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Abstract 

 
As a widely used fault tolerance technique, 

checkpointing has evolved into several schemes: 
independent, coordinated, and communication-induced 
(CIC). Independent and coordinated checkpointing 
have been adopted in many works on fault tolerant 
mobile agent (MA) systems. However, CIC, a flexible, 
efficient, and scalable checkpointing scheme, has not 
been applied to MA systems. Based on the analysis of 
the behavior of mobile agent, we argue that CIC is a 
well suited checkpointing scheme for MA systems. CIC 
not only establishes the consistent recovery lines 
efficiently but also integrates well with the independent 
checkpointing for reliable MA migration. In this paper, 
we propose an important improvement to CIC, 
referred to as the deferred message processing based 
CIC algorithm (DM-CIC), which achieves higher 
efficiency by exempting the CIC algorithm from 
making the forced checkpoints in MA systems. Through 
simulation, we find out that DM-CIC is stable and 
better suited to large scale MA systems. 
 
1. Introduction 
 

A mobile agent (MA) is a program that can migrate 
from host to host in a network of heterogeneous 
computers to execute the tasks specified by its owner. 
Characteristics of MAs include mobility, autonomy, 
asynchrony, encapsulation of protocols, adaptability, 
and support for mobile computing [3]. These 
characteristics make MA a new computing model and 
have a great potential to be used for structuring and 
coordinating distributed applications, such as e-
commerce, information searching, network 
management, and Grid computing [2, 10, 21]. Most of 
these applications require high degree of reliability and 
consistency. Therefore, fault tolerance is a key issue in 
designing an MA system.  

Checkpointing is one of the widely used fault 
tolerance techniques. A checkpoint is the copy of a 
process’ code and state stored on stable storage. 
Taking a checkpoint of a MA is readily facilitated in a 
MA system: serializing an MA for the migration to the 
next host effectively constructs a checkpoint. Nearly 
all existing MA platforms are Java based, so it is easy 
to utilize the serialization technique provided by Java 
to make checkpoints.  

Checkpointing techniques have been classified into 
three major schemes, namely independent (or 
uncoordinated), coordinated, or communication-
induced [7]. Among the three checkpointing schemes, 
independent checkpointing is the simplest one. It 
allows processes to take checkpoints periodically 
without any coordination with each other. Accordingly, 
it has been widely used in MA systems to guarantee 
MAs’ reliable migration or to prevent possible agent 
crashes. Independent checkpointing, however, may 
suffer from the domino effect [17]. In a group of MAs 
(or processes) that communicate by messages, the 
messages can induce inter-MA dependencies during 
failure-free operation. Therefore, upon a failure of one 
or more MAs, these dependencies may force some of 
the MAs that did not fail to rollback, creating what is 
commonly called rollback propagation. Rollback 
propagation may extend back to the initial state of the 
computation, causing the loss of all the work 
performed before a failure.  

In order to avoid the domino effect, coordinated 
checkpointing is proposed [5], in which processes 
coordinate to synchronize their checkpointing 
activities. In this way, a globally consistent set of 
checkpoints is always maintained in the system. 
However, coordinated checkpointing involves high 
message overhead, which makes it unsuitable for 
mobile/wireless computing systems with low 
bandwidth communication channels. A further 
disadvantage of coordinated checkpointing is that 
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process execution may have to be suspended during 
coordination, which results in the performance 
degradation. Another checkpointing scheme to over-
come the domino effect is communication-induced 
checkpointing (CIC) [18]. In CIC, processes make two 
kinds of checkpoints, basic and forced. Basic 
checkpoint is a kind of independent checkpoint, so no 
coordination is needed. Forced checkpoint is made to 
maintain the consistent recovery line. Instead of 
exchanging coordination messages like in coordinated 
checkpointing, CIC piggybacks protocol specific 
information in application messages. Processes use the 
piggybacked information to decide whether a forced 
checkpoint should be taken or not.  

Compare with independent and coordinated 
checkpointing, CIC has several advantages. First, it is 
intuitively believed to be scalable since it does not 
require the processes to participate in taking a global 
checkpoint. Second, CIC allows processes themselves 
to make decision to take checkpoints, so the processes 
can choose the right time to make the checkpoints. 
Obviously, this characteristic provides the autonomy 
and flexibility, which especially match the 
characteristics of MA system. In addition, CIC can 
also be integrated with other checkpointing schemes in 
a MA system.  

The rest of the paper is organized as follows. 
Section 2 briefly describes previous works. Section 3 
defines our system model. In Section 4, the basic CIC 
based checkpointing algorithm for MA systems and its 
integration with reliable migration are described. 
Considering the characteristics of a MA system, we 
propose an important improvement to CIC, called the 
deferred message processing based CIC algorithm 
(DM-CIC), which achieves higher efficiency by 
exempting the CIC algorithm from making the forced 
checkpoints in MA systems.  Results of performance 
evaluation through simulations are presented in 
Section 5. We conclude this paper in Section 6.  
 
2. Related works 
 

Existing works on checkpointing schemes for MA 
system have adopted two checkpointing schemes: 
independent checkpointing and coordinated check-
pointing. Due to the domino effect, independent 
checkpointing is normally applied to single MA 
scenarios, while coordinated checkpointing is used to 
provide checkpointing for a group of MAs.  

Independent checkpointing is usually used to 
guarantee the persistence of state associated with MAs. 
There are two main usages. The first is to guarantee 
reliable migration by checkpointing the agent to stable 

storage before dispatching it to a new host. This copy 
is kept until the agent arrives at the new host. The 
second usage is to tolerate agent crash on a host by 
checkpointing a replica MA into stable storage upon 
the agent’s arrival at each host or during its execution 
on the host. These two approaches have been adopted 
in many works [4,9,12,15] as well as in some MA 
systems. Concordia [19] utilizes proxy objects and a 
persistent object store to insulate applications from 
system or network failures. However, the task of 
checkpointing and recovery of MAs is left to the 
programmer. Ara [16] offers a similar means for an 
MA system to create a checkpoint, which is stored on 
some persistent media (e.g. disk).  

Domino effect greatly constrains the deployment of 
independent checkpointing in the environments where 
an MA has interactions with others, i.e., the multiple 
MAs cooperation applications. In order to remove the 
domino effect, message logging has been used in 
tandem with independent checkpointing. The authors 
of [14] used receiver based logging to log messages so 
as to ensure that the messages could be regenerated 
during the re-execution phase. The advantage claimed 
for receiver based logging against sender based 
logging is faster recovery. Another claimed advantage 
is that recovery and pruning of the message log can be 
done autonomously, without interaction with other 
user agents. But how to implement the recovery was 
not described. In [11], authors adopted the similar idea. 
The focus of these two works is on the replication 
scheme, with checkpointing being of an assistant role. 
Another independent checkpointing strategy assisted 
by message logging is found in [13], although the 
authors call it a communication pairs independent 
checkpointing strategy. 

Another way to restrict the influence of failures on 
other agents in the same communication group is to 
use coordinated checkpointing or CIC. In coordinated 
checkpointing, a coordinator initiates all the group 
members to start the checkpointing process. This 
coordinates message passing so as to produce a 
consistent system snapshot. In [6], a checkpoint 
manager (CM) monitors all the agents inside a cluster 
of machines. The CM, which is assumed to be very 
reliable, is responsible for keeping track of the agents 
and for restarting the agents when there is a node 
failure. The main problem with this approach is the 
fact that the CM is a single point of failure, and the 
message cost is such a centralized way could also be 
very high. In [8], authors present a coordinated 
checkpointing procedure in which one particular 
checkpoint server acts as a checkpoint coordinator. 
Same as [6], it suffers from the problem of single point 
failure of the checkpoint server. 
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3. System model 
 

We consider an MA system consisting of a group of 
cooperating MAs which form an MA group. In this 
MA group, each group member (a single MA) has a 
globally unique group ID and MA ID. Each group 
member executes and migrates along a predefined or 
self-initiated itinerary. With a predefined itinerary, the 
agent knows all the hosts that it will visit, while with a 
self-initiated itinerary, the agent only knows the first 
host it will visit and the following hosts are determined 
by the execution results on the previous host. The 
itinerary consists of N hosts. Group members 
communicate by message passing. Messages can be 
delayed, replicated or lost. Group members may crash 
during its execution and migration. The host and the 
MA platform (MAP) may also crash.  

To guarantee MA’s reliable migration or prevent 
the possible agent crash, we assume that each MA can 
take an independent checkpoint before its migration. 
After the agent finishes its execution on a host, it will 
migrate to the next host according to the itinerary. This 
process will continue until all the hosts have been 
visited.  

Errors in message transmission will be handled by 
the transport layer of an MA system. For simplicity, 
we assume that all the operations executed by the MAs 
are idempotent, so the exactly once execution property 
needs not to be considered in this paper. For non- 
idempotent operations, MA transaction support is 
needed to maintain the system consistency during 
recovery [20].  
 
4. CIC based Algorithms for MA Systems 
 

As we mentioned, CIC has been proven to be a 
flexible and efficient checkpointing scheme to shield 
the domino effect, while allows each process to decide 
when to make checkpoint by itself. This motivates us 
to introduce CIC for the execution of a group of MAs. 
In [1], a typical index-based CIC algorithm has been 
proposed. The algorithm assumes that each process pi 
maintains a logical clock lci which functions as pi’s 
checkpoint timestamp. The timestamp is an integer 
variable with initial value 0 and is incremented as 
followings: 
 
1. lci increases by 1 whenever pi takes a basic 

checkpoint. 
2. On every message m it sends, pi piggybacks a 

copy of the current value of lci. We denote the 
piggybacked value as m.lc. 

3. Whenever pi receives a message m, it compares lci 
with m.lc. If m.lc > lci, then pi sets lci to the value 
of m.lc and takes a forced checkpoint before 
processing the message. 

 
The set of checkpoints having the same timestamps 

in different processes is guaranteed to be a consistent 
state. We adopt this traditional CIC algorithm and 
integrate it with the existing checkpointing algorithms 
in MA systems, such as independent checkpointing 
used to guarantee the reliable migration for MAs. We 
also improve the proposed CIC algorithm by adopting 
the deferred message processing. The new algorithm, 
called DM-CIC, can avoid the forced checkpoint so as 
to get a better trade-off on the system performance. 

4.1 Basic-CIC Algorithm for MA Systems 
 

 

Algorithm 1: Basic-CIC 

1. Each MAi maintains a logical clock: Ci. Ci is initiated to be 0. 

2. Basic checkpoint is taken by MA platform (MAPi) according 
to a predefined frequency (defined in each MA) and transparent 
to MA. Before taking a basic checkpoint, Ci is increased by 1 
and the basic checkpoint is tagged with Ci.  

3. The value of Ci is piggybacked in every message Mi sent out 
by MAi. We denote the piggybacked Ci as MCi.  

4. Suppose a message Mi is sent to MAj. When MAj receives a 
message Mi, it compares Cj with MCi. If MCi > Cj, then sets Cj 
to be the value of MCi and takes a forced checkpoint tagged 
with Cj before processing Mi. 

The Basic-CIC algorithm, as described in the above 
box of Algorithm 1, directly applies the traditional CIC 
algorithm to MA systems except that the MA platform 
will assist to make the checkpoints. Basic-CIC 
algorithm is.  

Failure detector (FD) helps detect the failures of 
MAs. If an MA failed, it will be detected by the FD 
installed in the MA systems. Then, the FD will trigger 
the recovery process which will inform all the MAs in 
this group to rollback to the set of checkpoints having 
the same timestamps. 

 

 
Figure 1 Reliable Migration of MA

Checkpoint Execution 
of MA 

Migration  
of MA 

MA 
Platform 

MA 

……. 

According to Step 2 of the Basic-CIC algorithm, the 
basic checkpoint is taken by the MA platform 
according to a predefined frequency. As we mentioned, 
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an advantage of CIC is that it can prevent the domino 
effect while allowing processes considerable autonomy 
in deciding when to take basic checkpoints. An 
efficient implementation of CIC must therefore adopt a 
checkpointing policy that exploits this autonomy and 
translates it into a benefit. In general, a good 
understanding of the application and of the execution 
environment is required. Specifically, for MA systems, 
we must exploit their characteristics to find out how to 
benefit from the autonomy of CIC. 

 
Figure 1 shows the scenario of the reliable 

mi

tegration. We only 
ne

e one problem. Although we 
let

.2 Deferred Message Processing based CIC 

In an MA system, due to the mobility of MAs, 
me

he deferred 
me

gration algorithm with the use of independent 
checkpointing. If we can integrate the Basic-CIC 
algorithm with the reliable migration algorithm to let 
the independent checkpoints act as the basic 
checkpoints in Basic-CIC, we can save the operations 
to make basic checkpoints for Basic-CIC, so as to 
make the whole MA system more efficient. Figure 2 
illustrates the integration of these two algorithms, 
where the checkpoints for reliable migration act as the 
basic checkpoints in Basic-CIC. 

It is easy to implement such in
ed to modify the Step 2 of Algorithm 1 and let each 

MA platform (MAP) take basic checkpoints according 
to the frequency defined by the algorithm of reliable 
migration. Through this integration, an independent 
algorithm for reliable migration is not necessary. 
Basic-CIC will take the role to guarantee the reliable 
migration for each MA.  

Up to now, we still hav
 the checkpoints for reliable migration act as the 

basic checkpoints in the Basic-CIC algorithm, we still 
need to take the possible force checkpoints during an 
MA’s execution on a host. As shown in Figure 2, an 
MA may receive a message during its execution on a 
host, which will result in a forced checkpoint being 
taken and the MA’s execution interrupted temporarily. 
Such interruption will affect the performance of the 
MA application severely if an MA will travel a large 
number of hosts. At next section, we try to improve the 

Basic-CIC algorithm by making further exploiting the 
characteristic of MA systems. 
 
4
(DM-CIC)  
 

ssages are delivered in a purely asynchronous 
manner. A typical message delivery scheme is the 
forwarding pointer. Each MA leaves a pointer on each 
MAP it visited to point to the next MAP that it 
migrates to. A message destined to this MA will first 
be sent to the home of this MA, and then follows the 
points to chase the MA. Depending on the execution 
speed of the MA and the networks’ QoS, the message 
can catch up the MA sooner or later. For the MA, 
usually it is not important to receive the message 
earlier or later, on current host or on the next host. 
Considering this characteristic, we can avoid the 
forced checkpoint by deferring the processing of the 
message until a basic checkpoint is taken. 

Figure 3 illustrates the scenario of t
ssage processing and Algorithm 2 shows the 

procedures of DM-CIC. When MA1 receives a message 
M.1 and, according to CIC, a forced checkpoint should 
be made, instead of taking a forced checkpoint, MA1 
only accepts message M.1 but does not process it. The 
received message that can result in a forced checkpoint 
is stored in the MA’s associated mailbox (an MA’s 
associated mailbox is a buffer in an MA). The 
processing of the received message is delayed until 
MA1 makes a basic checkpoint and lands on a new host. 
In this way, we merge the operations of taking the 
basic checkpoint and the force checkpoint, but the 
price is that the messages which can result in a forced 
checkpoint can not be processed immediately when 
they reach the MA. 
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Even if an MA system does not adopt the 
independent checkpointing based reliable migration 
algorithm, DM-CIC can still be beneficial. Since an 
MA must be serialized before its migration, which 
effectively constructs a checkpoint, the basic 
checkpoint and forced checkpoint can be made at this 
point, so as to improve the system’s performance. 

However, the advantage is achieved on the price of 
sacrificing the messages’ real-time processing. On the 
other hand, exempting from the force checkpoint saves 
the system’s execution time. In the next section, we 
evaluate the performance of DM-CIC and Basic-CIC 
thought simulation. 
 
5. Performance Evaluation 
 

In our simulation, we consider the behavior of an 
MA which belongs to a group of MAs. The group of 
MAs communicates by message passing. Two metrics 
are adopted to evaluate the performance of Basic-CIC 
and DM-CIC: the delayed message processing and the 
whole execution time of an MA. We decompose an 
MA’s execution into three procedures: task execution 
(Texe=50ms), checkpointing (Tcp=10ms), and migration 
(Tmg=10ms). An MA can process messages during Texe, 
while the message processing will be blocked during 
Tcp and Tmg. Since only the messages causing the 
forced checkpoint can impact the performance of the 
CIC algorithms, we only consider such messages in 

and received randomly (following the exponential 
distribution) during the running of MAs’ execution.  
 

our simulations. We assume these messages are sent 

pro

s also 
pro

 
 

. Conclusions 

to apply the 
o

Fi

Algorithm 2: DM-CIC 

1. Each MAi maintains a logical clock Ci and a mailbox Mboxi. Ci 
is initiated with 0 and Mboxi is initiated to be empty.  
 
2. Basic checkpoint is made by MA platform (MAPi) when the 
MA is ready to migrate to the next host. The frequency will be 
set according to the requirement of reliable migration. Before a 
basic checkpoint is made, MA’s associated mailbox will be 
checked. There are two conditions:  

a) If the mailbox is empty, Ci is increased by 1 and the basic 
checkpoint is tagged with Ci.  

300

 
Figure 4 illustrates the time of the delayed message 
cessing. In DM-CIC, all the messages’ processing 

will be delayed, but the delay is stable. Basic-CIC 
performs well when few messages arrive. But its 
performance degrades sharply when more messages 
come in, because the large number of operations for 
forced checkpointing will block the message 
processing and increase the delay dramatically.  

The operations of taking forced checkpoint
long the MA’s whole execution time, as shown in 

Figure 5. 

6
 

In this paper, we proposed 
c mmunication induced checkpointing (CIC) scheme 
for MA systems. Basic-CIC and DM-CIC algorithms 
have been developed to support the recovery of a 
group of MAs. CIC-based algorithms not only 
establish the consistent recovery lines efficiently but 
can also well integrate with the existing independent 
checkpointing operations used for reliable MA 
migration in MA systems. Through simulation, we find 

gure 5 The whole execution time of an MA
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b) If the mailbox is not empty, Ci is set to the maximum logical 
clock of the stored messages in the mailbox, and then the 
basic checkpoint is tagged with Ci. 

 
3. The value of Ci is piggybacked in every message Mi sent out 
by MAi. We denote the piggybacked Ci as MCi.  
 Figure 4 The delayed message processing 
4. Suppose a message Mi is sent to MAj. When MAj receives the 
message Mi, it compares Cj with MCi.  

a) If MCi ≤ Cj, then message Mi will be processed.  
b) If MCi > Cj, Mi will not be processed but to be stored in 

MAj’s associated mailbox Mboxj.  

5. When an MA lands on a new host, it will check its mailbox 
and process the messages if the mailbox is not empty.  
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that DM-CIC is better suited for large scale MA 
systems which may involve large amount of message 
exchange.  
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