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Direct Self Control of Induction Motor Based on
Neural Network

K. L. Shi, T. F. Chan, Member IEEE, Y. K. Wong, Senior Member, IEEE, and S. L. Ho

Abstract—This paper presents an artificial-neural-net-
work-based direct-self-control (ANN–DSC) scheme for an
inverter-fed three-phase induction motor. In order to cope with
the complex calculations required in direct self control (DSC),
the proposed artificial-neural-network (ANN) system employs
the individual training strategy with fixed-weight and supervised
models. A computer simulation program is developed using
Matlab/Simulink together with the Neural Network Toolbox.
The simulated results obtained demonstrate the feasibility of
ANN–DSC. Compared with the classical digital-signal-pro-
cessor-based DSC, the proposed ANN-based scheme incurs much
shorter execution times and, hence, the errors caused by control
time delays are minimized.

Index Terms—Direct self control, induction motor drive,
Matlab/Simulink, neural networks.

I. INTRODUCTION

T HE neural network is well known for its learning ability
and approximation to any arbitrary continuous function

[1]. Recently, it has been proposed in the literature that neural
networks can be applied to parameter identification and state es-
timation of induction motor control systems [2]. However, artif-
ical-neural-network (ANN) vector control of induction motors
is seldom reported. One of the reasons is the complexity of the
controller.

Direct self control (DSC) [4], [5] is a dynamic, recurrent,
and nonlinear signal-processing method that theoretically can
give an inverter-fed three-phase induction motor an excellent
performance [3]–[5]. Since complicated calculations are
involved, it is difficult to implement DSC using common
integrated-circuit (IC) hardware. In the classical DSC system,
the control algorithms are realized by serial computation on a
digital-signal-processor (DSP) board. As a predictive control
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Fig. 1. Neural networks using different training algorithms. (a) Fixed-weight
network. (b) Supervised network.

scheme, however, DSC has a steady-state control error caused
by the time delays required for the lengthy computations, the
actual values depending largely on the control algorithm and
hardware performance [6]. As a result, an upper limit has to be
imposed on the switching frequency of the inverter-fed motor
drive. Present-day power electronic devices, on the other hand,
are capable of very fast switching operations. In order to fully
exploit the advantages of these devices, the control time delays
need to be minimized. The neural network, with its simple
architecture and inherent parallel computation capability, offers
a promising alternative to realization of a high-performance
DSC drive. In the future, the neural-network controller may
be implemented by application-specific integrated-circuit
(ASIC) chips. The electrically trainable analog neural network
(ETANN) chip (Intel 80 170NX) had a performance adequate
for drive applications, taking only 3s to process through each
layer [7]. This chip may serve as a benchmark for comparison
purpose as modern neural devices are likely to have comparable
or higher processing speeds.

This paper presents an ANN algorithm that can be used in
place of the DSP serial calculations in a DSC system. Following
a brief introduction of neural networks, the paper gives a de-
tailed explanation of their use in the realization of the compu-
tational modules of the control process. Simulation results will
also be presented to demonstrate the feasibility of the ANN-
based DSC.

II. NEURAL NETWORKS

In general, a neural model is mathematically represented by a
basis function (net function) and an activation function (neuron
function). The selection of these functions often depends on
the applications of the neural network. In other words, applica-
tion-driven neural models are only loosely tied to the biological
realities. Linear basis function is a hyperplane-type
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Fig. 2. Construction of the DSC system in Matlab/Simulink window.

function, where stands for the weight matrix, for the input
vector, and for the bias or threshold. Mathematically,

(1)

where is the dimension of input.
The net value as expressed by the basis function

will be immediately transformed by an activation function of
the neuron. Thus,

(2)

where is the net output and is the activation function.
The memory of a neural network lies in weights and biases.

The neural networks can be classified, in terms of how the
weights and biases are obtained, into three categories [8]. They
are: 1) fixed-weight; 2) unsupervised; and 3) supervised net-
works. In this paper, the fixed-weight networks and supervised
networks are used. The constructions of the two networks are
shown in Fig. 1. The training data consist of pairs of input and
target produced by the DSC mathematical model.

The characteristic of the fixed-weight network is that the
weights and biases are precomputed and pre-stored from
training data. The fixed-weight network, which is also called
the “direct design method,” can be used to implement an exact
mathematical model. In same cases, its implementation is
easier than the supervised network.

In the supervised network, the weights and biases are adap-
tively trained by a learning mechanism, which has been the
mainstream of neural model development. The back-propaga-
tion learning rule [8] is used to design the supervised networks
for the DSC, details of which are presented below.

It is convenient to regard the thresholdas an extra weight,
i.e., [8]. The net value given by (1) can be rewritten
as

(3)

where and .
The sum squared error (cost function) for the set of

patterns of input is given by [2]

(4)

where
squared error of the output layer;
dimension of the output vector;
actual output vector;
corresponding desired output vector.

The weights are changed to reduce the cost functionto a min-
imum value by the gradient descent method.

The best initial weights and biases for back-propagation net-
works are created at random utilizing the minimum and max-
imum values of each input. Theth weight-update equation of
the th neuron is given as

(5)

where
learning rate;
new weight;
old weight.

The training strategies may be divided as mutual (whole)
and individual (local) [8]. In mutual training, the training of
all the weights is influenced by all the input/output values. In
individual training, the training of an individual subnet will
not be influenced by the inputs and outputs of other subnets.
Pure mutual training is almost impossible for DSC due to three
reasons. Firstly, the direct self controller is a dynamic (there
are integrators), recurrent (there are hysteresis comparators),
and nonlinear system. Secondly, the eight input variables
( ) constitute a huge training set.
Thirdly, it may take substantially more iterations to reach a
mutual agreement between all the nodes. For simpler and faster
design, the individual training strategy is adopted in this paper.

III. N EURAL-NETWORK-BASED DSC

A DSC scheme consists typically of 3/2 transformations
of current and voltage, flux estimation, torque calculation,
flux angle encoder, flux magnitude computation, hysteresis
comparator, and optimum switching table. Fig. 2 shows a DSC
system in the Matlab/Simulink window, which consists of a
DSC controller, an inverter, and an induction motor [9].

Based on DSC principle, the neural-network controller is di-
vided into the following five sub-nets, which are individually
trained:

1) flux estimation sub-net (supervised) with dynamic neu-
rons;
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Fig. 3. Dynamic linear net for flux estimation.

2) torque calculation sub-net (fixed weight) with square neu-
rons;

3) flux angle encoder and magnitude calculation sub-net (su-
pervised and fixed weight) with logsig neurons and tansig
neurons;

4) hysteresis comparator sub-net (fixed weight) with recur-
rent neurons;

5) optimum switching table sub-net (supervised) with hard
limit neurons.

A. Flux Estimation Sub-Net

The flux estimation may be expressed as [5], [9]

(6)

(7)

where are phase voltages and are phase cur-
rents, which are obtained from the voltage and current sensors.

Neuron models can be divided into two basic types: namely,
static and dynamic. A dynamic neuron is one whose output is
described by a differential equation [10]. Hence, the flux esti-
mation sub-net should be constructed by the two dynamic neu-
rons that consist of linear neurons and integrators. A supervised
method,viz. the back-propagation learning rule, is used to train
the linear neurons until they can approximate (6) and (7).

Fig. 3 shows the flux estimation network. Using a random
generator function of Matlab, ten random inputs of the vector
[ , , , , , ] are produced. Using these random in-
puts, the target outputs can be obtained from (6) and (7). Since
the network is linear, convergence can be obtained in relatively
few training epochs. For the induction motor being studied, the
weights and biases have been obtained, as shown in the equa-
tions at the bottom of this page.

Fig. 4. Neural network for torque calculation.

B. Torque Calculation Sub-Net

The torque equation for a DSC system is given by

(8)

where is the number of motor poles.
Since there are four inputs, i.e., , , , and , the data

of all training patterns will be huge if high precision is required.
To avoid the training difficulties, the fixed-weight method is
adopted. Equation (8) may be rewritten as a sum of square func-
tions

(9)

where

A two-layer fixed-weight neural network is used to imple-
ment (9) directly, as shown in Fig. 4. The first layer is a square
activation function with the weight and bias and , while
the second layer is a linear active function with the weight and
bias and as follows:
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Fig. 5. Individual training scheme for flux angle and magnitude calculations
in Matlab window.

C. Flux Angle Encoder and Flux Magnitude Calculation
Sub-Net

The flux angle and flux magnitude can be calculated from
the flux space vectors and . The flux angle is then en-
coded as as follows:

(10)

(11)

(12)

In order to obtain more accurate results and to simplify the
design, (10)–(12) are rewritten as

(13)

(14)

(15)

(16)

(17)

The network of flux angle encoder and flux magnitude calcu-
lation consists of five nets, as shown in Fig. 5, i.e., net 1 with two
square neurons implements (13), net 2 with four tansig neurons
implements (14), net 3 with four logsig neurons, net 4 with three
square neurons, and net 5 with ten hard limit neurons implement
(15)–(17), respectively. Net 1, net 4, and net 5 are designed using
the fixed-weight method. Net 2 and net 3 are designed using

Fig. 6. Implementation of the flux magnitude calculation.

the supervised method. The output layers of net 1–net 4 will be
merged with the input layers of their next sub-nets according
to the rule shown in Fig. 14. Hence, weights and biases of the
output layers of these nets have not been listed hereinafter.

Design of net 1 is similar to that used for the torque calcula-
tion sub-net described in Section III-B. Weightand bias of
net 1 with two square neurons can be directly designed as fol-
lows according to (13):

The back-propagation learning rule is used to train net 2.
Five-hundred input/output pairs for training net 2 are produced
by the square root function. After 50 000 training epochs, the
sum-squared error is less than 0.01. Weight and bias of
net 2 with tansig neurons is as follows:

Fig. 6 shows the implementation of the flux magnitude cal-
culation using net 1 and net 2.

The back-propagation learning rule is used to train net 3 until
they can approximate the reciprocal function. One-thousand
input/output pairs are produced by the reciprocal function to
train net 3. After 100 000 training epochs, the sum-squared
error is less than 0.02

With three square neurons, net 4 implements (16) using the
same technique described in Section III-B as follows:

Net 5 implements the flux angle encoding directly from
(output of net 4), , and . To improve the algo-

rithm, the trigonometric function computations of flux angle,
which are necessary in previous DSC schemes, are replaced
by logic operations. With reference to Fig. 7, the flux angle
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Fig. 7. Space flux encode (B B B ).

Fig. 8. Flux angle encoder (net 5) with hard limit neurons.

code ( ) can be directly derived from the following
equations:

otherwise
(18)

and

or and

otherwise

(19)

and

or and

otherwise.

(20)

Equations (18)–(20) show that trigonometric function calcu-
lations are not needed for the flux angle encoding, hence, the
complexity of implementation is decreased. The flux angle en-
coder can be accomplished by the hard limit neurons, as shown
in Fig. 8.

The five nets are linked together to form a network of 24
different neurons for implementing the flux angle encoder and
flux magnitude computation, as shown in Fig. 9.

D. Hysteresis Comparator Sub-Net

Using the hysteresis comparator, as shown in Fig. 10, the flux
error between stator flux and its command can be lim-
ited within , and the flux error code produced by the
hysteresis comparator will be used to select the voltage space
vector.

Fig. 9. Network of flux angle encoder and flux magnitude computation.

Fig. 10. Flux magnitude hysteresis comparator.

Fig. 11. Flux hysteresis comparator.

The flux error code can be expressed as

if and

or if and

if and

or if and

(21)

Equation (21) represents a recurrent calculation:To obtain
, we have to do a calculation using , and in order to do

the calculation, we have to obtain . In order to derive the
weight and bias of the network, (21) can be rewritten as

when

when
(22)

where .
The output is connected as an input, which forms a recur-

rent network [11]. Using the basis function given by (1) for a
neural network, the weight and bias can be precomputed. The
input of network is [ ]. Its output is , its weight

, and its bias . The flux hys-
teresis comparator is implemented by a recurrent network with
a hard limit function, as shown in Fig. 11.
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Fig. 12. Torque hysteresis comparator.

TABLE I
DSC OPTIMUM SWITCHING TABLE

The difference between the motor torqueand torque com-
mand is compared with and the error flag is used to pro-
duce a torque error code for selecting the voltage space vector
[5], i.e.,

rotating in the clockwise direction)

rotating in the counterclockwise

direction

(23)

The torque hysteresis comparator expressed by (23) can be
designed in a similar manner as the flux hysteresis comparator.
As shown in Fig. 12, the torque error code consists of two bits

and . The weight of is and the bias of
is , while the weight of is and the bias of
is .

E. Optimum Switching Table

The DSC optimum switching table is shown in Table I.
The flux angle code , the torque error code , ,
and the flux magnitude error code determine the output
voltage codes , , and . The output voltage codes of
the optimum switching table represent the on/off status of the
inverter switches [5].

A two-layer network with a total of 26 hard limit neurons is
employed to implement the optimum switching table as illus-
trated in Fig. 13. (The first layer has 23 neurons and the second
layer has three neurons.) Utilizing the 36 pairs of input and
output patterns, shown in Table I, the network is trained by a
supervised method with a perceptron training rule [11]. After
321 training epochs, the sum squared errorarrives at zero.

Weights and biases of the trained network of the optimum
switching table are shown in the equations at the bottom of the
next page.

Fig. 13. Optimum switching table implemented by the neural network.

Fig. 14. Merging of neurons with linear activation functions.

Fig. 15. Neural-network implementation of DSC.

F. Linking of Neural Networks

When the sub-nets are linked to each other, some neurons of
the output layer may be merged with the input neurons of the
next sub-net. For example, if an output neuron of a sub-net has
a linear activation function, it may be merged with the input
neuron of the next sub-net. As shown in Fig. 14, the activation
function of neuron is linear, and its output is

(24)

Let the basis function of neuron be

(25)

Substituting (24) into (25),

(26)

If the new weight and bias of neuronare denoted by and
, respectively, then

(27)
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(28)

In this way, neuron is merged with neuron , as well as
neuron , as illustrated in Fig. 14.

If an output neuron of a sub-net has a hard limit function,
it can also be merged into next sub-net’s input neuron that has
also a hard limit function. Employing this strategy, the number
of layers and neurons of the linked network can be decreased.

With the merging of input and output neurons, the five
sub-nets (flux estimation, torque calculation, flux angle en-
coder and flux magnitude calculation, hysteresis comparator,
and optimum switching table) are assembled into the DSC
neural network, as shown in Fig. 15.

The complete neural network consists of seven layers and 58
neurons. It may be implemented using special neural devices,
such as ASIC chips in the future. Parallelism of neural device
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Fig. 16. Neural-network DSC in Simulink window.

Fig. 17. Torque response of DSP DSC with 100-�s delay.

Fig. 18. Torque response of ANN–DSC with 25-�s delay.

computation renders the control process extremely fast and the
cost should be lower compared with a DSP-based system. In the
practical drive, the output potentials of the voltage and current
sensors should match the drive voltage of the neural devices,
while the output potentials of the neural devices should match
gate drive voltage of the inverter.

IV. SIMULATION OF NEURAL-NETWORK DSC

A Matlab/Simulink program with a Neural Network Toolbox
is used to simulate the neural network DSC, as shown in Fig. 16.

The induction motor used for the simulation studies has the
following parameters:

Type: three-phase 7.5-kW 220-V 60-Hz 6-pole
squirrel-cage induction motor

Stator resistance: 0.288 ph
Rotor resistance: 0.161 ph
Stator leakage reactance: 0.512ph
Rotor leakage reactance: 0.281ph
Magnetizing reactance: 14.821 ph
Rotor inertia: 0.4 kg m
Inertia of load: 0.4 kg m
Load torque: 20 N m

Fig. 19. Speed response of DSP-DSC with 100�s delay.

Fig. 20. Speed response of ANN–DSC with 25-�s delay.

Fig. 21. Flux response of DSP DSC with 100-�s delay (time= 0 s� 0:2 s).

Stator flux and torque commands are as follows:

Wb s s
(N m) s s

(N m) s s
(N m) s s

(N m) s s

Figs. 17, 19, and 21 show the torque response, speed re-
sponse, and flux response of the classical DSC system with
100- s controller delay (typical of a DSP-based controller),
while Figs. 18, 20, and 22 show the torque response, speed re-
sponse, and flux response of the neural network control system
with 25- s controller delay. The results demonstrate that
DSP-based DSC produces large torque and flux errors, whereas
the neural-network controller eliminates almost all these errors.
In the simulation studies, it is evident that: 1) torque and flux
errors increase with increasing controller delay time and 2)
the large torque and flux errors decrease the robustness of the
drive system against current noise and load changes. It can be
concluded that neural-network-based DSC is a more effective
algorithm for the control of an inverter-fed induction motor.
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Fig. 22. Flux response of ANN–DSC with 25-�s delay (time= 0 s� 0:2 s).

V. CONCLUSION

In this paper, the flexible neural-network structures are used
to implement a DSC system for an inverter-fed induction motor
drive. Based on the fundamental principle of DSC, an individual
training strategy that involves both the fixed weight and super-
vised networks are employed for the ANN controller design.
The fixed-weight method can accurately implement a mathe-
matical model, whereas the supervised method can closely ap-
proximate a complex target. Neural-network-based DSC greatly
reduces the execution time of the controller, hence, the steady-
state control error is almost eliminated. The results of simulation
demonstrate that the neural-network algorithm has a better pre-
cision in torque and flux responses than the classical DSP-based
control method. The application of neural-network techniques
simplifies hardware implementation of DSC and it is envisaged
that ANN–DSC induction motor drives will gain wider accep-
tance in the future.
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