
3570 IEEE TRANSACTIONS ON MAGNETICS, VOL. 37, NO. 5, SEPTEMBER 2001

An Improved Tabu Search for the Global
Optimizations of Electromagnetic Devices

S. L. Ho, Shiyou Yang, Guangzheng Ni, and H. C. Wong

Abstract—An extended Tabu algorithm with an aspiration
factor is proposed. The algorithm is based on the success of
techniques such as the memorization of the previously visited
subspaces, the systematic diversification as well as the inten-
sification process for neighborhood creations. The numerical
results obtained by solving a mathematical test function and the
benchmark problem 22 of the TEAM Workshop reported in this
paper will demonstrate the usefulness of the proposed method.

Index Terms—Global optimization, inverse problem, optimal de-
sign, stochastic algorithm, tabu search method.

I. INTRODUCTION

M ORE and more attentions are paid to stochastic methods
when one tries to solve the optimal design problems

arising from the computation on electromagnetics in recent
years. This is because most of the optimal design problems
involve objective functions with more than one optima, and by
inclusion of the stochastic elements, the stochastic methods
would reach the global optimum with certainty under mild
conditions. Current stochastic methods popularly used in
electromagnetics include Simulated Annealing (SA), Evolution
(Genetic), and Tabu Search (TS) algorithms. Unfortunately,
the major drawback accompanying this kind of methods is the
slow convergence speed or excessive computational burden.
In order to alleviate the excessive computational burden and
enhance the robustness of the methods, recent research on
these methods focuses on the refinements of the methods
to enhance their efficiency, or to establish a good trade-off
between accuracy, reliability and computational burden [1]–[3].
Compared with SA and Genetic algorithms, the tabu search
technique is relatively new, and it is felt that there is a need
for further developments. Recently, different modifications
on this method are proposed, especially in problems such as
combinational optimizations [4]–[9]. Essentially, some of the
improvements of the Improved Tabu Search (ITS) presented
in this paper are novel, but some are based on methods similar
to those used in combinational optimization problems that are
rarely used to study electrical engineering problems. Numerical
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results of the proposed method on a mathematical test function
and a benchmark problem are also presented to demonstrate
the applicability of the proposed ITS.

II. I MPROVED TABU SEARCH

As it is well know, tabu search technique is a metaheuristic
procedure that guides the local heuristic search procedure
to explore the solution space to avoid local optimality. The
structures used in literatures vary from very simple ones that
include only certain basic components to those with very
complicated strategies such as variable tabu lists, systematic
diversification and intensification processes for neighborhood
creations as well as short and long term memories, resulting
in different performances and complexities in programming.
Hence the performance of the TS depends on a proper choice
of the neighborhood of a solution, on the number of iterations
for which a move is kept as tabu, on the aspiration criterion, on
the best combination of short and long term memories, and on
the best balance of the intensification and the diversification
strategies [9].

This section details the ITS for the global optimization of
multimodal objective functions with continuous variables based
on the thorough investigation and integration of the recent de-
velopments about this method in the related areas.

A. Intensification Phase

To reinforce the moves that incorporate the attributes of good
solutions founded in previous search process, an evolution
method is used as the intensification phase within the ITS,
because through reproduction and crossover, the excellent
characteristics of the parent generation is inherited by the new
generations, and the fittest survives as the parent generation to
reproduce the next generation. The first states with better
objective function values thus far searched are selected as the
population of the evolution method, and the populations are
dynamically updated during the search.

The evolution strategy used in this paper is a simple one with
Reproduction and Crossover operators. In view that the intensi-
fication phase is only used to drive the search to use the attributes
of previously visited good solutions to guide the generation of
new states, the Mutation operator is excluded deliberately in the
proposed ITS. The iterative procedure of this phase can be de-
scribed as:

1) Parent Selection: Select the parents randomly from the
population according to their fitness;
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2) Crossover: For every two selected parentsand , a
linear combination of them is used to generate their fea-
sible offsprings (new states) and [1], [2], i.e.,

(1)

where is a random number out the interval of [0, 1].
3) Termination Test: If the test is passed, terminate the inten-

sification phase, and go to diversification strategy; other-
wise, go to step 1) for the next iteration cycle.

B. Diversification Phase

To drive the search into unexplored regions uniformly and to
escape from a local optimum, a diversification strategy is in-
cluded in the ITS. This is realized by means of:

1) The use of different generation mechanism for new
neighborhood—to prevent generations of trivial moves,
the new state, denoted by , is generated in the

neighbor of the current one, identified by , by
using the following formula, which differs from the
most common ones used in the study of computational
electromagnetics,

(2)

where

,
is a random integer parameter within
the interval ,

is the dimension of the independent
variables,
is the precision parameter of the
variable in theth direction predeter-
mined by the user, and

(3)

(4)

where and are, respectively,
the lower and upper bounds of the variable in theth
direction.

2) Use of both short and long term memorizations—by
memorizing the most recently visited states, the so
called short term memory, and by comparing the newly
generated moves with those memorized in both the short
term and the population of the intensification phase, the
so called long term memory, the procedure will discard
unnecessary minimization steps that would otherwise
lead to some previously found local optima or searched
sub-states. Hence the algorithm is forced to explore
un-searched subspaces.

3) Always restart from the last accepted states rather than
the best one searched so far in the diversification phase.

Since the proposed method is developed for real value prob-
lems, the likelihood of finding solutions that are identical is ex-
tremely small, thus a proximity criterion was proposed in order
for the procedure to work [10]. Such criterion relaxes the strict
comparison of the new solution to those memorized in both the
short and long term memories.

C. Memorization of Searched Subspace

The main aim of memorizing the searched subspace for
applying tabu search technique for the optimization of mul-
timodal functions with continuous variable is to prevent the
algorithm form premature terminations, i.e., to converge to a
local optimum, rather than to prevent it from cycling. So be-
sides the memorization of the population of the intensification
phase, a short term memory—the memorization of the most
recently visited states is also included in the proposed ITS.
This short term memory is dynamically updated by adding the
last solution to the list and discarding the oldest one from it.

Although the CPU time required for computing the distances
between the randomly generated moves with those memorized
in both long and short term memories is very small compared
with that required for starting new iterative cycles with this kind
of points, the accumulation of the overall time is still significant,
especially for the long term memory case where the quantities
are very large. In order to reduce these computing times, 1) the
quantities in the memories are stored in ascending order of the
objective function values; 2) the per unit values of the variables
are used.

D. Aspiration Level

By dynamically memorizing the searched subspaces and the
populations, and comparing the newly generated states with
those in the memories, some new states may also be tabu in the
ITS. Considering the fact that when a solution to a problem is
being searched iteratively, the error reduction would probably
become increasingly small [5]. If the moves are still found to
lead to better objective function values with respect to the best
one so far found, then an aspiration level condition is proposed
to override the decision to reject a new move that may lead to a
best solution if:

1) this new move happens to be better than the best one
which has been found so far, no matter how smaller is
the improvement; or

2)

where is the best solution among the moves generated
in the neighborhood of the current point .

Together with
3) the distances between the new moves to all of the memo-

rized populations are greater than a threshold.
The reason for adding condition 3) to the previous two

conditions is that if the newly generated move is very near to
one of the populations, then the intensification search in the
neighborhood of the prescribed state can be accomplished in
the intensification phase, thereby saving the duplication in
computational resources.
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E. Transition Between Inten- and Diver-sification Phases

The proposed ITS uses a similar criterion as reported in [5]
to dynamically determine when to change phases, i.e., when to
start from the intensification phase; if the objective function has
not improved significantly in the last iterations, then the ITS
will switch to the diversification phase; the algorithm will con-
tinue in the diversification phase until the objective begins to
improve or if a maximum number of diversification iterations is
reached.

F. Termination Criteria

The proposed algorithm has two termination criteria to decide
if the global optimum has been found. The first one is: at the end
of every iteration cycle of the diversification phase, the search
should stop if

(5)

where
is the best solution of the objective function searched
in the th cycle of the diversification or intensification
phases,
is the best one searched so far,
is a prescribed integer number, and
is a precision parameter.

The other termination criterion to stop the search is satisfied
when the number of consecutive moves with no predefined im-
provements in the best objective function exceeds a threshold
value.

G. Algorithm Description

Based on the previous description, one should now be in a
position to give a schematic explanation of the ITS below:

1) Initialization—randomly generate the population for the
intensification phase;

2) Starting the Intensification phase—if the objective func-
tion has not improved significantly in the lastiterations,
switch to the diversification phase;

3) Starting diversification phase—the algorithm continues
in this phase until the solution begins to improve or a max-
imum number of iterations is reached. The population is
also dynamically updated in this phase to include recently
visited moves with better solutions;

4) Termination test—if the test is passed, stop; otherwise go
to 2) to continue the next cycle iteration.

III. N UMERICAL EXAMPLES

A. Mathematical Test Function

A complex mathematical function with many local minima is
used to test the proposed algorithm. The details of the function
are:

minimize (6)

subject to (7)

TABLE I
GLOBAL OPTIMA OF THE MATHEMATICAL FUNCTION

TABLE II
COMPARISON FOR THEMATHEMATICAL FUNCTION

Fig. 1. The convergence trajectories of the optimal solutions for SA.

Fig. 2. The convergence trajectories of the optimal solutions for ITS.

The two global optima of the function are given in Table I.
The performance comparison of the proposed ITS with SA al-
gorithm is shown in Table II. These results are the average values
of 10 runs from different initial states. In the numerical calcula-
tions, the initial value of the temperature for SA is set to 0.2, and
the of ITS to 4. The convergence trajectories of the optimal
solutions of some runs for the two methods are given, respec-
tively, in Figs. 1 and 2. The percentage values are used in these
two figures to show the same effect for variables with different
base values. In addition, the numerical calculations show that
the termination criterion (5) works well for the proposed ITS.
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Fig. 3. The schematic diagram of the SMES.

From these results one can observe clearly the advantages of
the proposed ITS.

B. Team Workshop Problem

The TEAM Workshop problem 22 of a Super-conducting
Magnetic Energy Storage (SMES) configuration with three free
parameters, as shown in Fig. 3, is selected to validate the pro-
posed ITS [12]. The objective function to be optimized is

minimize

subject to

(8)

where
is the stored energy in the SMES device,

MJ,
T,

and are weighting factors,
and are, respectively, the current density and

the maximum field in theth coil, and
is a measure of the stray fields which is
evaluated along 22 equidistant points of
line A and line B of Fig. 3 by

(9)

The Biot–Savart law is used to evaluate the fields and the
corresponding stored energy because 1) this approach is com-
putationally inexpensive; 2) the computed stray fields are very
sensitive to the meshes of finite element type methods. For an
arbitrary point , as given in Fig. 3, the field produced by coil
1 can be determined by

(10)

TABLE III
VALIDATION OF THE PROPOSEDITS USING TEAM WORKSHOPPROBLEM 22

Fig. 4. The field contours under optimized geometry.

(11)

where and are, respectively, the complete elliptic integrals
of the first and second kinds, i.e.,

(12)

(13)

where

(14)

Table III gives the comparison of the computed results using
the proposed ITS with those obtained by using simulated an-
nealing (SA) as well as the best one so far reported [12]. The
field contours under optimized geometry is given in Fig. 4. From
these results it can be seen that the proposed method uses less
than one fifth of the iteration numbers required by SA to reach
almost the same optimal solutions.

IV. CONCLUSION

This paper proposed an improved tabu search algorithm for
a practical application in finding the optimal designs of electro-
magnetic devices. The numerical results on both a mathematical
test function and the team workshop problem reveal that the it-
eration number of the proposed method is very small compared
with those algorithms such as simulated annealing.
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