
CIC: An Integrated Approach to Checkpointing in Mobile Agent Systems

Jin Yang, Jiannong Cao, Weigang Wu
Internet and Mobile Computing Lab

Department of Computing, Hong Kong Polytechnic University
Hung Hom, Kowloon Hong Kong

{csyangj, csjcao, cswgwu}@comp.polyu.edu.hk

Abstract

As a widely used fault tolerance technique,

checkpointing has evolved into several schemes:
independent, coordinated, and communication-induced
(CIC). Independent and coordinated checkpointing
have been adopted in many works on fault tolerant
mobile agent (MA) systems. However, CIC, a flexible,
efficient, and scalable checkpointing scheme, has not
been applied to MA systems. Based on the analysis of
the behavior of mobile agent, we argue that CIC is a
well suited checkpointing scheme for MA systems. CIC
not only establishes the consistent recovery lines
efficiently but also integrates well with the independent
checkpointing for reliable MA migration. In this paper,
we propose an important improvement to CIC,
referred to as the deferred message processing based
CIC algorithm (DM-CIC), which achieves higher
efficiency by exempting the CIC algorithm from
making the forced checkpoints in MA systems. Through
simulation, we find out that DM-CIC is stable and
better suited to large scale MA systems.

1. Introduction

A mobile agent (MA) is a program that can migrate
from host to host in a network of heterogeneous
computers to execute the tasks specified by its owner.
Characteristics of MAs include mobility, autonomy,
asynchrony, encapsulation of protocols, adaptability,
and support for mobile computing [3]. These
characteristics make MA a new computing model and
have a great potential to be used for structuring and
coordinating distributed applications, such as e-
commerce, information searching, network
management, and Grid computing [2, 10, 21]. Most of
these applications require high degree of reliability and
consistency. Therefore, fault tolerance is a key issue in
designing an MA system.

Checkpointing is one of the widely used fault
tolerance techniques. A checkpoint is the copy of a
process’ code and state stored on stable storage.
Taking a checkpoint of a MA is readily facilitated in a
MA system: serializing an MA for the migration to the
next host effectively constructs a checkpoint. Nearly
all existing MA platforms are Java based, so it is easy
to utilize the serialization technique provided by Java
to make checkpoints.

Checkpointing techniques have been classified into
three major schemes, namely independent (or
uncoordinated), coordinated, or communication-
induced [7]. Among the three checkpointing schemes,
independent checkpointing is the simplest one. It
allows processes to take checkpoints periodically
without any coordination with each other. Accordingly,
it has been widely used in MA systems to guarantee
MAs’ reliable migration or to prevent possible agent
crashes. Independent checkpointing, however, may
suffer from the domino effect [17]. In a group of MAs
(or processes) that communicate by messages, the
messages can induce inter-MA dependencies during
failure-free operation. Therefore, upon a failure of one
or more MAs, these dependencies may force some of
the MAs that did not fail to rollback, creating what is
commonly called rollback propagation. Rollback
propagation may extend back to the initial state of the
computation, causing the loss of all the work
performed before a failure.

In order to avoid the domino effect, coordinated
checkpointing is proposed [5], in which processes
coordinate to synchronize their checkpointing
activities. In this way, a globally consistent set of
checkpoints is always maintained in the system.
However, coordinated checkpointing involves high
message overhead, which makes it unsuitable for
mobile/wireless computing systems with low
bandwidth communication channels. A further
disadvantage of coordinated checkpointing is that

Proceedings of the Second International
Conference on Semantics, Knowledge, and Grid (SKG'06)
0-7695-2673-X/06 $20.00 © 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyU Institutional Repository

https://core.ac.uk/display/61006568?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

process execution may have to be suspended during
coordination, which results in the performance
degradation. Another checkpointing scheme to over-
come the domino effect is communication-induced
checkpointing (CIC) [18]. In CIC, processes make two
kinds of checkpoints, basic and forced. Basic
checkpoint is a kind of independent checkpoint, so no
coordination is needed. Forced checkpoint is made to
maintain the consistent recovery line. Instead of
exchanging coordination messages like in coordinated
checkpointing, CIC piggybacks protocol specific
information in application messages. Processes use the
piggybacked information to decide whether a forced
checkpoint should be taken or not.

Compare with independent and coordinated
checkpointing, CIC has several advantages. First, it is
intuitively believed to be scalable since it does not
require the processes to participate in taking a global
checkpoint. Second, CIC allows processes themselves
to make decision to take checkpoints, so the processes
can choose the right time to make the checkpoints.
Obviously, this characteristic provides the autonomy
and flexibility, which especially match the
characteristics of MA system. In addition, CIC can
also be integrated with other checkpointing schemes in
a MA system.

The rest of the paper is organized as follows.
Section 2 briefly describes previous works. Section 3
defines our system model. In Section 4, the basic CIC
based checkpointing algorithm for MA systems and its
integration with reliable migration are described.
Considering the characteristics of a MA system, we
propose an important improvement to CIC, called the
deferred message processing based CIC algorithm
(DM-CIC), which achieves higher efficiency by
exempting the CIC algorithm from making the forced
checkpoints in MA systems. Results of performance
evaluation through simulations are presented in
Section 5. We conclude this paper in Section 6.

2. Related works

Existing works on checkpointing schemes for MA
system have adopted two checkpointing schemes:
independent checkpointing and coordinated check-
pointing. Due to the domino effect, independent
checkpointing is normally applied to single MA
scenarios, while coordinated checkpointing is used to
provide checkpointing for a group of MAs.

Independent checkpointing is usually used to
guarantee the persistence of state associated with MAs.
There are two main usages. The first is to guarantee
reliable migration by checkpointing the agent to stable

storage before dispatching it to a new host. This copy
is kept until the agent arrives at the new host. The
second usage is to tolerate agent crash on a host by
checkpointing a replica MA into stable storage upon
the agent’s arrival at each host or during its execution
on the host. These two approaches have been adopted
in many works [4,9,12,15] as well as in some MA
systems. Concordia [19] utilizes proxy objects and a
persistent object store to insulate applications from
system or network failures. However, the task of
checkpointing and recovery of MAs is left to the
programmer. Ara [16] offers a similar means for an
MA system to create a checkpoint, which is stored on
some persistent media (e.g. disk).

Domino effect greatly constrains the deployment of
independent checkpointing in the environments where
an MA has interactions with others, i.e., the multiple
MAs cooperation applications. In order to remove the
domino effect, message logging has been used in
tandem with independent checkpointing. The authors
of [14] used receiver based logging to log messages so
as to ensure that the messages could be regenerated
during the re-execution phase. The advantage claimed
for receiver based logging against sender based
logging is faster recovery. Another claimed advantage
is that recovery and pruning of the message log can be
done autonomously, without interaction with other
user agents. But how to implement the recovery was
not described. In [11], authors adopted the similar idea.
The focus of these two works is on the replication
scheme, with checkpointing being of an assistant role.
Another independent checkpointing strategy assisted
by message logging is found in [13], although the
authors call it a communication pairs independent
checkpointing strategy.

Another way to restrict the influence of failures on
other agents in the same communication group is to
use coordinated checkpointing or CIC. In coordinated
checkpointing, a coordinator initiates all the group
members to start the checkpointing process. This
coordinates message passing so as to produce a
consistent system snapshot. In [6], a checkpoint
manager (CM) monitors all the agents inside a cluster
of machines. The CM, which is assumed to be very
reliable, is responsible for keeping track of the agents
and for restarting the agents when there is a node
failure. The main problem with this approach is the
fact that the CM is a single point of failure, and the
message cost is such a centralized way could also be
very high. In [8], authors present a coordinated
checkpointing procedure in which one particular
checkpoint server acts as a checkpoint coordinator.
Same as [6], it suffers from the problem of single point
failure of the checkpoint server.

Proceedings of the Second International
Conference on Semantics, Knowledge, and Grid (SKG'06)
0-7695-2673-X/06 $20.00 © 2006

3. System model

We consider an MA system consisting of a group of
cooperating MAs which form an MA group. In this
MA group, each group member (a single MA) has a
globally unique group ID and MA ID. Each group
member executes and migrates along a predefined or
self-initiated itinerary. With a predefined itinerary, the
agent knows all the hosts that it will visit, while with a
self-initiated itinerary, the agent only knows the first
host it will visit and the following hosts are determined
by the execution results on the previous host. The
itinerary consists of N hosts. Group members
communicate by message passing. Messages can be
delayed, replicated or lost. Group members may crash
during its execution and migration. The host and the
MA platform (MAP) may also crash.

To guarantee MA’s reliable migration or prevent
the possible agent crash, we assume that each MA can
take an independent checkpoint before its migration.
After the agent finishes its execution on a host, it will
migrate to the next host according to the itinerary. This
process will continue until all the hosts have been
visited.

Errors in message transmission will be handled by
the transport layer of an MA system. For simplicity,
we assume that all the operations executed by the MAs
are idempotent, so the exactly once execution property
needs not to be considered in this paper. For non-
idempotent operations, MA transaction support is
needed to maintain the system consistency during
recovery [20].

4. CIC based Algorithms for MA Systems

As we mentioned, CIC has been proven to be a
flexible and efficient checkpointing scheme to shield
the domino effect, while allows each process to decide
when to make checkpoint by itself. This motivates us
to introduce CIC for the execution of a group of MAs.
In [1], a typical index-based CIC algorithm has been
proposed. The algorithm assumes that each process pi
maintains a logical clock lci which functions as pi’s
checkpoint timestamp. The timestamp is an integer
variable with initial value 0 and is incremented as
followings:

1. lci increases by 1 whenever pi takes a basic

checkpoint.
2. On every message m it sends, pi piggybacks a

copy of the current value of lci. We denote the
piggybacked value as m.lc.

3. Whenever pi receives a message m, it compares lci
with m.lc. If m.lc > lci, then pi sets lci to the value
of m.lc and takes a forced checkpoint before
processing the message.

The set of checkpoints having the same timestamps

in different processes is guaranteed to be a consistent
state. We adopt this traditional CIC algorithm and
integrate it with the existing checkpointing algorithms
in MA systems, such as independent checkpointing
used to guarantee the reliable migration for MAs. We
also improve the proposed CIC algorithm by adopting
the deferred message processing. The new algorithm,
called DM-CIC, can avoid the forced checkpoint so as
to get a better trade-off on the system performance.

4.1 Basic-CIC Algorithm for MA Systems

Algorithm 1: Basic-CIC

1. Each MAi maintains a logical clock: Ci. Ci is initiated to be 0.

2. Basic checkpoint is taken by MA platform (MAPi) according
to a predefined frequency (defined in each MA) and transparent
to MA. Before taking a basic checkpoint, Ci is increased by 1
and the basic checkpoint is tagged with Ci.

3. The value of Ci is piggybacked in every message Mi sent out
by MAi. We denote the piggybacked Ci as MCi.

4. Suppose a message Mi is sent to MAj. When MAj receives a
message Mi, it compares Cj with MCi. If MCi > Cj, then sets Cj
to be the value of MCi and takes a forced checkpoint tagged
with Cj before processing Mi.

The Basic-CIC algorithm, as described in the above
box of Algorithm 1, directly applies the traditional CIC
algorithm to MA systems except that the MA platform
will assist to make the checkpoints. Basic-CIC
algorithm is.

Failure detector (FD) helps detect the failures of
MAs. If an MA failed, it will be detected by the FD
installed in the MA systems. Then, the FD will trigger
the recovery process which will inform all the MAs in
this group to rollback to the set of checkpoints having
the same timestamps.

Figure 1 Reliable Migration of MA

Checkpoint Execution
of MA

Migration
of MA

MA
Platform

MA

…….

According to Step 2 of the Basic-CIC algorithm, the
basic checkpoint is taken by the MA platform
according to a predefined frequency. As we mentioned,

Proceedings of the Second International
Conference on Semantics, Knowledge, and Grid (SKG'06)
0-7695-2673-X/06 $20.00 © 2006

an advantage of CIC is that it can prevent the domino
effect while allowing processes considerable autonomy
in deciding when to take basic checkpoints. An
efficient implementation of CIC must therefore adopt a
checkpointing policy that exploits this autonomy and
translates it into a benefit. In general, a good
understanding of the application and of the execution
environment is required. Specifically, for MA systems,
we must exploit their characteristics to find out how to
benefit from the autonomy of CIC.

Figure 1 shows the scenario of the reliable

mi

tegration. We only
ne

e one problem. Although we
let

.2 Deferred Message Processing based CIC

In an MA system, due to the mobility of MAs,
me

he deferred
me

gration algorithm with the use of independent
checkpointing. If we can integrate the Basic-CIC
algorithm with the reliable migration algorithm to let
the independent checkpoints act as the basic
checkpoints in Basic-CIC, we can save the operations
to make basic checkpoints for Basic-CIC, so as to
make the whole MA system more efficient. Figure 2
illustrates the integration of these two algorithms,
where the checkpoints for reliable migration act as the
basic checkpoints in Basic-CIC.

It is easy to implement such in
ed to modify the Step 2 of Algorithm 1 and let each

MA platform (MAP) take basic checkpoints according
to the frequency defined by the algorithm of reliable
migration. Through this integration, an independent
algorithm for reliable migration is not necessary.
Basic-CIC will take the role to guarantee the reliable
migration for each MA.

Up to now, we still hav
 the checkpoints for reliable migration act as the

basic checkpoints in the Basic-CIC algorithm, we still
need to take the possible force checkpoints during an
MA’s execution on a host. As shown in Figure 2, an
MA may receive a message during its execution on a
host, which will result in a forced checkpoint being
taken and the MA’s execution interrupted temporarily.
Such interruption will affect the performance of the
MA application severely if an MA will travel a large
number of hosts. At next section, we try to improve the

Basic-CIC algorithm by making further exploiting the
characteristic of MA systems.

4
(DM-CIC)

ssages are delivered in a purely asynchronous
manner. A typical message delivery scheme is the
forwarding pointer. Each MA leaves a pointer on each
MAP it visited to point to the next MAP that it
migrates to. A message destined to this MA will first
be sent to the home of this MA, and then follows the
points to chase the MA. Depending on the execution
speed of the MA and the networks’ QoS, the message
can catch up the MA sooner or later. For the MA,
usually it is not important to receive the message
earlier or later, on current host or on the next host.
Considering this characteristic, we can avoid the
forced checkpoint by deferring the processing of the
message until a basic checkpoint is taken.

Figure 3 illustrates the scenario of t
ssage processing and Algorithm 2 shows the

procedures of DM-CIC. When MA1 receives a message
M.1 and, according to CIC, a forced checkpoint should
be made, instead of taking a forced checkpoint, MA1
only accepts message M.1 but does not process it. The
received message that can result in a forced checkpoint
is stored in the MA’s associated mailbox (an MA’s
associated mailbox is a buffer in an MA). The
processing of the received message is delayed until
MA1 makes a basic checkpoint and lands on a new host.
In this way, we merge the operations of taking the
basic checkpoint and the force checkpoint, but the
price is that the messages which can result in a forced
checkpoint can not be processed immediately when
they reach the MA.

1

MA1Checkpoint

Forced
Checkpoint

Execution
of MA M.0 M.1

Migration
of MA

Message
Passing

MA2

Figure 2 Basic-CIC Integrated with
Reliable Migration

Figure 3 DM-CIC

1

M.0 M.1

Checkpoint

Execution
of MA

Migration
of MA

Message
Passing

MA1

MA2

MA1

Stored in Mailbox Process
the Stored
Message

Proceedings of the Second International
Conference on Semantics, Knowledge, and Grid (SKG'06)
0-7695-2673-X/06 $20.00 © 2006

Even if an MA system does not adopt the
independent checkpointing based reliable migration
algorithm, DM-CIC can still be beneficial. Since an
MA must be serialized before its migration, which
effectively constructs a checkpoint, the basic
checkpoint and forced checkpoint can be made at this
point, so as to improve the system’s performance.

However, the advantage is achieved on the price of
sacrificing the messages’ real-time processing. On the
other hand, exempting from the force checkpoint saves
the system’s execution time. In the next section, we
evaluate the performance of DM-CIC and Basic-CIC
thought simulation.

5. Performance Evaluation

In our simulation, we consider the behavior of an
MA which belongs to a group of MAs. The group of
MAs communicates by message passing. Two metrics
are adopted to evaluate the performance of Basic-CIC
and DM-CIC: the delayed message processing and the
whole execution time of an MA. We decompose an
MA’s execution into three procedures: task execution
(Texe=50ms), checkpointing (Tcp=10ms), and migration
(Tmg=10ms). An MA can process messages during Texe,
while the message processing will be blocked during
Tcp and Tmg. Since only the messages causing the
forced checkpoint can impact the performance of the
CIC algorithms, we only consider such messages in

and received randomly (following the exponential
distribution) during the running of MAs’ execution.

our simulations. We assume these messages are sent

pro

s also
pro

. Conclusions

to apply the
o

Fi

Algorithm 2: DM-CIC

1. Each MAi maintains a logical clock Ci and a mailbox Mboxi. Ci
is initiated with 0 and Mboxi is initiated to be empty.

2. Basic checkpoint is made by MA platform (MAPi) when the
MA is ready to migrate to the next host. The frequency will be
set according to the requirement of reliable migration. Before a
basic checkpoint is made, MA’s associated mailbox will be
checked. There are two conditions:

a) If the mailbox is empty, Ci is increased by 1 and the basic
checkpoint is tagged with Ci.

300

Figure 4 illustrates the time of the delayed message
cessing. In DM-CIC, all the messages’ processing

will be delayed, but the delay is stable. Basic-CIC
performs well when few messages arrive. But its
performance degrades sharply when more messages
come in, because the large number of operations for
forced checkpointing will block the message
processing and increase the delay dramatically.

The operations of taking forced checkpoint
long the MA’s whole execution time, as shown in

Figure 5.

6

In this paper, we proposed
c mmunication induced checkpointing (CIC) scheme
for MA systems. Basic-CIC and DM-CIC algorithms
have been developed to support the recovery of a
group of MAs. CIC-based algorithms not only
establish the consistent recovery lines efficiently but
can also well integrate with the existing independent
checkpointing operations used for reliable MA
migration in MA systems. Through simulation, we find

gure 5 The whole execution time of an MA

0 100 200 300 400 500 600
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
4x 10

Number of messages can cause forced checkpoint

Th
e

ex
ec

ut
io

n
tim

e
of

 a
n

M
A

(m
s) Without Checkpointing

Basic CIC
DM-CIC

0 100 200 300 400 500 600
0

50

100

150

200

250

Number of messages can cause forced checkpoint

Th
e

tim
e

of
 D

el
ay

ed
 P

ro
ce

ss
in

g
(m

s) Without Checkpointing
Basic CIC
DM-CIC

b) If the mailbox is not empty, Ci is set to the maximum logical
clock of the stored messages in the mailbox, and then the
basic checkpoint is tagged with Ci.

3. The value of Ci is piggybacked in every message Mi sent out
by MAi. We denote the piggybacked Ci as MCi.
 Figure 4 The delayed message processing
4. Suppose a message Mi is sent to MAj. When MAj receives the
message Mi, it compares Cj with MCi.

a) If MCi ≤ Cj, then message Mi will be processed.
b) If MCi > Cj, Mi will not be processed but to be stored in

MAj’s associated mailbox Mboxj.

5. When an MA lands on a new host, it will check its mailbox
and process the messages if the mailbox is not empty.

Proceedings of the Second International
Conference on Semantics, Knowledge, and Grid (SKG'06)
0-7695-2673-X/06 $20.00 © 2006

that DM-CIC is better suited for large scale MA
systems which may involve large amount of message
exchange.

Acknowledgement

ed in part by the University
rant Council of Hong Kong under the CERG Grants

Pol

. Ciuoletti, and L. Simoncini, “A Distributed
ithm”, In Proceedings of the

ions Using Mobile

7 (#88465).

mput. Syst. 31,

gents architecture,” in Proc. 1st Int. Symp. Object-

s”, ACM

overy

Practical Fault-Tolerance for Itinerant

M, Vol. 42, No. 3, March 1999.

 in Mobile Agent Systems," in Proceedings 7th World

oc. Int.

EEE

nts in Clusters”, Parallel and

n schemes for fault

obile

20–232. 1975.

194. 1980.

 Lecture

”, Proc. Int.

ta Engineering, 17

This work is support

G
yU 5183/04E, and China National 973 Program

under Grant 2002CB312002.

References

[1] D. Briatico, A
Domino-Effect Free Recovery Algor
IEEE International Symposium on Reliability Distributed Software
and Database, pages 207~215, December 1984.
[2] J. Cao, G.H. Chan, W. Jia, and T. Dillon, "Checkpointing and
Rollback of Wide-Area Distributed Applicat
Agents", Proc. IPDPS2001 - IEEE 2001 International Parallel and
Distributed Processing, April 2001, San Francisco, USA.
[3] D. Chess, C. harrison, and A. Kershenbaum, “Mobile Agents:
Are They a Good Idea?”, IBM Research Report, RC 1988
[4] X. Chen and M.R. Lyu. “Performance and Effectiveness Analysis
of Checkpointing in Mobile Environments”, Proc. of the Int’l Symp.
On Reliable Distributed Systems, pp. 131-140, 2003.
[5] Chandy, M., Lamport, L. “Distributed snapshots: Determining
global states of distributed systems”, ACM Trans. Co
1, 63–75. 1985.
[6] M. Dalmeijer, E. Rietjens, D. Hammer, A. Aerts, M. Schoede, “A
reliable mobile a
Oriented Real-Time Computing, Kyoto, Japan, Apr. 1998.
[7] E. N. Elnozahy, D. B. Johnson, Y. M. Wang. “A Survey of
Rollback-Recovery Protocols in Message Passing System
Computer Surveys, Volume 34, Number 3, 2002 pp. 375-408
[8] E. Gendelman, L.F. Bic, and M.B. Dillencourt. “An Application-
Transparent, Platform-Independent Approach to Rollback-rec
for Mobile Agent Systems”, Proc. 20th Int’l Conf. on Distributed
Computing Syst., 2000.
[9] D. Johansen, K. Marzullo, F.B. Schneider, K. Jacobsen, and D.
Zagorodnov, “NAP:

Computations,” Proc. 19th Int’l Conf. Distributed Computing
Systems (ICDCS ’99), June 1999.
[10] D.B. Lange and M. Oshima, “Seven Good Reasons for Mobile
Agents”, Communication of the AC
pp. 88-89.
[11] M.R. Lyu and T.Y. Wong, "A Progressive Fault Tolerant
Mechanism
Multiconference on Systemics, Cybernetics and Informatics
(SCI2003), Orlando , Florida, July 27-30 2003, pp. 299-306.
[12] A. Mohindra, A. Purakayastha, and P. Thati, “Exploiting
nondeterminism for reliability of mobile agent systems,” in Pr
Conf. Dependable Systems Networks, Los Alamitos, CA, 2000.
[13] Osman, T.; Wagealla, W.; Bargiela, A.; "An approach to
rollback recovery of collaborating mobile agents", I
Transactions on Systems, Man and Cybernetics, Part C, Volume 34,
Issue 1, Feb. 2004 Page(s):48 - 57
[14] Holger Pals, Stefan Petri, and Claus Grewe, “FANTOMAS:
Fault Tolerance for Mobile Age
Distributed Processing - Proceedings of 15 IPDPS 2000 Workshops,
Cancun, Mexiko, May 2000, Cancun, Mexiko.
[15] Taesoon Park; Ilsoo Byun; Hyunjoo Kim; Yeom, H.Y.; “The
performance of checkpointing and replicatio
tolerant mobile agent systems” 2002. Proceedings. 21st IEEE
Symposium on Reliable Distributed Systems, 13-16 Oct. 2002
[16] H. Peine and T. Stolpmann, “The Architecture of the Ara
Platform for Mobile Agents”, Proc. 1st Int’l Workshop on M
Agents, 1997, Berlin, Germany.
[17] Randell, B. “System structure for software fault tolerance”,
IEEE Trans. Softw. Engin. 1, 2, 2
[18] Russell, D. L. “State restoration in systems of communicating
processes”, IEEE Trans. Softw. Engin. 6, 2, 183–
[19] D. Wang, et al, “Concordia: An infrastructure for collaborating
mobile agents”, Proc. 1st Int’l Workshop on Mobile Agents,
Notes in Computer Science, Vol. 1219, 1997. pp.86-97.
[20] Jin Yang, Jiannong Cao, Weigang Wu, Chengzhong Xu, “A
Framework for Transactional Mobile Agent Execution
Conf. on Grid and Cooperative Computing (GCC’05) 1002~1008
November 30-December 3, 2005, Beijing, China.
[21] H.Zhuge, et al, A Scalable P2P Platform for the Knowledge
Grid, IEEE Transactions on Knowledge and Da
(12) (2005):1721-1736

Proceedings of the Second International
Conference on Semantics, Knowledge, and Grid (SKG'06)
0-7695-2673-X/06 $20.00 © 2006

