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An Efficient Multiobjective Optimizer Based
on Genetic Algorithm and Approximation
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To provide an efficient multiobjective optimizer, an approximation technique based on the moving least squares approximation is
integrated into an improved genetic algorithm. In order to use fully, both the a posteriori information gathered from the latest searched
nondominated solutions and the a priori knowledge about the search space and individuals, in guiding the search towards more and
better Pareto solutions, a gradient direction based perturbation search strategy and a preference function based fitness penalization
scheme are proposed. Numerical results are reported to validate the proposed work.

Index Terms—Approximation technique, evolutionary computation, genetic algorithm (GA), multiobjective optimization.

I. INTRODUCTION

TO MEET THE ever increasing demands in the design
automations of electromagnetic devices, a considerable

amount of efforts are dedicated to the development of multi-
objective or vector optimizers. A wealth of vector algorithms,
such as genetic algorithm (GA) or evolutionary algorithm (EA)
[1], [2], simulated annealing algorithm (SA) [3], tabu search
method [4] and particle swarm optimization (PSO) method [5],
to name but a few, are proposed and used successfully to solve
typical electromagnetic design problems. However, a multiob-
jective problem is characterized by the need to optimize several
incommensurable and conflicting objectives simultaneously.
In general, the solution of a multiobjective optimal problem is
not a single point but is a set of optimal solutions called Pareto
optimal or nondominated solutions.

For a multiobjective solver, the following two issues must
be addressed carefully: 1) means to accomplish the fitness as-
signment and selection in order to guide the search towards the
Pareto optimal front; 2) means to maintain the diversity in the
searched Pareto optimal front. To meet these two goals, most
of the reported efforts are focusing on techniques to extend the
available scalar optimal methods to obtain some nondominated
points with the prescribed diversities in both parameter and ob-
jective function spaces.

In spite of significant progresses being realized in the devel-
opment of multiobjective optimal algorithms, the robustness and
efficiency of available vector optimal methods are still unsatis-
factory, hence there are still many problems yet to be addressed
[6]. Indeed, very few studies have been devoted, hitherto, to the
development of approximating techniques of nondominated sets
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in continuous multiobjective optimization problems [7]. How-
ever, a proper approximation of the non-dominated set could
provide a wealth of useful information to guide the search to-
wards the finding of more and better Pareto solutions with en-
hanced convergence performances. In this regard, an approxi-
mation technique is proposed and then integrated into an im-
proved vector genetic algorithm (IVGA) in the design of an ef-
ficient vector optimizer.

II. AN EFFICIENT MULTIOBJECTIVE OPTIMIZER

A. An Improved Vector Genetic Algorithm

Both well established and newly proposed techniques are in-
tegrated in the proposed IVGA to help finding the Pareto so-
lutions efficiently and to distribute them uniformly along the
Pareto optimal front.

1) Reporting of Nondominated Solutions: As similar to the
global repository of [8], a Pareto set, , is introduced to
report the so far searched non-dominated solutions in the pro-
posed algorithm. Also, the solutions of will be used in
the assignment of the fitness value to an individual in the itera-
tion process.

2) Assigning Fitness Value for New Individuals: To assess
the quality of an individual in a Pareto optimal sense, some
scalar techniques must firstly be designed for multiobjective
function optimizations. To favor the selection of individuals
near the Pareto optimal front, and also to distribute them
uniformly along the tradeoff surface, other things being equal,
the fitness assignment mechanism as proposed by Zitzler and
Thiele [9] is extended and used in the proposed algorithm.
The fitness value of an individual in the current population is
assigned in accordance to a two-stage process as follows.
Step 1) Determine the strength of the solutions of
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For each solution in , its strength is pro-
portional to the number of individuals in the current
population which are dominated by it, i.e.,

(1)

where is the number of individuals in the current
population which are dominated by the solution ;

is the size of the population. The fitness value of
the solution is the inverse of its strength.

Step 2) Fitness assignment of individuals in population
The fitness value of an individual in the popula-
tion is computed by summing the strengths of all
Pareto set members which dominate individual .
Mathematically

(2)

where , , means that solution
dominates solution .

3) A Priori Penalization of the Fitness Value: In most of the
available multiobjective optimizers, only the information gath-
ered on the so far searched solutions, the a posteriori informa-
tion, is used to guide the search towards more promising solu-
tions. However, if some a priori knowledge about the search
space and individuals is available and could be used, the search
efficiency and quality of the solution of the optimizer could
be improved. Hence a preference function, that includes the a
priori information about an individual as proposed in [10], is
used to penalize the fitness value to guide the search to find
better Pareto solutions. For the paper to be self-contained, the
concept of the preference function will be described firstly.

For illustrative simplicity, one considers the minimization of
an optimal problem involving two decision parameters

and two objective functions. Mathemat-
ically, if the contour lines of and in the parameter space ex-
hibiting different convexities are intersecting at a feasible point

as shown in Fig. 1(a), there will be at least one point in the
feasible space which is better than point for both objective
functions. By repeatedly and symmetrically reducing the values
of both functions and , it is possible to locate a Pareto op-
timal point at the tangential point between the contour lines of
the two objectives, as shown in Fig. 1(b). In order to charac-
terize the feature of an intersection point of the contour lines of
the two objectives in the parameter space, one defines the pref-
erence function as

(3)

where is the Euclidean norm.
The preference function reaches its minimum function

value of zero at all Pareto optimal points. In other words, the
preference function provides a “gauge” to measure the “close-
ness” of a feasible point to the nondominated solutions of the
optimal problems. Therefore, to intensify searches around the

Fig. 1. Illustration of intersection points for a design problem comprising of
two decision parameters and two objective functions.

points which are “close” to a Pareto solution, the fitness value
of individuals in the current population is penalized by using

(4)

where is the th individual; is a constant pre-
defined by the user.

When the number of objective functions is more than 2, the
preference functions are defined in a “pairwise” sense for every
two objectives, and the power of the penalized function of (4),
i.e., , is the weighted sum of the values of all possible
preference functions pairwisely defined. From (4), it is clear
that the smaller the preference function, the smaller is the fit-
ness being devalued. Consequently, the proposed penalization
scheme of the fitness value of an individual will force the search
towards more and better Pareto solutions.

4) Fitness Sharing: To produce a uniform distribution of the
searched Pareto solutions, not only in the objective but also in
the parameter spaces, the fitness sharing concept is introduced.
In order to reduce the implementation complexity, a simple fit-
ness sharing function is proposed. Mathematically, the fitness
sharing function is defined as

(5)

where is the point density around the spec-
ified point in the -space; is the number of the total
solutions which are available in the current generation; and

are, respectively, the objective and parameter spaces.
To compute the point density of a specified point, a hyper-

sphere with the specific point as the centre is constructed and
the number of the solutions which fall inside this sphere is used
as a measure of its fitness sharing function. The fitness value of
an individual, , is the weighted sum of its fitness and fitness
sharing function values, i.e.,

(6)

where and are two weighting constants.
5) Selection of New Generation: At the end of every gen-

eration, a new population is selected from all solutions which
are available in the current generation using a Roulette wheel
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selection mechanism according to the fitness values of the so-
lutions. The new populations are generally composed of three
different individuals, i.e., those generated by means of selec-
tion, crossover, and mutation operations; those that come from
the current population; and those that are stored in the external
Pareto optimal set.

B. Approximation and Utilization of Nondominated Set

To fully use the information gathered from the so far searched
discrete nondominated solutions, a continuous approximation of
these discrete points at the end of each generation is constructed
using a moving least squares approximation based response sur-
face model [11]. As better nondominated points may be found,
in the gradient direction of this approximated presentation from
a geometrical perspective, an intensifying searching phase is ac-
tivated by perturbing a specific point selected from this approx-
imation on its gradient direction, in order to obtain such solu-
tions. Essentially, the proposed intensifying searching phase is:

1) Select a point from the approximated presentation, using a
Roulette wheel selection rule according to the point den-
sities of the searched discrete nondominated solutions, in
the objective function space.

2) Perturb the specific point on its gradient direction, and de-
termine the objective function values of the newly per-
turbed point using

(7)

where is the value of the th objective function at the
specific point; is the approximated continuous contour of
the so far searched nondominated solutions in the objective
space; is a small perturbation value of the th prede-
fined by the user.

3) Calculate the decision parameter values of the new pertur-
bation point according to their objective function values.
As i) the number of the objective functions is generally
smaller than that of the decision parameters, and ii) one
image in the objective space may relate to multiple points
in the decision parameter space, the values of the deci-
sion parameters of the new perturbation point is determined
from

(8)

where and are the values of the
th objective function obtained, respectively, in step (2)

and from a response surface of the corresponding objec-
tive function as proposed in this paper.

4) Check if the newly calculated decision parameters are in
the feasible space. If the answer is “Yes,” go to next step;
Otherwise, reduce the perturbation value and return to
step 2.

5) Determine if the stop criterion is satisfied. If the answer is
“Yes,” stop this search phase; Otherwise, go to step 1.

Fig. 2. Schematic diagram of the multisectional pole shoes.

The initial value of the perturbation value, , is automat-
ically adjusted during the iterative process in such a way that
it jumps to the maximum value at the beginning of the search
and reaches the minimum value at the end of the search. Typ-
ically, the maximum and minimum values of the perturbation
parameter of are set, respectively, to 10% and 5% of the
“averaged” value of the th objective function over some sam-
pling points. Moreover, from the aforementioned description it
is clear that: 1) since the selection probability for a point in
the approximated presentation of the so far searched nondom-
inated solutions is inversely proportional to the point density,
the sparser the points in the objective space are, the higher are
the probabilities for the points are to be selected. Therefore, the
diversity of the nondominated solutions is guaranteed; 2) com-
pared with a pure stochastic perturbation method, the proposed
gradient based one can reach a promising point in the maximum
descending direction, resulting in an enhancement in search ef-
ficiency. Consequently, a high performance multiobjective op-
timizer could be expected.

III. NUMERICAL EXAMPLE

To critically compare the performances of the proposed al-
gorithm with other vector optimal techniques, the geometrical
design of the multisectional pole arcs of a large hydrogenerator
[3] is used as a case study. Mathematically, this multiobjective
design problem is formulated as

(9)

where is the amplitude of the fundamental component of
the flux density in the air gap, is the distortion factor of a
sinusoidal voltage of the machine at the no-load, telephone har-
monic factor (THF) is the direct axis transient reactance of
the short circuit ratio (SCR) generator.

The decision parameters of this problem are the center
positions and radii of the multisectional arcs of the pole shoes
(Fig. 2). In the numerical implementation, is directly
computed from the finite element solution of the no-load elec-
tromagnetic field of the machine, and the other performance
parameters of (9) are derived based on these finite element
simulations.
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TABLE I
ALGORITHM PARAMETERS USED BY THE PROPOSED

AND A STANDARD GENETIC ALGORITHM

Fig. 3. Searched Pareto solutions by a SA based method.

Fig. 4. Searched Pareto solutions by the proposed algorithm.

Fig. 5. Searched Pareto solutions by a standard generic algorithm.

This problem is solved by using, respectively, the proposed
IVGA, a standard GA and a SA algorithm. The parameters used
by the proposed and the standard GA are given in Table I. The
parameters of the SA algorithm used in this paper are the same
as those of [3].

In the numerical experiments, for the geometrical optimal
design of a 300 MW hydro-generator, every algorithm is run
independently three times, and the “averaged” iterative number
of the three runs for the proposed, the SA, and the standard
GA algorithms are, respectively, 1576, 1784, and 2045. The
searched Pareto fronts using three different algorithms are
shown in Figs. 3–5. By comparing these searched Pareto fronts,

it is obvious that the standard GA algorithm cannot find some
parts of the Pareto solutions, i.e., those in the back-right corner
and in the front-right sub-regions, which can however be
found by either the proposed or the SA algorithms because the
exploitation search ability of a standard GA is not as strong as
its exploration searching ability. In summary, the performances
of the proposed algorithm are superior to its ancestor, the stan-
dard GA algorithm, in terms of search efficiency and solution
quality; and it is comparable to the SA based algorithm, as
demonstrated by this primary numerical experiment as reported
in this paper.

IV. CONCLUSION

An efficient multiobjective optimizer is proposed and its
performances are evaluated by numerical experiments on a
practical inverse vector optimal problem. The primary numer-
ical results have demonstrated the robustness and feasibility of
the proposed algorithm in the study of engineering applications.
Therefore, the proposed work offers an alternative algorithm
for multiobjective optimizations of electromagnetic devices.
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