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An Effective Method to Reduce the Computing Time
of Nonlinear Time-Stepping Finite-Element Magnetic

Field Computation
W. N. Fu, S. L. Ho, H. L. Li, and H. C. Wong

Abstract—Time-stepping finite-element methods have been
widely used to compute the magnetic field of electrical machines.
Because the reluctivities of magnetic materials are nonlinear,
the finite-element equations have to be solved iteratively. In this
paper, an effective method for reducing the computing time
of the Newton–Raphson method coupled with the incomplete
Cholesky-conjugate gradient algorithm for solving time-stepping
finite-element problems is presented. The proposed method is
based on a proper prediction of some predefined error tolerances
in the iteration processes at each time-stepping finite-element
computation. The computational analysis on an induction motor
shows that the proposed strategy can reduce the nominal com-
puting time by as much as 50%.

Index Terms—Computation time, finite element, ICCG method,
Newton–Raphson method, nonlinear, time stepping.

I. INTRODUCTION

T HE circuit-field-motion coupled time-stepping finite-ele-
ment method (FEM) is a very effective tool in the analysis

of electrical machines. The method not only can include many
complicated factors such as the saturation of iron materials,
eddy current, and skewed rotor bars but can also produce tran-
sient solutions. Compared with the traditional FEM methods,
the time-stepping FEM is more demanding on the computing
time. Hence, one must refine the time-stepping FEM algorithms
in order to reduce the computing time.

For a nonlinear FEM problem, the solution of the nonlinear
set of equations normally takes up most of the computing time.
Because the Newton–Raphson (N–R) method has the quadratic
convergence characteristics, it is commonly used for solving
nonlinear FEM equations. It was shown that when the vector po-
tential is used, the N–R method could always converge. When
the scalar potential is used, it might lead to a very unstable iter-
ation process [1]. In order to ensure the convergence, a damped
iterative algorithm with a proper relaxation factor has to be used
[2]–[4].
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At each iterative step of the N–R method, a set of linear al-
gebraic equations is required to be solved. If the triangular de-
composition method is used, a modified N–R method can be em-
ployed to reduce the computing time [5]. In the modified N–R
method, it is not necessary to recalculate the global Jacobian ma-
trix and its inverse (triangularization) at each iteration. Although
the total number of iterations will be increased in the modified
N–R method, the total computing time is still shorter since it
is the triangularization of the Jacobian matrix, which normally
takes up most of the CPU time when solving linear equations.

Compared with direct methods, the incomplete Cholesky-
conjugate gradient (ICCG) algorithm is a more efficient itera-
tive solver for large sparse linear equations. In the ICCG algo-
rithm, only the nonzero elements are stored, and the algorithm
converges very quickly. Nowadays, the N–R coupled with the
ICCG has been popularly used as the solver of FEM problems.

In time-stepping FEM for time-domain solutions, the infor-
mation from the last step can be successfully used to reduce the
computing time when solving the current FEM equations. Sev-
eral methods have also been proposed to reduce the computing
time of the time-stepping FEM when using N–R and ICCG
methods by the authors [6]. Those methods are used mainly to
keep the topology of the FEM mesh unchanged throughout the
time-stepping process, and the address vectors of the sparse
matrix are then kept unchanged during the rotor movement.
The predicted values of the unknowns are used conveniently as
the initial data of the N–R algorithm. In this paper, a method
to control the prespecified tolerances of the N–R iteration and
the ICCG iteration in the time-stepping computation is further
explored. A formula to predict the error tolerances of the ICCG
algorithm is put forward. For the problems with which the N–R
method can converge to a solution, the proposed method will
reduce the computing time substantially without sacrificing
the accuracy of the final FEM solutions. An induction motor
with saturated iron parts is studied and reported in this paper to
demonstrate the usefulness of the proposed method.

II. BASIC EQUATIONSARISINGFROM THETIME STEPPINGFEM

The transverse electromagnetic field in induction machines
can be represented by a two-dimensional (2-D) FEM formula-
tion. If the rotor has skewed rotor bars, a multislice technique,
which represents the motor with several slices of 2-D FEM,
could be used to obtain the field solutions simultaneously for all
the slices [7]. The electric circuit equations of the stator wind-
ings and the rotor cage can be coupled with the FEM equations
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together. If the interbar currents between the rotor bars have to
be found, the rotor cage can be represented by a network [8]. The
FEM equations of the magnetic field, together with the external
circuit equations and the torque balance equation, will lead to
the following large system of equation sets [7]:

(1)

where is the unknown column vector to be evaluated. It in-
cludes the magnetic vector potentials, currents, voltages, rotor
position, and rotor speed. and are sparse coefficient ma-
trices. is a column vector associated with, respectively, the
input voltages and input currents for the voltage and current
driven problems. Here, (1) becomes an initial value problem
only. The backward Euler formula can be used readily because
it has a good convergence rate. If the solution at the th
step is known, then can be obtained from

(2)

where is the time step length. The coefficient
matrix of (2) is a symmetrical one.

III. SOLUTION METHODS

A. N–R Method for the Nonlinear Problem

In the time-stepping method, the system equations will be
solved iteratively. Because one has to consider the nonlinear
characteristics of the reluctivity of the magnetic materials, the
set of (2) is solved by using the N–R method at each time step:

(3)

where

(4)

is the Jacobian matrix of (2), andis the iteration number of
the N–R method.

The initial values of the solution can be predicted by the
Euler formula

(5)

Because the backward Euler formula at the th step is

(6)

the in (5) can be easily obtained from the results
of the th and th steps.

The iteration of the N–R method will stop if

(7)

where is the number of the total unknowns, is
the error of the N–R method at theth iteration cycle, and

is the error tolerance of the N–R method.
The error tolerance of the N–R method is spec-

ified in advance, but it will be adjusted during the time-step-
ping process. If cannot be reduced below the initial

, it means that an increase in the iteration number
of the N–R method will not reduce the value of of the N–R
method. Hence, can be increased automatically ac-
cording to the information of the last step.

B. ICCG Method for Solving the Algebraic Equations

At each iteration cycle of the N–R method, the ICCG algo-
rithm is used to solve the large algebraic equation set. For iter-
ative solvers, only the upper triangular coefficient matrix with
nonzero elements is needed to be stored. Hence, the computing
time and the computer storage can be greatly reduced. In the
ICCG method, one should first obtain an approximate factoriza-
tion of the coefficient matrix. To reduce the storage and reduce
the computing time when factorizing the matrix, the incomplete
Cholesky factorization is used. The coefficient matrix of the al-
gebraic equation set can be expressed as

(8)

where is the error matrix defined by .
is the lower triangular matrix of the in-

complete Cholesky factorization. It has the same sparse
characteristics of the coefficient matrix, which means that if

, then .
Because the nonzero elements of the coefficient matrix

will be distributed mainly near the diagonal, then if
the conjugate gradient algorithm is used to solve the equation

(9)

it will have good convergence. The iteration formulas are [9]

(10)

(11)

(12)

(13)

(14)

The iteration is controlled by a vectordefined as

(15)
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Fig. 1. Block diagram of the solver.

The iteration error of the ICCG algorithm can be de-
termined by the value of. If

(16)

the iteration of the ICCG algorithm is terminated. The block
diagram of the solver is shown in Fig. 1.

The iteration number of the ICCG algorithm is sensitive to
a prespecified error tolerance . If
is very small, the iterative process of the ICCG algorithm will
take a long time. Moreover, the aforementioned set of algebraic
equations need not be solved precisely at the initial iteration
steps of the N–R method. Therefore, the can be
relatively large at the beginning of the N–R method, although
it will be reduced later. If the total iteration number of the N–R
method is (as predicted from the last step of the time step),
the error tolerance of the ICCG algorithm at theth iterative step
of the N–R method can be adaptively controlled by

(17)

where is the error tolerance of the ICCG algo-
rithm at the first step of the N–R iteration, and is
the error tolerance of the ICCG algorithm at the last step of the
N–R iteration. Because the last solution of the set of the non-
linear equations should still satisfy (7), the proposed method
will not sacrifice the accuracy of the final solution.

The above-method for controlling the error tolerance of the
ICCG algorithm is based on the assumption that at each time

(a)

(b)

Fig. 2. (a) Stator mesh (1976 nodes, 3334 elements). (b) Rotor mesh (1884
nodes, 3152 elements).

step, the number of the N–R iteration is basically the same. Usu-
ally, this assumption can be satisfied because physical quantities
are generally changing very smoothly. Of course, there could
be exceptions, such as in the case of a sudden change in field
excitations. In those cases, the predicted error tolerance of the
ICCG may be incorrect, and the computing time cannot be re-
duced. Since the field excitation normally changes smoothly and
it is very rare to have sudden changes, the total computing time
will nonetheless be reduced significantly by using the proposed
method.

IV. NUMERICAL EXPERIMENTS

The proposed method has been implemented to simulate the
operation of a 2.2–kW induction motor with skewed rotor bars.
The motor is fed by sinusoidal voltages. Multislice FEM is used
to model the motor. For the sake of simplicity, the slice number
is fixed at 4 for the following numerical experiments. The stator
mesh and the rotor mesh are shown in Fig. 2. The total number of
unknowns is 13 087. The step size is 38s. All the computations
are run on a Pentium III/450 MHz computer. A typical computed
flux plot is shown in Fig. 3.

The comparison between the normal method and the pro-
posed method in obtaining the so-
lution of one step of the time-stepping FEM is listed in Tables I
–III. The corresponding computing time is given in Table IV.
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TABLE I
ITERATION NUMBERS OF THEICCG WHEN " IS FIXED. (INITIAL

DATA OF THE N–R METHOD ARE ZERO)

TABLE II
ITERATION NUMBERS OF THEICCG WHEN " IS FIXED. (INITIAL

DATA OF THE N–R METHOD ARE BEING PREDICTED)

Fig. 3. Computed flux distribution during on-load operation.

The eventual error tolerance of the N–R method is 3.010 ,
and that of the ICCG is 3.0 10 .

Usually, it is difficult to choose the initial ICCG error tol-
erance. However, the choice of the error tolerance will affect
the computing time when using the proposed method. The com-
puting time required for different values of is
shown in Fig. 4. One can see that the range of the initial ICCG
error tolerances that can be chosen is quite large and that the
proposed method is suitable for many applications.

From Table IV and Fig. 4, one can see that the proposed
methods can effectively reduce the CPU time by up to 50% of
that required to obtain the solutions of the time-stepping FEM
model at each time step.

V. CONCLUSION

When using iterative methods to solve nonlinear equations
and linear algebraic equations, the prespecified error toler-
ance will greatly affect the computing time. In the proposed
time-stepping FEM computation, the error tolerance of the N–R
method can be predicted from the last step, thereby avoiding
the use of an unduly small error tolerance. At each iteration
for the N–R method, the error tolerance of the ICCG can be

TABLE III
ITERATION NUMBERS OF THEICCG OF THEPROPOSEDMETHOD

TABLE IV
COMPARISON OF THECPU TIMES

Fig. 4. Computing time versus initial error tolerance of the ICCG algorithm.

suitably adjusted during the N–R iteration. Hence, the total
computing time for the solution of the system equations can be
reduced significantly, whereas the accuracy of the solution can
be kept unchanged. The proposed method can also be used to
deal with similar problems if nonlinear system equations are to
be solved by the N–R and the ICCG methods.
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