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New Iterative Method for Three-Dimensional
Eddy-Current Problems

Heyun Lin, Siu-Lau Ho, Eric Ka-Wai Cheng, and S. Y. Yang

Abstract—A new iterative method for computing three-dimen-
sional steady-state magnetic fields with eddy currents is presented.
By using the proposed method, the numerical computation of eddy
current fields can be divided into two successive stages on flux den-
sity and eddy current calculations. The convergent field solution
is then obtained iteratively. The coefficient matrices arising from
the proposed method contain relatively few variables and are real.
As these matrices need to be eliminated only once in the iteration
procedure, the requirement upon the computer resource can be
reduced substantially. The convergence of the presented iterative
method is also discussed in detail. The instructions for choosing the
penalty factor and relaxation factor in order to obtain the globally
convergent potentials with sufficiently accurate field solutions are
also given. Some sample calculations show that the new iterative
method is highly computationally efficient for studying large-scale
unbounded eddy-current problems in engineering.

Index Terms—Eddy current, FEM, iterative method, open
boundary problem.

I. INTRODUCTION

T HE COMPUTATION of three-dimensional (3-D) eddy-
current fields has recently become the subject of extensive

researches by a lot of numerical analysts studying electromag-
netic field problems. Many efficient methods and techniques
are now available for finding the solutions of various practical
eddy-current problems. Most methods have their characteristic
advantages and disadvantages. Experience has shown that the
type of problem generally dictates which method is most ap-
propriate for that specific investigation.

For typical 3-D eddy-current problems, the conventional
, and formulations are the two most frequently used

algorithms. No matter whether the formulation on or
is used, both the vector and scalar potentials should be

introduced, at least in the conducting region [1], [2]. As a result,
there are four degrees of freedom per node of the finite-element
mesh if nodal finite elements are used. Thus, the boundary
value problem as prescribed for the vector and scalar potentials
becomes very complex. Besides, a complex linear equation
system, which contains large number of variables having a
large bandwidth, has to be solved when finding the solutions
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Fig. 1. Typical eddy-current problem.

of the potentials. Hence, a large amount of computer resource
will be required to store and/or eliminate the coefficient matrix,
especially for large scale unbounded engineering problems.

The aim of this paper is to present a new iterative method that
is suitable for studying large scale unbounded 3-D eddy-current
fields economically. As the proposed method only requires a
fraction of the computer resources that would otherwise be re-
quired, it would be a very useful algorithm for design engineers
studying practical electromagnetic field problems [3]. The pro-
posed method has been used to study an engineering-oriented
loss model, and the computed results are compared and vali-
dated with experimental measurements as well as numerical re-
sults obtained by using the formulation.

II. M ATHEMATICAL MODEL OF THEITERATIVE METHOD

Consider a typical eddy-current problem as shown in Fig. 1,
the entire field domain is denoted by. It consists of a source
current region , an eddy-current region with nonzero con-
ductivity and a surrounding current free region . The
boundary of as denoted by is the interface between the
conducting and nonconducting regions.

In the source region , an electric vector potential is
defined to describe the known current density source and it can
be analytically or numerically calculated from

(1)

After setting an initial value for the eddy-current density in
, the other electric vector potential can similarly be intro-

duced to describe the eddy-current density

(2)

Thus, a magnetic scalar potentialcan be employed to com-
pute the magnetic field in by defining

(3)

where denotes and in and , respectively. is
equal to zero in .
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TABLE I
ITERATION NUMBERS OFDIFFERENTPENALTY FACTOR �

In terms of the Gauss law, the differential equations as well
as the boundary conditions describing the magnetic fields are

(4)

The solution of the above boundary value problem is, in fact,
very similar to that obtained in the analysis of magnetostatic
fields with the exception that and are complex variables.

is a constant.
By solving the above boundary value problem, the magnetic

field, which is induced by the source current and the assumed
eddy current, can be obtained. Furthermore, the eddy-current
distribution induced by this varying magnetic field can be cal-
culated in terms of Faraday’s law. In the eddy-current region,
the electric vector potential satisfies the following:

(5)

Considering the conservation of charges, one has the
boundary value problem for the electric vector potential

(6)

where is the penalty factor, which is generally taken within
[0, 1]. Note that a penalty term is appended in the governing
equation in order to ensure the uniqueness of the electric vector
potential and the convergence of the iterative algorithm.

A new eddy-current distribution can be obtained by solving
the above boundary value problem, which is used to repeat the
computation of the magnetic field and eddy current until all the
field quantities converge.

In the iterative method as described above, two relatively
simple boundary value problems corresponding to the magnetic
scalar and electric vector potentials, respectively, are employed.
For 3-D boundary value eddy-current field problems, the con-
ventional method is to solve the hybrid vector and scalar poten-
tials simultaneously. Thus, the most distinct advantage of the
proposed iterative method is that relatively fewer computer re-
sources, which include both the computing time and memory
occupation, are required when compared to that of the conven-
tional algorithms. The reasons for such saving is because not
only the number of the linear equations in the new method is
less than that in the conventional methods, but also the coeffi-
cient matrices being drawn up in the new method are real instead
of complex.

III. D ISCUSSION ON THECONVERGENCE

From the discussion in the previous section, it is easy to see
that the iterative method is actually based on the conventional

formulation. Substituting the solution of the first
boundary problem (4) into the second one (6), one obtains the
following governing equation of the electric vector potential in
iterative form:

(7)

where stands for th iteration, is the eddy-current fields in-
duced by the varying magnetic fields of (4), i.e., the solution
of (6), is the predetermined eddy-current fields obtained by
solving (1) and (2).

It is obvious that the convergence of the iteration depends on
the property of the stiff matrix when applying the finite-element
method to discretize (6).

To guarantee the global convergence of iterations is equiva-
lent to ensure the uniqueness of the electric vector potential.
Furthermore, it is worth noting that, in general, the curl–curl
equation results in numerical instability in finite-element com-
putations. An effective means to alleviate such difficulty is to en-
force a gauge on the vector potential to ensure its convergence.
In the proposed method, the Coulomb gauge, which satisfies the
penalty function technique, is employed. It can be easily proven
that the solution of the boundary value problem (6) yields unique
potentials satisfying the differential equations and the boundary
conditions pertaining to the electric vector potentialand the
magnetic scalar potential of the formulation [4].

The effect of the penalty term in (6) on the convergence of the
iterative algorithm has been investigated by some sample calcu-
lations. The entries in Table I show that the number of iterations
varies with the penalty factor in the calculations (the relax-
ation factor ) of the example defined in Section V. It
can be found from Table I that the number of iterations decreases
monotonically with an increase of from the range of zero to
one. In particular, none of the convergent solutions can be ob-
tained in the calculations of the four models if the penalty factor

is set to zero, i.e., when the Coulomb gauge of the electric
vector potential is removed from the boundary value problem
(6), the algorithm fails to converge.

It is also worth noting that the compliance of the Coulomb
gauge by the penalty function technique is relatively “weak.” In
fact, it is impossible to make exactly equal to zero in
numerical computations. Thus, whenincreases, the weighted
residual of the penalty term in (6) increases accordingly. As a re-
sult, the accuracy of the field solution decreases with an increase
in the penalty factor [5]. Therefore, when choosing the penalty
factor, due considerations should be given to two aspects: con-
vergence and solution accuracy. It has been shown by some
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TABLE II
ITERATION NUMBERS WITH DIFFERENTRELAXATION FACTOR

numerical investigations that the proposed iterative method is
globally convergent and yields field solutions with acceptable
accuracy if the penalty factor lies within [0.6, 0.8].

IV. I MPLEMENTATION AND ADVANTAGES OF THEITERATIVE

METHOD

Before the commencement of the iterative procedure, a set
of eddy-current values is assumed first. Since the eddy-current
distributions are generally very complex in most practical prob-
lems, it is difficult to assume reasonable initial eddy currents.
Fortunately, sample calculations indicate that the iteration can
commence by assuming zero eddy-current value everywhere.
Then, and can be calculated from (1) and (2). They would
then be used as the impressed field for the ensuing computation
of the magnetic fields in the entire region in the boundary value
problem (4). Subsequently, the magnetic fields can then be em-
ployed to calculate another approximation of the eddy currents
in the conductors. The iterative process terminates once two suc-
cessive solutions agree within some prescribed tolerance.

A weighted combination of the electric vector potential is
used at the th step

(8)

where , the relaxation factor, is generally taken in [0, 2].
The value of , undoubtedly, affects the speed of convergence

of the iteration significantly. In general, the iteration has good
stability if is small, although more iterations are needed to
reach the convergent solution. On the other hand, large values
of might lead to oscillations during the iterative process to
result in divergence, especially whenapproaches 2.0. Table II
gives the iteration numbers of the four models with different
values of . The penalty factor is taken as 0.7 for all cases.
Experience shows, however, that the relaxation factor should be
taken within [1.1, 1.5] so as to give rapidly convergent solutions.

The advantages of the iterative method over the conventional
and formulations are summarized as follows.

1) Two relatively simple boundary value problems corre-
sponding to the magnetic scalar and electric vector po-
tentials, respectively, are employed in the proposed algo-
rithm, instead of a hybrid one, in either the conventional
formulation or .

2) Relatively less computer resources, including computer
time and memory occupation, are required with the
proposed method. This is because the two boundary
value problems produces two linear equation systems
with fewer variables and real stiffness matrices. Hence,
the proposed method is extremely suitable for unbounded
problems.

TABLE III
COMPARISON OF THEITERATIVE METHOD WITH THE AAA; '�  FORMULATION

IN TERMS OF THECOMPUTERRESOURCEREQUIRED

3) For linear problems, the two stiffness matrices arising
from the two boundary problems never change in the
iterative procedure. This is to say, it is unnecessary to
assemble and eliminate them once more before getting
the solution of the next step with the exception of the
two backward substitutions. As for nonlinear problems,
the proposed method is still feasible but then the corre-
sponding iterative algorithm would be more complex. The
authors are focusing on this researching topic and will re-
port the findings in future papers.

4) Simplification of the two boundary value problems. For
instance, each node has the same degrees of freedom,
thereby simplifying the programming of the computer
codes in numerical implementations.

V. NUMERICAL VERIFICATION

The example used to verify the proposed method is an in-
dustrial extended version of the TEAM Workshop Problem 21
and is referred as Problem 21[6]. It is well known that the tie
plates, which are used to clamp the core laminations tightly of
a large power transformer, are usually made of slotted and non-
magnetic steel plates in order to reduce the power loss and to
eliminate the dangerous local overheating. The example being
studied is, thus, a very practical problem since the determination
of the eddy-current distributions in the tie plates and the inves-
tigation of the effects of the slot number on the eddy-current
losses in the core plates of transformers are extremely impor-
tant for transformer designers.

Problem 21 consists of a set of product-based test models,
each of which is a slotted nonmagnetic steel plate driven by
Problem 21’s source. Moreover, the different test models having
different slot numbers in the steel plate, such as slots,
are referred as model , respectively [6].

The Galerkin form of the method of weighted residual equa-
tion is applied to set up the finite-element equation systems. The
computations have been carried out using nodal finite-element
method and isoparametric brick elements. Table III gives a com-
parison of computer resources needed in the iterative method
with those in the formulation. In the calculations, the
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(a)

(b)

Fig. 2. Flux densities along the two lines as specified in the study. (a)X =

5:76 mm,Y = 0:0 mm. (b)X = 5:76 mm.Y = 0:0 mm.

Fig. 3. Eddy currents on the surface of the plate in model 21.0.

Fig. 4. Eddy currents on the surface of the plate in model 21.1.

penalty factor and the relaxation factor are taken as 1.3 and
0.7, respectively. The magnetic flux densities along the two lines
specified in model 21.2 together with the experimental results
are shown in Fig. 2.

Fig. 5. Eddy currents on the surface of the plate in model 21.2.

Fig. 6. Eddy currents on the surface of the plate in model 21.3.

The eddy-current distributions in the tie plates of models 21.0
to 21.3 are given in Figs. 3–6, respectively. It can be seen from
the computations that the proposed iterative algorithm is effec-
tive and highly efficient.

VI. CONCLUSION

An efficient and globally convergent iterative method has
been developed successfully for obtaining the solution of 3-D
eddy-current problems in which the electric vector and the
magnetic scalar potential are employed. Distinguished com-
putational advantages over the conventional straightforward
formulations can be accomplished with this algorithm. An
engineering-oriented problem has been analyzed and reported
to verify the validity and high efficiency of the new method.
The method described has also been shown to produce reason-
able results as compared with the formulation and
measurement results.
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