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New lterative Method for Three-Dimensional
Eddy-Current Problems

Heyun Lin, Siu-Lau Ho, Eric Ka-Wai Cheng, and S. Y. Yang

Abstract—A new iterative method for computing three-dimen-
sional steady-state magnetic fields with eddy currents is presented.
By using the proposed method, the numerical computation of eddy
current fields can be divided into two successive stages on flux den-
sity and eddy current calculations. The convergent field solution
is then obtained iteratively. The coefficient matrices arising from
the proposed method contain relatively few variables and are real.
As these matrices need to be eliminated only once in the iteration
procedure, the requirement upon the computer resource can be Fig. 1.
reduced substantially. The convergence of the presented iterative
method is also discussed in detail. The instructions for choosing the
penalty factor and relaxation factor in order to obtain the globally ~ of the potentials. Hence, a large amount of computer resource

convergent potentials with sufficiently accurate field solutions are will be required to store and/or eliminate the coefficient matrix,
also given. Some sample calculations show that the new iterative ggnecially for large scale unbounded engineering problems.
Lnneggﬁgfég'ggg’y?gmgﬁfgfonggﬁiﬁ'ﬁ 'gggﬁ;gtﬁndg ing large-scale . Th_e aim of this paper is to present a new iterative method that
is suitable for studying large scale unbounded 3-D eddy-current
fields economically. As the proposed method only requires a
fraction of the computer resources that would otherwise be re-
quired, it would be a very useful algorithm for design engineers
|. INTRODUCTION studying practical electromagnetic field problems [3]. The pro-

HE COMPUTATION of three-dimensional (3-D) eddy_posed method has been used to study an engineering-oriented

current fields has recently become the subject of extensi\?és mo_del, and_the computed results are compared an_d vali-

researches by a lot of numerical analysts studying electromg ted W'th_ expenme_ntal measurements as yvell as numerical re-
netic field problems. Many efficient methods and techniqu Its obtained by using thé, ¢ — ¢ formulation.
are now available for finding the solutions of various practical
eddy-current problems. Most methods have their characteristic
advantages and disadvantages. Experience has shown that ti®nsider a typical eddy-current problem as shown in Fig. 1,
type of problem generally dictates which method is most aghe entire field domain is denoted B¥. It consists of a source
propriate for that specific investigation. current regionV;,, an eddy-current region with nonzero con-

For typical 3-D eddy-current problems, the conventionauctivity V; and a surrounding current free regidh. The
A, ¢, andT’, Q2 formulations are the two most frequently usetoundary ofl’; as denoted by is the interface between the
algorithms. No matter whether the formulation eh ¢ or conducting and nonconducting regions.
T, Q is used, both the vector and scalar potentials should belin the source regioV,, an electric vector potentid’s is
introduced, at least in the conducting region [1], [2]. As a resuliefined to describe the known current density source and it can
there are four degrees of freedom per node of the finite-elemeet analytically or numerically calculated from
mesh if nodal finite elements are used. Thus, the boundary
value problem as prescribed for the vector and scalar potentials VxTs=Js. (1)

becomes very complex. Besides, a complex linear equation , o _

system, which contains large number of variables having gAfter setting an |_n|t|al value for the eddy_—cgrrent de_nS|ty in

large bandwidth, has to be solved when finding the solutiorig -+ the other el_ectrlc vector potentlsl, can similarly be intro-
duced to describe the eddy-current density

Typical eddy-current problem.

Index Terms—Eddy current, FEM, iterative method, open
boundary problem.

Il. MATHEMATICAL MODEL OF THEITERATIVE METHOD
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TABLE |
ITERATION NUMBERS OF DIFFERENT PENALTY FACTOR A

Model 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
21.0 X 192 105 82 69 45 29 25 19 18 14
211 x x 134 95 68 69 44 44 29 25 16
21.2 x 235 193 101 81 71 58 43 34 24 19
21.3 X X 215 185 98 75 60 52 38 31 21
In terms of the Gauss law, the differential equations as well Ill. DISCUSSION ON THECONVERGENCE

as the boundary conditions describing the magnetic fields are From the discussion in the previous section, it is easy to see

V.-uvQ =V (ul), 7 that the iterative method is gctgally based on the conven.tional
0—Q r @) T — Q formulation. Substltutlng the solution of the _flrst

o - boundary problem (4) into the second one (6), one obtains the
aQfon =0, ' following governing equation of the electric vector potential in

The solution of the above boundary value problem is, in fa&c,eratlve form:

very similar to that obtained in the analysis of magnetostati 1 = A . i i
fields with the exception thdl” and{} are complex variables. v o VL=V <E v TJ) C s (T“’ - Ve ) "
Q, is a constant. .

By solving the above boundary value problem, the magneﬂ‘@ere'i stands forith iteration,T” is the eddy-current fields in-
field, which is induced by the source current and the assum@gced by the varying magnetic fields of (4), i.e., the solution
eddy current, can be obtained. Furthermore, the eddy-curr8h{6), T is the predetermined eddy-current fields obtained by
distribution induced by this varying magnetic field can be caoving (1) and (2).
culated in terms of Faraday’s law. In the eddy-current region, It is obvious that the convergence of the iteration depends on

i

the electric vector potentidl; satisfies the following: the property of the stiff matrix when applying the finite-element
method to discretize (6).
V x 1 V x T = —jwB. (5) To guarantee the global convergence of iterations is equiva-
a

lent to ensure the uniqueness of the electric vector potéhitial
Considering the conservation of charges, one has t{Rdrthermore, it is worth noting that, in general, the curl—curl

boundary value problem for the electric vector poterifial equa_tion results in _numerical instabil_ity in finite_—e_lemer_wt com-
putations. An effective means to alleviate such difficulty is to en-
1 A . force a gauge on the vector potential to ensure its convergence.
VX o VxTs=V <E v TJ) =—JwB, Yy In the proposed method, the Coulomb gauge, which satisfies the
T, xn=0 (6) Ppenalty funct_ion technique, is employed. It can be e_asily proven
\ T, xn=0 r, that the solution of the boundary value problem (6) yields unique
ZV-T;=0 ’ potentials satisfying the differential equations and the boundary
g

conditions pertaining to the electric vector potenffahnd the

where X is the penalty factor, which is generally taken withirmagnetic scalar potenti&l of theT" — €2 formulation [4].
[0, 1]. Note that a penalty term is appended in the governing The effect of the penalty term in (6) on the convergence of the
equation in order to ensure the uniqueness of the electric vedterative algorithm has been investigated by some sample calcu-
potential and the convergence of the iterative algorithm. lations. The entries in Table | show that the number of iterations

A new eddy-current distribution can be obtained by solvingaries with the penalty factox in the calculations (the relax-
the above boundary value problem, which is used to repeat #teon factor3 = 1.3) of the example defined in Section V. It
computation of the magnetic field and eddy current until all thean be found from Table | that the number of iterations decreases
field quantities converge. monotonically with an increase of from the range of zero to

In the iterative method as described above, two relativebne. In particular, none of the convergent solutions can be ob-
simple boundary value problems corresponding to the magneted in the calculations of the four models if the penalty factor
scalar and electric vector potentials, respectively, are employads set to zero, i.e., when the Coulomb gauge of the electric
For 3-D boundary value eddy-current field problems, the comector potential” is removed from the boundary value problem
ventional method is to solve the hybrid vector and scalar potd$), the algorithm fails to converge.
tials simultaneously. Thus, the most distinct advantage of thelt is also worth noting that the compliance of the Coulomb
proposed iterative method is that relatively fewer computer rgauge by the penalty function technique is relatively “weak.” In
sources, which include both the computing time and memoaiact, it is impossible to mak® - T"; exactly equal to zero in
occupation, are required when compared to that of the convexxmerical computations. Thus, whanncreases, the weighted
tional algorithms. The reasons for such saving is because negidual of the penalty termin (6) increases accordingly. As are-
only the number of the linear equations in the new method ssilt, the accuracy of the field solution decreases with anincrease
less than that in the conventional methods, but also the coeffithe penalty factoi [5]. Therefore, when choosing the penalty
cient matrices being drawn up in the new method are real instdadtor, due considerations should be given to two aspects: con-
of complex. vergence and solution accuracy. It has been shown by some
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TABLE I
ITERATION NUMBERS WITH DIFFERENT RELAXATION FACTOR

Model 0.1 03 0.5 0.7 0.9 1.1 13 1.5 1.7 1.9

21.0 65 50 43 42 35 31 25 24 21 x

21.1 98 78 67 65 52 49 44 44 x 156

21.2 101 99 84 76 65 46 43 40 42 X

21.3 113 108 101 97 98 71 62 60 56 X
numerical investigations that the proposed iterative method is TABLE 1II

%DMPARISON OF THEITERATIVE METHOD WITH THE A, ¢ — b FORMULATION

globally convergent and yields field solutions with acceptab IN TERMIS OF THECOMPUTER RESOURCERLQUIRED

accuracy if the penalty factor lies within [0.6, 0.8].

Memory (M) CPU Time (m)

IV. | MPLEMENTATION AND ADVANTAGES OF THE I TERATIVE Model Nodes Elementslterations ——e—— - —oe =
METHOD 210 18837 16720 25 80 e 65 108

_ _ 211 19656 17480 44 83 130 88 117

Before the commencement of the iterative procedure, a se 212 18837 16720 43 80 115 84 108
of eddy-current values is assumed first. Since the eddy-currer _21.3 19656 17480 62 83 130 %5 17

distributions are generally very complex in most practical prob-

lems, it is difficult to assume reasonable initial eddy currents.

Fortunately, sample calculations indicate that the iteration can3) For linear problems, the two stiffness matrices arising

commence by assuming zero eddy-current value everywhere. from the two boundary problems never change in the

Then,T's andTy can be calculated from (1) and (2). They would iterative procedure. This is to say, it is unnecessary to
then be used as the impressed field for the ensuing computation assemble and eliminate them once more before getting
of the magnetic fields in the entire region in the boundary value  the solution of the next step with the exception of the

problem (4). Subsequently, the magnetic fields can then be em- two backward substitutions. As for nonlinear problems,

ployed to calculate another approximation of the eddy currents  the proposed method is still feasible but then the corre-
in the conductors. The iterative process terminates once two suc-  sponding iterative algorithm would be more complex. The

cessive solutions agree within some prescribed tolerance. authors are focusing on this researching topic and will re-
A weighted combination of the electric vector potential is port the findings in future papers.
used at thé: + 1)th step 4) Simplification of the two boundary value problems. For
instance, each node has the same degrees of freedom,
T}*l — T} +3 (T} _ T}) (8) thereby simplifying the programming of the computer

codes in numerical implementations.

whereg, the relaxation factor, is generally taken in [0, 2].
The value of3, undoubtedly, affects the speed of convergence V. NUMERICAL VERIFICATION
of the iteration significantly. In general, the iteration has good The example used to verify the proposed method is an in-
stability if 8 is small, although more iterations are needed ustrial extended version of the TEAM Workshop Problem 21
reach the convergent solution. On the other hand, large valgg® is referred as Problem-216]. It is well known that the tie
of 4 might lead to oscillations during the iterative process tglates, which are used to clamp the core laminations tightly of
resultin divergence, especially whgrapproaches 2.0. Table Il 3 |arge power transformer, are usually made of slotted and non-
gives the iteration numbers of the four models with differefhagnetic steel plates in order to reduce the power loss and to
values of3. The penalty facton is taken as 0.7 for all cases.eliminate the dangerous local overheating. The example being
Experience shows, however, that the relaxation factor shoulddfdied is, thus, a very practical problem since the determination
taken within [1.1, 1.5] so as to give rapidly convergent solutiongf the eddy-current distributions in the tie plates and the inves-
The advantages of the iterative method over the conventiofightion of the effects of the slot number on the eddy-current
A, p andT, 2 formulations are summarized as follows. losses in the core plates of transformers are extremely impor-
1) Two relatively simple boundary value problems corrgant for transformer designers.
sponding to the magnetic scalar and electric vector po-Problem 2% consists of a set of product-based test models,
tentials, respectively, are employed in the proposed algeach of which is a slotted nonmagnetic steel plate driven by
rithm, instead of a hybrid one, in either the convention&roblem 21’'s source. Moreover, the different test models having
formulation A, ¢ or T, €. different slot numbers in the steel plate, suchas, . . . , 3 slots,
2) Relatively less computer resources, including computare referred as model.o, 21.1,...,21.3, respectively [6].
time and memory occupation, are required with the The Galerkin form of the method of weighted residual equa-
proposed method. This is because the two boundaign is applied to set up the finite-element equation systems. The
value problems produces two linear equation systermemputations have been carried out using nodal finite-element
with fewer variables and real stiffness matrices. Hencmethod and isoparametric brick elements. Table 1l gives a com-
the proposed method is extremely suitable for unboundpdrison of computer resources needed in the iterative method
problems. with those in thed, ¢ — ¢ formulation. In the calculations, the
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Fig. 2. Flux densities along the two lines as specified in the studyX(a}
5.76 mm,Y = 0.0 mm. (b)X = 5.76 mm.Y = 0.0 mm.
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Fig. 4. Eddy currents on the surface of the plate in model 21.1.

penalty factor\ and the relaxation factgt are taken as 1.3 and

IEEE TRANSACTIONS ON MAGNETICS, VOL. 38, NO. 2, MARCH 2002

Fig. 6. Eddy currents on the surface of the plate in model 21.3.

The eddy-current distributions in the tie plates of models 21.0
to 21.3 are given in Figs. 3—-6, respectively. It can be seen from
the computations that the proposed iterative algorithm is effec-
tive and highly efficient.

VI. CONCLUSION

An efficient and globally convergent iterative method has
been developed successfully for obtaining the solution of 3-D
eddy-current problems in which the electric vector and the
magnetic scalar potential are employed. Distinguished com-
putational advantages over the conventional straightforward
formulations can be accomplished with this algorithm. An
engineering-oriented problem has been analyzed and reported
to verify the validity and high efficiency of the new method.
The method described has also been shown to produce reason-
able results as compared with tle ¢ — ¢ formulation and
measurement results.
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