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An Effective Method to Reduce the Computing Time
of Nonlinear Time-Stepping Finite-Element Magnetic
Field Computation

W. N. Fu, S. L. Ho, H. L. Li, and H. C. Wong

Abstract—Time-stepping finite-element methods have been At each iterative step of the N-R method, a set of linear al-
widely used to compute the magnetic field of electrical machines. gebraic equations is required to be solved. If the triangular de-
Because the reluctivities of magnetic materials are nonlinear, ., nnnsition method is used, a modified N—R method can be em-
the finite-element equations have to be solved iteratively. In this : - .
paper, an effective method for reducing the computing time PlOYed to reduce the computing time [5]. In the modified N-R
of the Newton-Raphson method coupled with the incomplete method, itis not necessary to recalculate the global Jacobian ma-
Cholesky-conjugate gradient algorithm for solving time-stepping trix and its inverse (triangularization) at each iteration. Although
finite-element problems is presented. The proposed method is the total number of iterations will be increased in the modified
based on a proper prediction of some predefined error tolerances \_p method, the total computing time is still shorter since it
in the iteration processes at each time-stepping finite-element . . - . . .
computation. The computational analysis on an induction motor 1 te triangularization of the Jacobian matrix, which normally
shows that the proposed strategy can reduce the nominal com- takes up most of the CPU time when solving linear equations.
puting time by as much as 50%. Compared with direct methods, the incomplete Cholesky-

Index Terms—Computation time, finite element, ICCG method, gonjugate gradient (ICCG) glgorithm is.a more efficient itera-
Newton—Raphson method, nonlinear, time stepping. tive solver for large sparse linear equations. In the ICCG algo-
rithm, only the nonzero elements are stored, and the algorithm
converges very quickly. Nowadays, the N—R coupled with the
|. INTRODUCTION ICCG has been popularly used as the solver of FEM problems.
HE circuit-field-motion coupled time-stepping finite-ele- In time-stepping FEM for time-domain solutions, the infor-
ment method (FEM) is a very effective tool in the analysigation from the last step can be successfully used to reduce the
of electrical machines. The method not only can include maggmputing time when solving the current FEM equations. Sev-
complicated factors such as the saturation of iron materiaggal methods have also been proposed to reduce the computing
eddy current, and skewed rotor bars but can also produce trtime of the time-stepping FEM when using N-R and ICCG
sient solutions. Compared with the traditional FEM methodg)ethods by the authors [6]. Those methods are used mainly to
the time-stepping FEM is more demanding on the computitkgep the topology of the FEM mesh unchanged throughout the
time. Hence, one must refine the time-stepping FEM algorithrtigie-stepping process, and the address vectors of the sparse
in order to reduce the computing time. matrix are then kept unchanged during the rotor movement.

For a nonlinear FEM problem, the solution of the nonlinearhe predicted values of the unknowns are used conveniently as
set of equations normally takes up most of the computing timige initial data of the N-R algorithm. In this paper, a method
Because the Newton—-Raphson (N-R) method has the quadrtgticontrol the prespecified tolerances of the N-R iteration and
convergence characteristics, it is commonly used for solviitige ICCG iteration in the time-stepping computation is further
nonlinear FEM equations. It was shown that when the vector pexplored. A formula to predict the error tolerances of the ICCG
tential is used, the N-R method could always converge. Whalgorithm is put forward. For the problems with which the N-R
the scalar potential is used, it might lead to a very unstable iténethod can converge to a solution, the proposed method will
ation process [1]. In order to ensure the convergence, a dampgduce the computing time substantially without sacrificing

iterative algorithm with a proper relaxation factor has to be us#lae accuracy of the final FEM solutions. An induction motor
[2]-[4]. with saturated iron parts is studied and reported in this paper to

demonstrate the usefulness of the proposed method.
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together. If the interbar currents between the rotor bars haverbere Nx is the number of the total unknown& yg), is
be found, the rotor cage can be represented by a network [8]. The error of the N-R method at theth iteration cycle, and
FEM equations of the magnetic field, together with the external r_.nowea 1S the error tolerance of the N-R method.
circuit equations and the torque balance equation, will lead toThe error tolerance of the N-R method r_siowed iS SPEC-

the following large system of equation sets [7]: ified in advance, but it will be adjusted during the time-step-
ping process. Iflexr), cannot be reduced below the initial
CX + D% - P (1) €N R-allowed, it means that an increase in the iteration number
ot of the N-R method will not reduce the valuesgf g of the N-R

where X is the unknown column vector to be evaluated. It in€thod. Hences v & _anowea can be increased automatically ac-
cludes the magnetic vector potentials, currents, voltages, rotgFding to the information of the last step.

position, and rotor speed: and D are sparse coefficient ma- _ . _
trices. P is a column vector associated with, respectively, tH. ICCG Method for Solving the Algebraic Equations

input voltages and input currents for the voltage and currentat each iteration cycle of the N-R method, the ICCG algo-
driven problems. Here, (1) becomes an initial value problefihm is used to solve the large algebraic equation set. For iter-
only. The backward Euler formula can be used readily becayg/e solvers, only the upper triangular coefficient matrix with

it has a good convergence rate. If the solution at(fhe- 1)th  nonzero elements is needed to be stored. Hence, the computing

step is known, thet * can be obtained from time and the computer storage can be greatly reduced. In the
‘ X ICCG method, one should first obtain an approximate factoriza-

{O’“ + } Xk = pk 4 B 'Ga (2) tion of the coefficient matrix. To reduce the storage and reduce
(At (At)F the computing time when factorizing the matrix, the incomplete

Cholesky factorization is used. The coefficient matrix of the al-

ko th_gk—1; i =
Wher_e(At) = th—tFlis t_hetlme step length. The coef“ﬁuentgebraic equation set can be expressed as
matrix of (2) is a symmetrical one.

_ T
[ll. SOLUTION METHODS J=LL"+FE (8)

A. N-R Method for the Nonlinear Problem where E is the error matrix defined by(ei;)n, xn, -

In the time-stepping method, the system equations will He = (lij)x, xx, is the lower triangular matrix of the in-
solved iteratively. Because one has to consider the nonliné@mplete Cholesky factorization. It has the same sparse
characteristics of the reluctivity of the magnetic materials, tdaracteristics of the coefficient matrk which means that if

set of (2) is solved by using the N-R method at each time step; = 0, thenl;; = 0.
Because the nonzero elements of the coefficient matrix

D* DF L' AL~T will be distributed mainly near the diagonal, then if
kreywyk _ pk n=1 yk—1_ |k n—1|yk )
Sn(8X), = P"/—1+(At)k X {C"—l T (At)k} X B the conjugate gradient algorithm is used to solve the equation
where L YL T LT (6X)k
k k
Xk =Xk 4 (6X)% 4 _-1lpk Dy 4 Xkl _| ok Dy 4 x*
n—1+ (At)k Cn,—1+ (At)k n—1 (9)
J is the Jacobian matrix of (2), andis the iteration number of = . .
the N=R method. it will have good convergence. The iteration formulas are [9]
The initial values of the solutio* can be predicted by the
Euler formula Q. = (LL") " (10)
—1
dX\* 1 Tt (LLT) ey
k — k—1 hatlel k 37717 — 11
X=X +< g ) (A, (5) Brm—1 (LI T (11)
AN
Because the backward Euler formula at (he- 1)th step is Qm = (LL") " rm-1 + fm—1Pm—1 (12)
7)7771171 (LLT)_l Tm—1
ax\ F1 B k=1 _ k-2 ) Oy, = oTJ0 (13)
dt ! _ "
(6X)rn (6X)rnfl + aannr (14)
k—1 j i i
gﬁégﬁ/ (it)l)th :néii?g)?ﬁ stzzllsy obtained from the results The iteration is controlled by a vecterdefined as
The iteration of the N-R method will stop if D¥
. D D r=PF  + (Ant_)i k-1
(enr)n=-|Pk_1+ Lo X Ck_i+ - Xy k
S £ N R_allowed (7) n—l (At)k n—l n n

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 14, 2009 at 09:48 from |IEEE Xplore. Restrictions apply.



FU et al. METHOD TO REDUCE COMPUTING TIME OF NONLINEAR COMPUTATION 443

—>» Time step k=k+1

™
e I
R0

v
LT

Rotate FEM mesh %} éé@gﬁ}ﬁﬁi&(ﬁf%’
qmaﬂ%ahﬂgv‘
< v av vy Ay

"4%?#

X=X 1+8 X VAV 0%

~

4
Generate the Yes

coefficient matrixes ‘
ICCG < £ICCG _allowed
A
Compute €z Compute €1cce
i . X =5 X1+ 0mOm
ICCG algorithm
Yes

VAL

(i
K
Ne

) )
RS
LA
Vv
AR
<

Post-process

N
2

0

RS
\/

S R
Vavay
VYAV
By
o5
R
AVav,S:
rav,

Terminate the
time stepping?

Fig. 1. Block diagram of the solver.
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The iteration erroe;ccg of the ICCG algorithm can be de-
termined by the value of. If (b)

1 Fig. 2. (a) Stator mesh (1976 nodes, 3334 elements). (b) Rotor mesh (1884
(erccc)n = o 7] < ercca _allowed (16) nodes, 3152 elements).
X

the iteration of the ICCG algorithm is terminated. The blockiey the number of the N—R iteration is basically the same. Usu-
diagram of the solver is shown in Fig. 1. _ ally, this assumption can be satisfied because physical quantities
The |ter§1F|on number of the ICCG algorithm is sensitive tg.o generally changing very smoothly. Of course, there could
a prespecified error toleranégccc atlowed- If €1cca allowed  pe exceptions, such as in the case of a sudden change in field
is very small, the iterative process of the ICCG algorithm willy citations. In those cases, the predicted error tolerance of the
take a long time. Moreover, the aforementioned set of algebrgisc may be incorrect, and the computing time cannot be re-
equations need not be solved precisely at the initial iteratiefyceq. Since the field excitation normally changes smoothly and
steps of the N-R method. Therefore, #1cc aliowed €8N € it i very rare to have sudden changes, the total computing time

relatively large at the beginning of the N-R method, althougy| nonetheless be reduced significantly by using the proposed
it will be reduced later. If the total iteration number of the N-Rathod.
method isV y g (as predicted from the last step of the time step),
the error tolerance of the ICCG algorithm at tith iterative step
of the N—R method can be adaptively controlled by IV. NUMERICAL EXPERIMENTS
The proposed method has been implemented to simulate the
(e10CG allowed )n operation of a 2.2—kW induction motor with skewed rotor bars.
C1CCC allowed 11/ (Vm=D) The motor is fed by sinusoidal voltages. Multislice FEM is used
} (17)  to model the motor. For the sake of simplicity, the slice number
is fixed at 4 for the following numerical experiments. The stator
where(ercoa_anowed )1 1S the error tolerance of the ICCG algo-mesh and the rotor mesh are shown in Fig. 2. The total number of
rithm at the first step of the N-R iteration, aB@:cq_anowea IS UNknowns is 13 087. The step size is;&8 All the computations
the error tolerance of the ICCG algorithm at the last step of tlage run on a Pentium I11/450 MHz computer. A typical computed
N-R iteration. Because the last solution of the set of the ndifux plot is shown in Fig. 3.
linear equations should still satisfy (7), the proposed methodThe comparison between the normal method and the pro-
will not sacrifice the accuracy of the final solution. posed method(ercca_allowed)1 = 10%) in obtaining the so-
The above-method for controlling the error tolerance of tHation of one step of the time-stepping FEM is listed in Tables |

ICCG algorithm is based on the assumption that at each timkl. The corresponding computing time is given in Table IV.

= (ETCCG_allowed)n— 1 |:—
(EICCG_allowed ) 1
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TABLE |
ITERATION NUMBERS OF THEICCG WHEN &1c1cici _allowea |S FIXED. (INITIAL
DATA OF THE N—R METHOD ARE ZERO)

N-R iteration no. &g (&1cCE attowed)n &ccg  ICCQG iteration no.

0 2.66x107

1 1.04x10'  3.00%10* 1.48x10™ 631
2 1.47x10°  3.00x10%  2.75x10° 863
3 255107 3.00x10*  2.52x10° 716
4 3.33x10%  3.00x10™ 1.97x10* 678
5 4.12x10%  3.00x10™ 2.24x10" 520
6 2.81x10°  3.00x10™ 1.91x10™ 376

TABLE 1l

ITERATION NUMBERS OF THEICCG WHEN &1¢:cici _allowed |S FIXED. (INITIAL
DATA OF THE N-R METHOD ARE BEING PREDICTED)

N-R iteration no. €yg (BiccE_atowed Jn €ccg  ICCG iteration no.
0 2.88x10° - - -
1 2.74x10" 3.00¢10™ 2.80x10" 650
2 3.49%x10%  3.00¢10" 2.75%10™ 646
3 2.19¢10° 3.00x10™ 2.39x10* 467

Fig. 3. Computed flux distribution during on-load operation.

The eventual error tolerance of the N—R method isx3.003,
and that of the ICCG is 3.& 10~%.

Usually, it is difficult to choose the initial ICCG error tol-
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TABLE I
ITERATION NUMBERS OF THEICCG OF THE PROPOSEDMETHOD

Computing time (s)

N-R iteration no. &g (E1cCE atiowed)n &ccg  CG iteration no.
0 2.05x10* - - -
1 5.91x10° 1.00<10° 5.90x10° 3
2 4.88<10™ 5.48<10" 48710 50
3 2.61x10° 3.00<10™ 2.25%1¢* 623
TABLE IV
COMPARISON OF THECPU TIMES
CPU time

Normal method (X,=0) 114.8 s

Normal method (X, being predicted) 574 s

Proposed method 237 s
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Fig. 4. Computing time versus initial error tolerance of the ICCG algorithm.

suitably adjusted during the N-R iteration. Hence, the total
computing time for the solution of the system equations can be
reduced significantly, whereas the accuracy of the solution can
be kept unchanged. The proposed method can also be used to
deal with similar problems if nonlinear system equations are to
be solved by the N-R and the ICCG methods.
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