
 1

Toward Ubiquitous Searching

Miaomiao Wang1,2, Jiannong Cao2, Yan Sun2, Jing Li1

1 Department of Computer Science,
 The University of Science and Technology of China, Hefei, Anhui, China

2 Internets and Mobile Computing Lab, Department of Computing,
The Hong Kong Polytechnic University, Kowloon, Hong Kong

{csmmwang,csjcao,csysun}@comp.polyu.edu.hk

Abstract

In this paper, we propose a novel concept called
“ubiquitous searching”, which allows people to
organize and search the desired information about the
objects in the physical world, navigating from one
object to others through their contextual links, just like
what we do in the web searching. How to realize such
an exciting idea poses many challenges, and a new
approach is needed to provide scalable system
abstractions and infrastructures. We identify the
design principles and propose the framework toward
ubiquitous search. The system architecture and the key
algorithms for the proposed framework are developed.
We also describe a proof-of-concept prototype and a
simulation study used to experiment with our
framework and algorithms.

Keywords: Ubiquitous Computing, Wireless
Sensor Network, Searching, Physical World

1. Introduction

Two trends in networking and computing
technologies motivate the work described in this paper.
First, recent years have witnessed the rapid advances in
embedded devices [1], wireless sensors networks
(WSNs) [2], and mobile communication technologies
[3], as well as their fast growing applications. The
widespread deployment of integrated sensing,
computing, and communication systems is
transforming the physical world into a ubiquitous
computing platform. Sensing tags, memory, computing
and communication capabilities are immersed into our
living environments, appearing on motion detectors,
door locks, light bulbs, alarms, cellular phone, vehicles,
and possibly in person’s wallet or even key rings [4]. It
is foreseeable that, in the near future, we will be
offered the opportunities to access and search the
information about the physical objects directly, in a

way much the same as searching the virtual world on
the web using Google or Yahoo.

Another trend is the rapid spread of the concept and
development of techniques of information searching.
Nowadays, people can search the information on the
Internet about web-pages, pictures, music, and even
satellite maps of the Earth and the Mars. To extend the
searching from the cyber world to the physical world
will be an exciting application which is not far away
from us.

In this paper, we propose a novel concept called
ubiquitous searching. The key idea of ubiquitous
searching is to acquire, organize, and browse the
desired information about objects in the physical world,
navigating from one object to others through their
contextual links, just like what we do in the web
searching.

An application scenario of ubiquitous searching is
that, a person named Jack can start the search using the
keywords “dog, black”, as well as his personal
information such as “Jack, password”, and then obtain
all the available information (with appropriate privacy
restrictions) around the world about black dogs, such
as “belonging to whom” “location”, “near to what”,
etc., ranked by some pre-defined order. The most
desired dogs will be presented the first. Jack can then
select a particular dog for further information. He may
find that the dog is near a cat and, if he is interested in
the cat’s information, he can simply click on the link
for that “cat” object.

However, how to realize the exciting idea of
ubiquitous search faces many challenges. An
immediate question is how to enable people to directly
get the timely information about, and related to the
desired objects, given the huge amount of diverse,
dynamic, and heterogeneous information available in
the large scale physical environment. A new approach
is needed to provide scalable system abstractions and
corresponding algorithms.

This paper contributes to ubiquitous searching in
three ways. First of all, we first time propose the

978-1-4244-1890-9/07/$25.00 ©2007 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 02:22 from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyU Institutional Repository

https://core.ac.uk/display/61006522?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

concept. Second, we identify the design principles, and
propose the ubiquitous searching framework (USF),
which includes the system model with the definition of
the abstract information type UIO (Ubiquitous
Intelligent Object), and the searching model with the
searching interface and two key algorithms. One
algorithm is the mobile agent-based crawling algorithm
for information gathering. Another algorithm is the
ranking algorithm for information re-organizing and
presentation. Third, we present a proof-of-concept
prototype built to demonstrate our framework and
describe simulation results to evaluate our algorithms.
However, as mentioned before, there are many
challenges to address for realizing ubiquitous search.
This paper serves as the very first step, providing
insights into the problem, discussing possible solutions
with the hope to inspire more related research on the
topic.

The rest of the paper is organized as follows:
Section 2 briefly reviews the related work. Section 3
presents the design of the ubiquitous searching
framework (USF) and its core algorithms. In section 4,
we present the design of a system prototype with an
application scenario and a simulation study of the
proposed crawling algorithm. Finally, we conclude this
paper by discussing the future works in Section 5.

2. Related Work

To the best of our knowledge, this paper is the first
one that originates the integration of the concepts of
web searching and ubiquitous computing. In this
section, we briefly review the existing works with
similar motivations or contributing to the realization of
this concept.

Researchers recently have made efforts on
designing systems, both in concept and implementation,
for acquiring information from the ubiquitous
computing environment. Several works have addressed
the issue of how to get the pre-defined, homogeneous
information from a small scale, close, and static
environment [5, 6, 7, 8]. Some works [15] use RFIDs
for physical object identification. Other works, e.g.,
Cougar [6] and TinyDB [5], use wireless sensor
network (WSN) for querying the physical object values.
They abstract the WSN as a database, and make use of
the distributed query processing techniques to obtain
the data by using SQL-like statements.

Techniques have been proposed for obtaining the
location information of dynamically moving objects [9,
10, 11]. The techniques involve the use of radio
frequency, ultrasound, and video capturing.

Combining the above two concerns, research has
been done [9] to address the problem of
“Human-Centric Search of the Physical World”. It is
similar to the database approach in query processing,

but the main concern here is how to obtain the location
information about a specific object in a small scale
network.

SensorWeb [12, 13, 14] shares the similar
motivation with our work. It is an emerging trend to
make various types of web-resident sensors,
instruments, image devices, and repositories of senor
data, discoverable, accessible, and controllable via the
WWW. However, the main objective of SensorWeb is
resource sharing. In contrast, our work is oriented to
information searching and browsing.

In terms of information searching, global context
aware service discovery [19, 20] also shares some part
of motivations with our work. These works focused on
searching desired services using pre-defined protocols
by organizing pervasive data using some global index.
The works in [21, 22], proposed “Context-aware
browsing of the world”, but did not touch the
ubiquitous searching concept, and no algorithm is
provided for ranking the search results according to
their relevance.

In summary, our work relates to and differs from
the existing works in the following ways. First, our
proposed USF is developed as an overlay, built upon
the supporting techniques available now and in the
future. Second, compared with the works sharing the
similar motivations, our work provides a systematic
approach with abstractions and algorithms for
ubiquitous searching. We address the issues of
searching and browsing the objects, not only the
services provided by them. In addition, we address the
issue of how to rank the information about the objects
people are interested in searching.

3. Ubiquitous Searching Framework

 In this section, we first describe the design
principles and then introduce the USF. We propose the
key algorithms and mechanisms for implementing the
framework.

3.1. Design principles of USF

As mentioned, from both the architecture and the
algorithm aspects, to design a system to realize the
ubiquitous searching concept is not an easy task, we
have identified the following principles that should be
followed in the design of the framework.d

Openness and scalability: the system should be
able to address the objects in a large scale ubiquitous
computing environment, supporting the dynamically
changing sets of objects and their relations.
Standardized and scalable abstractions should be
defined, including the information metadata, the
system model, the system structure, and the operation
interfaces.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 02:22 from IEEE Xplore. Restrictions apply.

 3

Privacy: physical objects are more privacy
sensitive than the traditional Internet files (e.g.
documents or web pages). Information about the
objects should be protected by appropriate privacy
mechanisms.

Appropriate algorithms: the algorithms designed
for traditional cyber-world searching are not suitable
for ubiquitous searching, mainly for two reasons. First,
the supporting techniques (e.g. embedded devices and
wireless communications) for ubiquitous searching are
different from those used in the web searching
environment. Second, the information about physical
object is different from the WebPages in terms of the
metadata, information dynamics, etc. New searching
algorithms are needed for gathering, extracting and
organizing the information.

3.2 System architecture of USF

The system architecture consists of the abstract
object model, the system model, the system structure,
and the searching interface.

We define the physical objects in the real world,
equipped with the sensing tags, computing, storage,
and communication capabilities, as ubiquitous
intelligent objects (UIOs). Some UIOs are stationary,
while others are mobile. UIOs can be always or
intermittently connected to the network. Today much
progress has been made for realizing such concept. The
devices that can be used to implement the UIOs may
be electronic labels/tags, RFIDs, MEMS devices, tiny
sensors, and embedded software, etc.

The abstract object model (meta data) defines the
data description of the UIOs. The meta-data of a UIO
contains three parts: Self_description,
Ability_description, and Relationship_description.

The pre-defined Self_description describes the
features of the UIO, which specifies what or who the
UIO is, and usually will not always change. The
structure of Self_description is a tuple [UIO_ID,
attributes-list (name, value, privacy)]. UIO_ID is
globally unique and organized hierarchically reflecting
UIOs class inheritance relationship. Every attribute has
a name, value, and privacy class, which can be
public_RW, restricted_W_public_R, or restricted_R.
The UIO_ID reflect relationships the between all the
UIOs.

Ability_description describes the information that
specifies what UIO has “perceived” and “derived”.
This information can be the raw data captured from the
sensors in a UIO or processed results by the UIO. In
particular, we define UIO that can get the temporal and
spatial information as self-conscious UIOs. The
structure of Ability_description is a tuple
[Information_type, Values, Report_interval,
Privacy]. Here, the privacy class can be public_R or

restricted_R. Writing is not allowed here, because the
information should just reflect the fact themselves as
obtained. Report_interval indicates the interval for
value reporting, and the setting of the value depends on
the Information type and the status of the UIO. For
example, a UIO equipped with a thermometer sensor
can perceive the temperature information, and if the
sampling rate of the temperature information is low,
the corresponding Report_interval should be long. In
addition, the status of the UIO will affect the
Report_interval. An example is a UIO equipped with a
GPS sensor. When the moving speed of the UIO is fast,
the Report interval should be short.

Relationship_description describes the
relationships between the UIOs, which can be used for
navigating from one UIO to another. For large and
static UIOs (e.g. hill and the lake), their relationships
can be pre-defined. For other UIOs, their relationships
are dynamically obtained by using the supporting
mechanisms. The structure of Relationship_description
is a tuple [Out_set, In_set] Out_set contains all the
other UIO_IDs that the UIO are aware of, while In_set
contains all the other UIO_IDs that “know” this UIO.
Note that, “being aware” can be logical and spatial.
There are two kinds of logical UIOs relationships. One
is the structural relationship, for example, “composed
by”. Another kind is the behavior relationship, for
example, “used by” or “play with”. The spatial
relationship can be “near” or “up to”, etc.

The system model of USF is cluster-based with two
tiers. The first tier is a mesh network consisting of all
the UIOs, which are clustered into sub-systems. The
second tier is an overlay composed of the master UIOs
of the subsystems. Client (As a specific UIO) can
search the information about the UIOs using different
devices through the master UIOs. Figure 1 illustrates
the system model.

In general, the UIOs are clustered according to
their physical locations. The master UIOs are usually
static and of a large scale, with the abilities of handling
the searching requests. For example, a campus is
defined as a master UIO, because it is aware of all the
buildings and students on the campus and can support
the searching of them. A subsystem can have one or
more master UIOs, which can also be organized
hierarchically. One subsystem has one top layer UIO.
The global information about the physical world is
shared by all top layer master UIOs. The search can
span a number of relevant subsystems, e.g., by
flooding.

Figure 2 shows the structure of USF in one
subsystem (for simplicity, only one master UIO is
shown). The structure is composed of several parts.
Among them, the search engine, ranking, index and

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 02:22 from IEEE Xplore. Restrictions apply.

 4

analysis, utilities, and crawl control are associated
with the mater UIO.

Figure 1. USF system model

Search Engine is responsible of receiving the
search requests from the clients, and sending the
ranked results to the client. Crawlers are a small
program implemented by using mobile agents. They
“browse” the physical world on behalf of the search
engine. Crawler control is responsible of controlling
the actions of the crawler agents. UIO information
repository is a distributed database for storing the
information gathered by the crawler agents. Indexer
and analysis is responsible of parsing the UIO
information, and making the inverted files for later
search. Ranking is used to re-arrange the UIO
information and present the most relevant information
to the user. Utilities contain policies used by the related
algorithms.

The interface of USF is of the following format:
Search (Result_information_list, Keywords,

Search_process type, Validation)
Result_information_list contains the search results,

sorted by the object ranking algorithm. Keywords are
provided by the client for the search. The Searching
engine will map the keywords to the meta-data of the
UIO using the Utilities. Validation is a set of values
that denote the client’s identity. USF will map the
client identity to the roles in using the Utilities. The
relationships between the roles and the UIO
information privacy are also maintained in the Utilities.

USF provides two types of search processes:
Common search and Fresh-focused search, depending
on whether the search is initiated on demand in
response to an incoming request. Common search has
three steps. In the UIO-information-acquiring step, a
master UIO periodically gathers information about the
UIOs in the corresponding subsystem using mobile
agents controlled by Crawlers control. In the
UIO-information-reorganizing step, the index and
analysis module will scan all the gathered information,
construct reverse sorting index table, and store the
results for the next step. The inverted files are
periodically rebuilt. Finally, in the Searching-response

step, Result_information_list is sent back to the client
by Search Engine.

On the other hand, Fresh-focused search aims at
searching the most recent information about the UIO.
Because of the large number of UIOs, the newest
information about the desired UIOs may not be
available in the distributed database. For searching the
UIOs with high information dynamics, the client can
use this kind of search. Whenever the fresh-focused
search is initiated, a mobile agent is sent out
immediately to find the related information.

Figure 2. USF system structure

3.3 Key Algorithms for USF

Related works in web-search are involved with
developing necessary algorithms, such as crawling,
indexing, and ranking. To support our USF, we also
need to consider the key algorithms. Here, we propose
two core algorithms for USF: a mobile agent-based
crawling algorithm for UIO information gathering and
an UIO ranking algorithm for UIO information
re-organization. The two algorithms are similar in
function but different from the traditional
corresponding versions used in Cyber search in terms
of the implementation approach and strategies.

The basic scheme of our crawling algorithm is
shown in Figure 3. The master UIO first initializes a
crawler agent. (We explain later why a mobile agent
approach is used). Then the crawler agent replicates
itself and dispatches the copies to the UIOs selected in
the OUT_set of the master UIO by the
Object_selecting function.

When the crawler arrives at a required-crawled UIO,
it executes the Gathering function to inspect the meta
data tuples of the UIO, stores the extracted information
to the data structure called GatheredInfo, send the
GatheredInfo back, and inspects the
Relationship_description to select the UIOs to crawl
next. Then, the crawler executes the Forward function
to replicate itself and dispatches the copies to the
selected UIOs. To avoid redundancy, the Replicate
function first checks whether a remote UIO needs to be
crawled.

Each crawler is associated with a timer which
defines the scope of crawling. The crawler will stop
when the timer expires or cannot find more

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 02:22 from IEEE Xplore. Restrictions apply.

 5

required-crawled UIO, then it runs the Notify function
to inform the parent UIO that task has been done. Due
to the recursive replication of the crawler to all UIOs in
the network, the master UIO will eventually end up
with messages containing all the information about the
whole network. Note that, the above crawling
algorithm is used in Common search. In Fresh-focused
search, the crawler agent will bring the keywords and
Validation information during crawling. In the
Gathering function, validation will be performed and
only validated information will be gathered.

Now, let us explain the design concerns and
principles behind this algorithm, and discuss the
potential problems and possible optimizations.

First, the crawler should be as flexible and light-
weight as possible. Here we use the mobile agent
approach for its flexibility and scalability. It allows not
only the convenient update of the crawler algorithm
and strategies by creating a new version of crawler in
the Master UIO, but also easy handling of adding new
UIOs or deleting old ones, because there is no need to
maintain the data gathering route. In contrast, the data
base approach needs to update the distributed query
processing function of all UIOs in case of code change,
and needs to update the query dissemination and
results gathering routes according to the dynamics of
UIOs.

The mobile agent can migrate or clone itself. Here
we use clone because the copies of the agents are
parallelized crawlers in nature. This not only helps to
achieve better performance but also facilitates potential
remote cooperation between the copies. There are
many possible cooperation problems here deserving
investigation. For example, we have assumed that the
Out_set and In_set do not change during one crawling
process. If they change, however, the crawlers should
cooperate to proceed with the process. Another
example is that, if we allow the crawlers to cross the
boundary of the sub-systems, then the crawlers in
different sub-systems should be able to cooperatively
control the information gathering process. The crawler
of our system is running on an overlay, optimizing the
supporting network mechanism will improve the
performance of the crawler.

Algorithm on master UIO:
1. initialize a crawling agent A;
2. A Replicates itself;

Dispatch the copy of A to
Object_selecting(Master_UIO,
Selected_UIO_ID)

3. Wait for reply_message or timeout;

Algorithm on UIO being visited:
1. Gethering (GatheredInfo, Refresh_strategy,

Privacy strategy) send back GatheredInfo;
2. Object_selecting(This_UIO,Selected_UIO_ID)
3. set num of children=num (Selected_UIO_ID);
4. set num_replies to 0;
5. Forward();
Forward() {

A Replicates itself;
Dispatch the copy of A to (Selected_UIO_ID);
while {1} {
wait for reply_message or timeout;
incr num_replies;
if (num_replies = num_children or timeout)

{ Notify(); Exit; }
}

}

Figure 3 Mobile agent based crawling algorithm

Second, the crawler should not depend on or
interfere with the UIOs much. So using the event based
method for UIOs to report the refreshed information is
not practical. Thus, the crawler has to decide how
frequently to re-visit the UIOs it has already crawled,
in order to keep the Master UIO informed of the
changes on the UIOs. The refresh strategy is
implemented in the Gethering function. It is dependent
on the meta data because different meta data have
different changing characteristics. For Self_description
the crawler will get the information according to an
adaptable pre-defined frequency stored the Unities. For
Ability_description, the crawler will get the
information according to the Report_interval, and for
the Relationship_description the crawler will get the
information according to the historical log or analysis
results stored in the Utilities. For analysis of the
relationships, some promising techniques in the
literatures can be adopted. For example, techniques
proposed for social network and social networking [22,
23] can be used to address the relationship of UIOs and
their changing characteristics by means of either
mathematical models and/or experiments.

Third, the crawler should provide the mechanisms
to protect the privacy of the UIOs. The privacy
strategy is also implemented in the Gethering function.
For the public_RW and restricted_W_public_R
information, the crawler will gather the information
without pre-processing, while for the restricted_R
information, it will encrypt the information.

Fourth, the crawler should provide efficient results
in terms of the defined metrics. The crawler should
carefully decide which UIOs to crawl and in what
order. This is because 1) the master UIO may have
limited capacity and may not be able to get all the
information; 2) crawling is always time consuming,
and crawlering all the UIOs will consume too much
time; and 3) not all the UIOs are necessarily of equal

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 02:22 from IEEE Xplore. Restrictions apply.

 6

interests to the client. Object_selecting is responsible
of implementing this design principle, with the goal of
visiting the UIOs of more importance before visiting
the UIOs of less importance. The Importance Rank of
UIO will be discussed later in the
Information-dependent UIO ranking algorithm.

The basic scheme of Information-dependent UIO
ranking algorithm is shown in Figure 4. The algorithm
may affect the USF in two aspects. One is to help the
Object_selecting function in the mobile agent based
crawling algorithm as mentioned before, and another is
to order the Result_information_list that will be
returned by the USF interface.

The basic scheme of the Information-dependent
UIO ranking algorithm is shown in Figure 4. The
algorithm ranks the UIOs based on their importance
and is used in USF in two ways. One is to help the
Object_selecting function in the mobile agent based
crawling algorithm as mentioned before, and another is
to order the Result_information_list that will be
returned by the USF interface.

The importance of an UIO, I(UIO), is defined as:

1 2 3 4() (,) () (,) ()I UIO a SUIOQ a RUIO a MUIOQ a PUIO= ⋅ + ⋅ + ⋅ + ⋅

S(), R(), M(), and P() are the importance
assignment functions to be explained below. The
coefficients

1 2 3 4, , ,a a a a are their adaptable weights.

S(UIO, Q) is the importance function in terms of
information similarity. Given a query Q, it assigns a
higher importance value to a UIO whose information
better matches that requested by Q. Many information
similarity algorithms exist and can be adopted for
S(UIO, Q) [23]. Here we use a simple function what is
based on counting the matched keywords. It is
information-type aware, i.e., it takes into consideration
the importance factor of different meta data, which is
pre-defined and stored in Utilities. We assign more
weight to keyword matching in Self_description than
keyword matching in other parts of the meta data,
because the information in Self_description reflects
directly the object itself rather than what being
observed by the object. Furthermore, keyword
matching for UIO information with public_RW or
restricted_W_public_R privacy has more weight than
keyword matching for UIO information with restricted
_R privacy. This is because information with more
strict privacy has less use to the user.

R(UIO) is the importance function in terms of
object relationship. It assigns higher importance to a
UIO that knows, and is known by, more other UIOs.
This is because this kind of UIOs can provide more
context information for the user’s further navigation or
can speed up the crawling process by dispatching more
copies of crawlers once. We adopt the page rank

algorithm used in web search [16, 24], replacing web
pages by UIOs for ranking.

1 1() (1) ((() / () () / ())c n nR U d d R U C U R U C U= − + + +…
where ()cR U is the importance of Uc, the UIO under

consideration, ()iR U is the importance of UIO Ui

which knows Uc, ()iC U is the size of Ui’s In_Set, and

d is a damping factor with a value between 0 and 1.
M(UIO, Q) is the importance function defined in

terms of object characteristics. One main characteristic
of an UIO is its location. We assign higher importance
to a UIO closer to the searching user than that further
away. This is because usually the user concerns more
about reachable objects.

P(UIO) is the importance function in terms of
object popularity. It assigns a higher importance to a
UIO being searched more frequently in the history.
This information is maintained in Utilities.

For crawling process:
UIO-Listranked = UIOs in Out_set;

1. Set a3=a4=0
2. Determine coefficient a2
3. If (similarity-based_crawling), determine

coefficient a1;
4. Rank the UIOs in UIO-Listranked by I(UIO)

For results ordering:
1. Determine the weight coefficients of I(UIO)

where is a1 is assigned much more weight
than other co-efficients.

2. Rank the UIOs by I(UIO) and put the results
to Result_information_list

Fgure 4. Information-depended UIO ranking algorithm

4. Prototype and Simulation

To demonstrate the idea of ubiquitous searching we
have developed a prototype. Although, the underlying
support for ubiquitous searching can use various kinds
of devices and networks, for a proof-of-concept
prototype, we used a wireless sensor network. The
hardware used in our prototype is shown in Figure 5.
Following the design, the prototype also uses a
two-tier architecture. In the first tier, we use Berkeley’s
Motes [17, 18] as UIOs, and in the second tier, we use
our custom-made TFAD-901 node as master UIOs
which has higher capability for processing and
communication.

(a) Berkeley’s Motes (b) TFAD-901

Figure 5. Hardware components of our prototype system

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 02:22 from IEEE Xplore. Restrictions apply.

 7

For prototype implementation, the Self_description
of the UIOs are pre-defined and stored in the EEPROM
of Motes. The values in the Ability_description are the
sensed data, and are stored in a flash. There are three
kinds of “normal sensors”: temperature, light, and
sound, and a “location sensor” that senses its own
location by using the RSSI technique [11]. The Out_set
and in_Set of Relationship_description are maintained
as a neighbor list of the Motes. The Motes are always
listening to the beacon signal of each other. If any
change occurs, a Mote will refresh its neighbor list.
The protocol used for the communication between
UIOs is IEEE 802.15.14, while the protocol for the
communication between the master UIOs is AODV.
 We use a PC as the system for interfacing with the
user. Apache Tomcat is used as the web-sever to get
the search instruction from and post the result back to
the user. The request is wrapped into a message and
sent to the serial port, and then to the TFAD-901 node
to initiate a searching process. First, the request
message will be unwrapped, and Validation
information will be used to acquire a privacy role. Key
words will be used to perform mapping. Then, the
TFAD-901 either performs a Common search, maping
the key words using index, and returning ranked UIO
information to the client–end, or initializes a new
mobile agent to do the Fresh-based search.

The part of the mobile agent crawling algorithm
running on the TFAD-901 node is programmed using
C, while the part running on the Motes is programmed
using nesC compatible with the TinyOS operating
system.

For a demonstration, the following application
scenario is used. Jack wants to search a black dog by
using USF. He enters the key words (Dog, Black) and
his identity (name, password), and selects the common
search process. Results are shown in Figure 6. Jack can
then further click the related objects found, e.g., the
room or the cat, if he wants. But for privacy reason he
can’t browses detailed information of Marry’s dog. We
used the Linux file system to store the UIO
information and the index information.

Figure 6. USF searching result demo

The main purpose of the prototype is to
demonstrate our idea. However, due to the limited
scale, it cannot be used to effectively evaluate the
performance of the proposed algorithms. Therefore, we
also conducted simulations.

The simulation program is written in Java. We
simulate the UIO crawling process in one subsystem.
We initialized 20000 UIOs in a 100m*100m area.
Among them, 80% UIOs are static and random
distributed in the area, while 20% UIOs are mobile
using the mobile model of random walk, at the speed
of 0.01m/s. The relationship between the UIOs is the
spatial “near” − one UIO is in the pre-defined range of
another UIO. Range is defined as a circle area with a
radius randomly selected from (0, 10). All the UIOs
have the ability of getting their own locations
(coordinate (x,y)), and the master UIO is placed in the
middle of the area. For mobile UIOs, the reporting
interval is set according to the moving speed.

We define useful UIOs as those whose importance
is higher than the pre-defined threshold. The metric for
evaluating the performance of the crawling algorithm
is the crawling efficiency defined by Ku/H, where Ku is
the number of useful UIOs that have been crawled, and
H is the total number of useful UIOs.

 Figure 7. Performance of crawling algorithm

We conducted four experiments, corresponding to
the four different crawling strategies: 1) without
ranking, and using the same information refresh; 2)
without ranking, and using discriminatory information
refresh; 3) using ranking with the same information
refresh; 4) using ranking with discriminatory
information refresh. The simulation results for the four
different cases are shown in Figure 7. We can see that,
for each case, as the crawling portion of the UIOs
increases, the crawling efficiency is also increased.
Comparing the different strategies, we can observe that,
crawling using ranking will increase the crawling
efficiency. On the other hand, using discriminatory
information refresh according to the UIO information
type will also help improve the performance.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 02:22 from IEEE Xplore. Restrictions apply.

 8

5. Conclusions and Future work

It has been believed that with the continuous
advances in the supporting technologies, our living
environment is being transformed into a ubiquitous
computing platform. Acquiring desired information
directly from the physical world will be an exciting
application. In this paper, we have proposed a novel
concept called “Ubiquitous Searching”, and presented
the USF framework for realizing the concept. We have
also described a prototype using Crossbow Micaz
nodes and our tailor-made TFAD-901 nodes.

In the future, we will enhance our work in several
aspects. First, we will further develop the prototype as
a test bed for the framework and the applications. More
kinds of sensing devices as heterogonous information
sources, such as RFID and mobile cell phone with
sensors, will be considered. Second, we will do more
evaluation and improve the key algorithms in terms of
the time-delay and information accuracy, the users’
satisfactory of the ranking etc. Third, presently, the
ubiquitous searching is based on syntax matching. We
will investigate the semantic ubiquitous searching. The
feature level data fusion and in-network data mining
techniques will be studied.

There are some other works that can be done on
this topic. For examples, how to use the social
networking theory to model the behaviors of UIOs, so
as to optimize the data gathering, and how to crawl
hidden UIOs, etc.

Acknowledgement

This work is supported by Hong Kong Polytechnic
University under the ICRG grant G-YE57 and the
large equipment fund G.61.27.D01B

Reference
[1] Cecilia Mascolo, Stephen Hailes, “Survey of

Middleware for Networked Embedded
Systems”, FP6 IP "RUNES" - D5.1

[2] I.F. Akyildiz, et al., “Wireless Sensor Networks: A
Survey”, Computer Networks, Vol.38, 2002, pp.
393-422.

[3] Licia Vapra, Wolfgang, Emmerich, “Middleware for
Mobile Computing” Department of Computer Science
University College London.

[4] D. Estrin, R. Govindan, J. Heidemann
(Editors):“Embedding the Internet”, Communications
of the ACM, Volume 43, Number 5. May 2000.

[5] S.R. Madden, M.J. Franklin, and J.M. Hellerstein,
“TinyDB: An Acquisitional Query Processing System
for Sensor Networks,” ACM Trans. Database Systems,
vol. 30, no. 1, 2005, pp. 122–173.

[6] P. Bonnet, J. Gehrke, and P. Seshadri, “Towards
Sensor Database Systems,” Proc. 2nd Int’l Conf.
Mobile Data Management, 2001, pp 314–810.

[7] Bonnet P, Gehrke J, Seshadri, “Querying the Physical
World”, IEEE personal Communications, 2000

[8] Boulis, C.C. Han, and M. B. Srivastava. “Design and
Implementation of a Framework for Programmable
and Effi-cient Sensor Networks”. In MobiSys 2003

[9] KokKiong Yap, Vikram Srinivasan and Mehul
“Motani, MAX: HumanCentric Search of the Physical
World” SenSys’05, November, 2005, USA.

[10] P. Bergamo and G. Mazzini, “Localization in sensor
networks with fading and mobility," in IEEE PIMRC,
September 2002, pp. 750

[11] J. Hightower and G. Borriello, “Location systems for
ubiquitous computing", Computer, vol. 34, pp. 57-66,
August 2001.

[12] Nickerson BG, Sun Z, Arp JP (2005) “A Sensor Web
Language for Mesh Architectures”. 3rd Annual
Communication Networks and Services Research
Conference, May 16-18, 2005, Halifax, Canada.

[13] Tao V, Liang SHL, Croitoru A, Haider Z, Wang C,
“GeoSWIFT: Open Geospatial Sensing Services for
Sensor Web”. In: Stefanidis A, Nittel S (eds), CRC
Press, pp.267-274. 2004.

[14] Reichardt M (2005) Sensor Web Enablement: “An
OGC White Paper”. Open Geospatial Consortium
(OCG), Inc.

[15] http://www.wavetrend.net/
[16] Lawrence Page, Sergey Brin, Rajeev Motwani, Terry

Winograd. “The PageRank Citation Ranking: Bringing
Order to the Web”.

[17] http://www.xbow.com
[18] http://www.tinyos.net
[19] Paul Castro, Richard Muntz “An adaptive approach to

indexing pervasive data”, MobiDE 2001.
[20] Gabriella Castelli, Alberto Rosi, Marco Mamei,

Franco Zambonelli, “A Simple Model and
Infrastructure for Context-aware Browsing of World”,
in the proceeding of Pervasive computing.

[21] G. Castelli, A. Rosi, M. Mamei, F. Zambonelli,
“Browsing the World: Briding Pervasive Computing
and the Web”, 2nd International Workshop on
Ubiquitous Geographical Information Systems,
Munster (D), 2006.

[22] Elizabeth F.Churchill, Christine A. Halverson, “Social
Networks and Social Networking”, IEEE internet
computing.

[23] Vikram Srinivasan, Mehul Motani, Wei Tsang Ooi,
“Analysis and implications of Student Contact
Patterns Derived from Campus Schedules”
Proceedings of MobiCom’06, September 23-26,2006,
Los Angeles, California, USA.

[24] J.Cho, H.Garcia-Molina, L.Page. “Efficient Crawling
Through UR: Ordering”. Seventh International Web
Conference (WWW 98). Brisbane, Australia, April
14-18,1998

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 02:22 from IEEE Xplore. Restrictions apply.

