
base network group has a high accuracy and it can produce re-
sults very quickly when compared to algorithms using the con-
ventional field computation methods and the back propagation
(BP) network-based strategies [5]. Hence, the integrated RBF
network can be applied to the real-time control and the optimum
design study of brushless dc motors with the same accuracy as
that obtained in magnetic field computations using finite-ele-
ment modeling.

II. CIRCUIT-FIELD COUPLEDMODEL FORTRAINING NETWORK

A circuit-field coupled time stepping finite-element method
(FEM) is used to simulate the operation of brushless dc mo-
tors [6]. The circuit equations are coupled to the voltage driven
FEM of the motor, and hence the stator windings can be fed with
the output voltages directly from the inverter. With the FEM
model, the effects of high-order harmonics, saturations, and rel-
ative movements of tooth-slots can all be directly included into
the system equations.

The integrated RBF network is only used to represent the re-
lationship among stator voltages and currents, and to calculate
the output torque. When the magnitude of the impressed stator
voltage , the normalized stator voltages , , and , the
rotor position , and the rotor speedare known, the algorithm
would then compute the stator phase current, , , and the
output torque . The nonlinear relationships of the inputs and
the outputs can be expressed as

(1)

(2)

By calling the time-stepping FEM repeatedly for a given set
of ( , , , , , ), a set of profiles of ( , , , )
can be obtained. These computed data are used as the training
patterns for training the integrated RBF network in the proposed
algorithm.
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Fig. 1. Model of the radial basis function (RBF) network.

III. RBF NETWORK PRINCIPLE

The RBF network has a linear output layer and a simple struc-
ture with a nonlinear hidden layer that constructs the local ap-
proximations which correspond to the nonlinear input–output
mapping as given in (1) and (2) and Fig. 1.

The base function of the hidden layer is defined as the
Gaussian base function

(3)

where is the center point of the base function and is the
selectable parameter controlling the width of the base function
around the center point. For the input , only a few nodes
near the center point are active. The nonlinear mapping from

to is thus realized in the hidden layer.
The linear output layer realizes a linear input–output mapping

as follows:

(4)

(5)

where
linking weight between the node in the hidden
layer and the node in the output layer;
desired network output;
learning rate.

When 0 2, the convergence of the recurrence equation
(5) is assured as described below.

First, let

(6)

From (4), one has

(7)

Substituting (6) into (5) and then into (8) yields

(9)

Then one obtains

(8)

that is

(10)

Fig. 2. Model of the adaptive RBF network.

If the iterative process is to be stabilized, one sets
. Moreover, the stability condition is

satisfied when , i.e., 0 2. In order to meet
the monotonic attenuation condition of the changes in ,
one has 0 1.

IV. A DAPTIVE RBF NETWORK PRINCIPLE

Indeed, the approximating characteristics of the RBF network
have a higher accuracy and an acceptable speed of computation
when compared to that of the BP network. However, the rela-
tively small number of nodes in the RBF hidden layer normally
has a low accuracy, and hence one may not be able to minimize
the root-mean-square error function. Consequently, the adaptive
RBF network as proposed is used.

In Fig. 2, is the root-mean-square error function andis
the allowable maximum value of. The block refers to the
process of getting the function. The block ? is the process
for comparing with to make the following decisions.

If , then (the number of nodes in the hidden
layer is increased);

If and , then and (the
initial state of the counter is 0 and the number of nodes in the
hidden layer is increased).

If and , then (the number of nodes
in the hidden layer is reduced, and the adaptive process of RBF
is complete).

Consequently, the number of nodes in the hidden layer is de-
pendent on the error functionand it will be varied from a spe-
cific minimum to a maximum. As the network with an adap-
tive structure is always designed to satisfy a specific accuracy,
such algorithms are thus commonly employed to model a spe-
cial point network.

V. RBF NETWORK GROUPPRINCIPLE

In (1) and (2), the common mappings is based on the rela-
tionship of the normalized stator input voltage, , , the
rotor position , and the outputs of stator phase current, ,

, as well as the motor torqueat an impressed stator voltage
with a magnitude of and a rotor speed .

According to experimental results and the experiences of the
authors, the outputs , , , and are dependent on the
inputs , , , , , and in modes which are highly
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(a)

(b)

Fig. 3. Dynamic relationship ofi andu in one period. (a)i �u �time

3-D chart. (b)i � u 2-D chart.

nonlinear. Within a limited range, the changes of the current
and torque with or are, to a first order of approximation,
mostly linear, as can be seen in Figs. 3 and 4, in which the data
are generated from FEM computations.

In order to increase the learning speed of the RBF network
and improve the generalization ability of the integrated RBF
networks, the concept of the RBF network group is proposed.
The key of this new concept is that, based on the approximate
piecewise-linear assumption within a certain range, one should
model the center point ( and ) by orga-
nizing the RBF network adaptively, and then one could model
the adjacent and discrete points ( , and

) by the approximate RBF networks
which have the same number of hidden layer nodes and the
same parameters as the Gaussian base functions. The only dif-
ference between the proposed algorithm with the RBF network
is in the linear layer. Hence, the proposed RBF network group
would also have the fast learning power of the approximate RBF
networks and a good convergence characteristic.

VI. I NTEGRATED RBF NETWORK PRINCIPLE

Both the adaptive RBF network for modeling the center point
and the RBF network group for modeling the adjacent points
are dependent on the training data from the circuit-field coupled

(a)

(b)

Fig. 4. Dynamic relationship ofT and! in one period. (a)T � u � time

3-D chart. (b)T � u 2-D chart.

time-stepping FEM computations. With the same hidden layer,
the integrated RBF network does not require any training data. It
only needs the weighting matrices of the linear layer of the RBF
network group that are used as the integrated network bases.

The integrated algorithm of the linear weighting matrices
based on the network bases can be expressed as

(11)

(12)

where the superscript () refers to the network of current output
or torque output, is the number of networks in the RBF net-
work group, and is the center point network, i.e., the adaptive
RBF network. and are undetermined coefficients;
the exponential function determines the weighting of the mutual
influence between the voltage magnitude and the rotor speed.
The larger the values of or , the smaller are their influences
in the integrated RBF network. On the other hand, the larger the
values of or , the bigger are their influences in the inte-
grated RBF network.
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Fig. 5. Stator phase current obtained from the FEM computation and the
integrated RBF network.

Fig. 6. Output torque using the FEM computation and the integrated RBF
network.

Because of the convergence of the integrated network bases,
the nontrained integrated RBF network must be convergent by
virtue of the Superposition Theorem. The analysis is given as
follows.

With the assumption as mentioned previously, one has the
same hidden layer in the RBF network group, that is

(13)

According to (4), (11), and (13), one has

(14)

This will obviously satisfy the superposition and convergence
requirements as is con-
vergent in the training when in (5).

VII. EXAMPLES

The proposed strategy has been used to establish an integrated
RBF network model of a multi-pole PM brushless dc motor (200

W, 12 V, 22 pole, 24 stator slots, with Nd–Fe–B magnets). In
the FEM computation, the FEM mesh has about 6000 nodes.
According to the learning data from the circuit-field coupled
time-stepping FEM computation, three types of experiments are
designed. It can be shown that for 10 V and 220
rpm, any computation accuracy of currents and torques can be
realized by using the adaptive RBF network. Moreover, if the
root-mean-square error of the adaptive RBF network is specified
to be less than 0.01 and if the node numberis fixed at 159
and 239 for, respectively, the currents and the torques, the error
of the RBF network group can be trained to be less than 0.03.
Lastly, if the integrated RBF network is synthesized from the
network bases from the RBF network group, it can be shown
that the target error of 0.05 can be reached within the range of

rpm and V. Figs. 5
and 6 are only the illustrations in the range.

VIII. C ONCLUSION

In order to resolve the computational inefficiency of the cir-
cuit-field coupled model, an estimation strategy based on an
integrated RBF network is proposed. The experimental results
show that the integrated RBF network is capable of fast learning,
e.g., the training time of the center network is about 92225
s and the training time of each base network of RBF network
group is about 0.43 s. The real estimation or mapping takes
about 1.8 ms on a PC 330-MHz computer. Consequently, the
proposed estimation strategy should be very useful for the pre-
cision real-time control or optimal design of brushless dc motors
and many other applications.
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